A DECOMPOSITION OF THE SPACE \mathscr{M} OF RIEMANNIAN METRICS ON A MANIFOLD

Norinito KOISO

(Received March 6, 1978)

0. Introduction

Let M be a compact C^{∞}-manifold. We denote by \mathscr{M}, \mathscr{D} and \mathscr{F} the space of all riemannian metrics on M, the diffeomorphism group of M, and the space of all positive functions on M, respectively. Then the group \mathscr{D} and \mathscr{F} acts on \mathscr{M} by pull back and multiplication, respectively. D. Ebin and N. Koiso establish Slice theorem [4, Theorem 2.2] on the action of \mathscr{D}.

In this paper, we shall give a decomposition theorem on the action of \mathscr{F} (Theorem 2.5). That is, there is a local diffeomorphism from $\mathscr{F} \times \overline{\mathcal{C}}$ into \mathscr{M} where $\overline{\mathcal{C}}$ is a subspace of \mathcal{M} of riemannian metrics with volume 1 and of constant scalar curvature τ_{g} such that $\tau_{g}=0$ or $\tau_{g} /(n-1)$ is not an eigenvalue of Δ_{g}. Combining the above theorems, we get the following decomposition of a deformation (Corollary 2.9). Let $g \in \overline{\mathcal{C}}$ and $g(t)$ be a deformation of g. Then there are a curve $f(t)$ in \mathscr{F}, a curve $\gamma(t)$ in \mathscr{D} and a curve $\bar{g}(t)$ in $\overline{\mathcal{C}}$ such that $\delta g^{\prime}(0)=0$, which satisfy the equation $g(t)=f(t) \gamma(t)^{*} \bar{g}(t)$. (For the operator δ, see 1.)

The author wishes to express his thanks to the referee.

1. Preliminaries

First, we introduce notation and definitions which will be used throughout this paper. Let M be an n-dimensional, connected and compact C^{∞}-manifold, and we always assmue $n \geqq 2$. For a vector bundle T over M, we denote by $H^{r}(T)$ the space of all H^{r}-sections, where H^{r} means an object which has derivatives defined almost everywhere up to order r and such that each partial derivative is square integrable. Then $H^{r}(T)$ is isomorphic to a Hilbert space and the space $C^{\infty}(T)$ of all C^{∞}-sections becomes an inverse limit of $\left\{H^{r}(T)\right\}_{r=1,2, \cdots}$. Therefore such a space is said to be an ILH-space. If a topological space \mathfrak{X} is isomorphic to an ILH-space locally, \mathfrak{X} is said to be an ILH-manifold. For details, see [5].

Let g be an H^{s}-metric on M. We consider the riemannian connection and use the following notations:
v_{g}; the volume element with respect to g,
R; the curvature tensor,
ρ; the Ricci tensor, (For the standard sphere with orthnormal basis, $R_{121}{ }^{2}=R_{1212}<0$ and $\rho_{11}<0$.)
τ; the scalar curvature,
$($,$) ; the inner product in fibres of a tensor bundle defined by g$,
\langle,$\rangle ; the global inner product for sections of a tensor bundle over M$, i.e., $\langle\rangle=,\int_{M}(,) v_{g}$,
S^{2}; the symmetric covariant 2-tensor bundle over M,
$H^{r}(M)$; the Hilbert space of all H^{r}-functions,
$H_{g}^{r}(M)$; the Hilbert space of all H^{r}-functions f such that $\int_{M} f v_{g}=0$,
$H_{g}^{r}\left(S^{2}\right)$; the Hilbert space of all symmetric bilinear H^{r}-forms h such that $\langle h, g\rangle=0$,
∇; the covariant derivation,
δ; the formal adjoint of ∇ with respect to \langle,$\rangle ,$
δ^{*}; the formal adjoint of $\delta \mid H^{r}\left(S^{2}\right)$,
$\Delta=\delta d$; the Laplacian operating on the space $H^{r}(M)$,
$\bar{\Delta}=\delta \nabla$; the rough Laplacian operating on the space $H^{r}\left(T_{q}^{p}\right)$,
Hess $=\nabla d$; the Hessian on the space $H^{r}(M)$,
\mathscr{F}; the ILH-manifold of all positive C^{∞}-functions on M,
\mathcal{F}^{r}; the Hilbert manifold of all positive H^{r}-functions on M,
\mathscr{M}; the ILH-manifold of all C^{∞}-metrics on M,
\mathscr{M}^{r}; the Hilbert manifold of all H^{r}-metrics on M,
\mathscr{M}_{1}; the ILH-manifold of all C^{∞}-metrics with volume 1 ,
\mathscr{M}_{1}^{r}; the Hilbert manifold of all H^{r}-metrics with volume 1.
When we consider the metric space \mathscr{M}^{s}, the covariant derivation, the curvature tensor and the Ricci tensor with respect to an element g of \mathscr{M}^{s} will be denoted by ∇_{g}, R_{g} or ρ_{g}. By a deformation of g we mean a C^{∞}-curve $g(t): I \rightarrow \mathcal{M}$ such that $g(0)=g$, where I is an open interval. The differential $g^{\prime}(0)$ is called an infinitesimal deformation, or simply an i-deformation. If there is a 1-parameter family $\gamma(t)$ of diffeomorphisms such that $g(t)=\gamma(t)^{*} g$ then the deformation $g(t)$ is said to be trival. If there is a 1 -form ξ such that $h=\delta^{*} \xi$, then the i-deformation h is said to be trival. On the other hand, an i-deformation h is said to be essential if $\delta h=0$.

Now, we give some fundamental propositions.
Lemma 1.1 [6,11.3]. Let E and F be vector bundles over M and $f: E \rightarrow F$ be a fiber preserving C^{∞}-map. If $s>\frac{n}{2}$, then the map $\phi: H^{s}(E) \rightarrow H^{s}(F)$ which is defined by $\phi(\alpha)=f \circ \alpha$ is C^{∞}.

Proposition 1.2. If $s>\frac{n}{2}$, then the map $D: \mathscr{M}^{s+1} \times H^{s+1}\left(T_{q}^{p}\right) \rightarrow H^{s}\left(T_{q+1}^{p}\right)$ which is defined by $D(g, \xi)=\nabla_{g} \xi$ is C^{∞}.

Proof. Let g_{0} be a fixed C^{∞}-metric on M. We define the tensor field $T(g)$ by $T(g)(X, Y)=\left(\nabla_{g}\right)_{X} Y-\left(\nabla_{g_{0}}\right)_{X} Y$ for an H^{s}-metric g on M. Then we get

$$
(T(g))^{k}{ }_{i j}=\frac{1}{2} g^{k l}\left\{\left(\nabla_{g_{0}}\right)_{i} g_{l j}+\left(\nabla_{g_{0}}\right)_{j} g_{l i}-\left(\nabla_{g_{0}}\right)_{l} g_{i j}\right\}
$$

and

$$
\begin{aligned}
& (D(g, \xi))^{i_{1} \cdots i_{p_{j}}}{ }_{j_{0} \cdots j_{q}}-\left(D\left(g_{0}, \xi\right)\right)^{i_{1} \cdots i_{p_{j}}}{ }_{j_{0} \cdots j_{q}} \\
& =-\sum_{a=1}^{k}(T(g))_{j_{0} j_{a}} \xi^{i_{1} \cdots i p_{j}{ }_{j} \cdots j_{a-1} j_{a+1} \cdots j_{q}} \\
& +\sum_{b=1}^{b}(T(g))^{i_{j_{0} k}} \xi^{\xi_{1} \cdots i_{b-1} k i_{b+1} \cdots i_{p_{j}} \cdots j_{q}} .
\end{aligned}
$$

By the definition of the H^{s}-topology, we know that the map : $g \rightarrow\left(\nabla_{g_{0}}\right) g$ is a C^{∞}-map from \mathscr{M}^{s+1} to $H^{s}\left(T_{3}^{0}\right)$. Hence Lemma 1.1 implies that the map: $g \rightarrow T(g)$ is a C^{∞}-map from \mathscr{M}^{s+1} to $H^{s}\left(T_{2}^{1}\right)$. Applying Lemma 1.1 to the above formula, we see that the map : $(T(g), \xi) \rightarrow D(g, \xi)-D\left(g_{0}, \xi\right)$ is a C^{∞}-map from $H^{s}\left(T_{2}^{1}\right) \times H^{s+1}\left(T_{q}^{p}\right)$ to $H^{s}\left(T_{q+1}^{p}\right)$. But the map : $\xi \rightarrow D\left(g_{0}, \xi\right)$ is a continuous linear map from $H^{s+1}\left(T_{q}^{p}\right)$ to $H^{s}\left(T_{q+1}^{p}\right)$, hence the map: $(T(g), \xi) \rightarrow D(g, \xi)$ is C^{∞}. Thus we see that the map D is a composition of C^{∞}-maps, and so is C^{∞}.

Corollary 1.3. If $s>\frac{n}{2}$, then the map $:(g, f) \rightarrow \nabla_{g} f$ is a C^{∞}-map from $\mathscr{M}^{s+1} \times H^{s+2}(M)$ to $H^{s}(M)$.

Proof. We apply Proposition 1.2 to the formula ; $\Delta_{g} f=-g^{i j} \nabla_{i} d_{j} f$.
Corollary 1.4. If $s>\frac{n}{2}$, then the maps $: g \rightarrow R, \rho, \tau$ are C^{∞}-maps from \mathcal{M}^{s+2} to $H^{s}\left(T_{3}^{1}\right), H^{s}\left(S^{2}\right)$ and $H^{s}(M)$, respectively.

Proof. The smoothness of the map : $g \rightarrow R$ completes the proof. By easy computation, we get the next formula :

$$
\begin{aligned}
R(g)_{i j k}{ }^{l}-R\left(g_{0}\right)_{i j k}{ }^{l}= & \left(\nabla_{g_{0}}\right)_{i}(T(g))^{l}{ }_{j k}-\left(\nabla_{g_{0}}\right)_{j}(T(g))^{l}{ }_{i k} \\
& +(T(g))^{i m}(T(g))^{m}{ }_{j k}-(T(g))^{l}{ }_{j m}(T(g))^{m}{ }_{i k} .
\end{aligned}
$$

Thus, applying Proposition 1.2, we see that the map : $g \rightarrow R$ is C^{∞}.
Lemma 1.5 [9,(19.5); 1,(2.11) (2.12)]. Let $g(t)$ be a deformation of g. If we set $h=g^{\prime}(0)$, then we have the following formulae;

$$
\begin{align*}
& \left.\frac{d}{d t}\right|_{0} \tau_{g(t)}=\Delta \operatorname{tr} h+\delta \delta h-(h, \rho) \tag{1.5.1}\\
& \left.\frac{d}{d t}\right|_{0} \rho_{g(t)}=\frac{1}{2}\left\{\bar{\Delta} h+2 Q h+2 L h-2 \delta^{*} \delta h-\text { Hess } \operatorname{tr} h,\right\} \tag{1.5.2}
\end{align*}
$$

where $2(Q h)_{i j}=\rho_{i}{ }^{k} h_{k_{j}}+\rho_{j}{ }^{k} h_{i k}$ and $(L h)_{i j}=R_{i k j} h^{k l}$.

2. A decomposition of the space \mathscr{M}

We denote by \mathcal{C}^{r} the space of all H^{r}-metrics with constant scalar curvature and with volume 1. Fix a C^{∞}-metric $g_{0} \in \mathscr{M}_{1}$. For an integer $r>\frac{n}{2}+4$ and $g \in \mathscr{M}_{1}^{r}$, we define a C^{∞}-map

$$
\sigma_{g}^{r}: H_{g_{0}}^{r}(M) \rightarrow H_{g_{0}}^{r-4}(M)
$$

by $\sigma_{g}^{r}(f)=(n-1)\left(\Delta_{g}\right)^{2} f-\tau_{g} \Delta_{g} f-\int\left\{(n-1)\left(\Delta_{g}\right)^{2} f-\tau_{g} \Delta_{g} f\right\} v_{g_{0}}$.
In fact the map: $(g, f) \rightarrow \sigma_{g}^{r}(f)$ is a C^{∞}-map from $\mathscr{M}_{1}^{r} \times H_{g_{0}}^{r}(M)$ to $H_{g_{0}}^{r-4}(M)$ owing to Corollary 1.3 and Corollary 1.4. First we show some lemmas.

Lemma 2.1. If we denote by K^{r} the subset of \mathscr{M}_{1}^{r} of all metrics $g \in \mathscr{M}_{1}^{r}$ such that σ_{g}^{r} is an isomorphism, then K^{r} is open in \mathscr{M}_{1}^{r}.

Proof. The map : $g \rightarrow \sigma_{g}^{r}$ is a C^{∞}-map from \mathscr{M}_{1}^{r} to the space $L\left(H_{g_{0}}^{r}(M)\right.$, $H_{g_{0}}^{r-4}(M)$) of all continuous linear maps from $H_{g_{0}}^{r}(M)$ to $H_{g_{0}}^{r-4}(M)$. On the other hand the set of all isomorphisms is open in $L\left(H_{g_{0}}^{r}(M), H_{g_{0}}^{r-4}(M)\right)$, hence K^{r} is open \mathscr{M}_{1}^{τ}.

Lemma 2.2. Let $\overline{\mathcal{C}}$ be the subset of \mathscr{M} of all metrics g with constant scalar curvature τ_{g} such that $\tau_{g}=0$ or $\tau_{g} /(n-1)$ is not an eigenvalue of Δ_{g}. Then $\mathcal{C}^{r} \cap K^{r} \cap \mathscr{M}=\overline{\mathcal{C}}$.

Proof. Let $g \in \bar{C}$. Then $g \in \mathcal{C}^{r} \cap \mathcal{M}$, and so it is sufficient to prove that $g \in K^{r}$. If $f \in \operatorname{Ker} \sigma_{g}^{r}$ then $(n-1)\left(\Delta_{g}\right)^{2} f-\tau_{g} \Delta_{g} f$ is a constant. By integration we see

$$
(n-1)\left(\Delta_{g}\right)^{2} f-\tau_{g} \Delta_{g} f=0
$$

But here $\tau_{g}=0$ or τ_{g} is not an eigenvalue of Δ_{g}. Hence $\Delta_{g} f$ is a constant, and so the assumption that $f \in H_{g_{0}}^{\gamma}(M)$ implies $f=0$. Thus we see σ_{g}^{r} is injective. On the other hand $\operatorname{Im}\left\{(n-1)\left(\Delta_{g}\right)^{2}-\tau_{g} \Delta_{g}\right\}=H_{g}^{r-4}(M)$ implies σ_{g}^{r} is surjective. Therefore $\overline{\mathcal{C}} \subset \mathcal{C}^{r} \cap K^{r} \cap \mathscr{M}$, and by the definition of $\overline{\mathcal{C}}$ and K^{r} we see $\overline{\mathcal{C}} \supset \mathcal{C}^{r} \cap K^{r} \cap \mathscr{M}$.

Lemma 2.3. ${ }^{(1)} \quad \mathcal{C}^{r} \cap K^{r}$ is an submanifold of \mathscr{M}_{1}^{r}.
Proof. We define a C^{∞}-map $\widetilde{\Delta \tau}: \mathscr{M}_{1}^{r} \rightarrow H_{g_{0}}^{r-4}(M)$ by

$$
\widetilde{\Delta \tau(g)}=\Delta_{g} \tau_{g}-\int \Delta_{g} \tau_{g} v_{g_{0}}
$$

Then $\left.\mathcal{C}^{r}=\widetilde{(\Delta \tau}\right)^{-1}(0)$. By differentiation we get
(1) A.E. Fischer and J.E. Marsden [8, Theorem 3] show that the space $\boldsymbol{R} \cdot \overline{\mathcal{C}}$ becomes a submanifold of \mathscr{M}.

$$
T_{g} \widetilde{(\Delta \tau)}(h)=\Delta^{\prime}{ }_{(g, h)} \tau_{g}+\Delta_{g} \tau^{\prime}{ }_{(g, h)}-\int\left\{\left(\Delta^{\prime}{ }_{(g, h)}+\Delta_{g} \tau^{\prime}{ }_{(g, h)}\right\} v_{g_{0}}\right.
$$

Let $g \in \mathcal{C}^{r}$. Then we get

$$
\Delta^{\prime}{ }_{(g, h)} \tau_{g}=\left.\frac{d}{d t}\right|_{0} \Delta_{g+t h} \tau_{g}=0
$$

If h is conformal, i.e., there is $f \in H_{g}^{r}(M)$ such that $h=f g$, by substituting to the formula (1.5.1) we get

$$
\tau_{(g, f g)}^{\prime}=(n-1) \Delta_{g} f-\tau_{g} f .
$$

Thus we get $T_{g} \widetilde{(\Delta \tau)}(f g)=\sigma_{g}^{r}(f)$, and $T_{g}(\widetilde{\Delta \tau})$ is surjective. This implies, by implicit function theorem, $\mathcal{C}^{r} \cap K^{r}$ is a submanifold of \mathscr{M}_{1}^{r}, and so of \mathscr{M}^{r}.

Lemma 2.4. Define a C^{∞}-map $\chi^{r}: \mathscr{F}^{r} \times\left(\mathcal{C}^{r} \cap K^{r}\right) \rightarrow \mathscr{M}^{r}$ by $\chi^{r}(f, g)=f g$. If $g \in \overline{\mathcal{C}}$ then $T_{(f, g)} \chi^{r}$ is an isomorphism.

Proof. Injectivity. We see

$$
\left(T_{(f, g)} \chi^{r}\right)(\phi, h)=f h+\phi g .
$$

If $f h+\phi g=0$, then $\tilde{\phi} g \in \operatorname{Ker} T_{g}(\widetilde{\Delta \tau})$, where $\tilde{\phi}=-\phi \mid f$. Hence

$$
\Delta_{g} \operatorname{tr}_{g}(\widetilde{\phi} g)+\delta_{g} \delta_{g}(\widetilde{\phi} g)-\left(\tilde{\phi} g, \rho_{g}\right)_{g}=0
$$

therefore $(n-1) \Delta_{g} \tilde{\phi}-\tau_{g} \tilde{\phi}=0$.
But here $g \in \overline{\mathcal{C}}$, which implies $\tilde{\phi}=0$, and so $h=0, \phi=0$.
Surjectivity. The equation $\operatorname{Im} T_{(f, g)} \chi^{r}=f T_{g}\left(C^{r}\right)+H^{r}(M) g$ shows that $\operatorname{Im} T_{(f, g)} \chi^{r}$ is closed in $H^{r}\left(S^{2}\right)$. Hence, if $T_{(f, g)} \chi^{r}$ is not surjective then there exists a non-zero element \bar{h} in $H^{r}\left(S^{2}\right)$ orthogornal to $f T_{g}\left(\mathcal{C}^{r}\right)$ and $H^{r}(M) g$. We set

$$
K_{g}(h)=\Delta_{g}\left(\Delta_{g} \operatorname{tr}_{g} h+\delta_{g} \delta_{g} h-\left(h, \rho_{g}\right)_{g}\right) .
$$

Then we get $T_{g}\left(\mathcal{C}^{r}\right)=\operatorname{Ker} T_{g}(\widetilde{\Delta \tau})=\operatorname{Ker} T_{g}(\Delta \tau)=\operatorname{Ker} K_{g}$. On the other hand K_{g} has surjective symbol. Hence [2, Corollary 6.9] implies that $H^{r}\left(S^{2}\right)$ has the decomposition

$$
H^{r}\left(S^{2}\right)=\boldsymbol{R} g \oplus T_{g}\left(\mathcal{C}^{r}\right) \oplus \operatorname{Im} K_{g}^{*},
$$

where $K_{g}{ }^{*}$ is the formal adjoint of $K_{g} . f \bar{h}$ is orthogonal to $T_{g}\left(\mathcal{C}^{r}\right)$ and $H^{r}(M) g$, hence $f \bar{h} \in \operatorname{Im} K_{g}{ }^{*}$. If we set $f \bar{h}=K_{g}{ }^{*}(\psi)$, then we see

$$
f \bar{h}=\left(\Delta_{g}\right)^{2} \psi+\nabla_{g} \nabla_{g} \Delta_{g} \psi-\Delta_{g} \psi \rho_{g} .
$$

Since $f \bar{h}$ is orthogonal to $H^{r}(M) g$, we see

$$
0=\operatorname{tr}_{g}(f \bar{h})=(n-1)\left(\Delta_{g}\right)^{2} \psi-\tau_{g} \Delta_{g} \psi
$$

By the assumption that $g \in \overline{\mathcal{C}}$, we see $\Delta_{g} \psi=0$ and so $f \bar{h}=0$, which contradicts the assumption that $\bar{h} \neq 0$.

Theorem 2.5. ${ }^{(2)}$ The space $\overline{\mathcal{C}}$ is an ILH-submanifold of \mathcal{M} and the map $\chi: \mathscr{F} \times \overline{\mathcal{C}} \rightarrow \mathcal{M}$ is a local ILH-diffeomorphism into \mathcal{M}, where χ is defined by $\chi(f, g)=f g$.
(For the notation ILH, see [5, pp. 168-169].)
Remark 2.6. J.L. Kazdan and F.W. Warner [3, Theorem 1.1] show that $\overline{\mathcal{C}}$ is not empty.

Remark 2.7. When $n=2$, this result is classical. That is, any metric g is conformal to some metric with constant scalar curvature.

Proof. We fix a sufficiantly large integer r. By Lemma 2.2, Lemma 2.4 and the inverse function theorem there is an open neighbourhood W^{r} of $\mathscr{F} \times \overline{\mathcal{C}}$ in $\mathscr{F}^{r} \times\left(\mathcal{C}^{r} \cap K^{r}\right)$ such that $\chi^{r} \mid W^{r}$ is a local diffeomorphism. We denote by $\overline{\mathcal{C}}^{r}$ the set of all metrics $g \in \mathcal{C}^{r} \cap K^{r}$ such that there is an H^{r}-function f such that $(f, g) \in W^{r}$. For an integer $s \geqq r$ we set $\overline{\mathcal{C}^{s}}=\overline{\mathcal{C}}^{r} \cap \bigcap_{i=r}^{s}\left(\mathcal{C}^{i} \cap K^{i}\right)$. We easily see that $\overline{\mathcal{C}}^{s} \supset \overline{\mathcal{C}}^{s+1}$ and, by Lemma 2.1, that $\overline{\mathcal{C}}^{s}$ is open in $\mathcal{C}^{s} \cap K^{s}$. Moreover we see $\bigcap_{s=r}^{\infty} \overline{\mathcal{C}}^{s}=\bar{C}$ by Lemma 2.2, and thus we can define an ILH-structure on $\overline{\mathcal{C}}$ as $\overline{\mathcal{C}}=$ $\underset{\longleftarrow}{\lim } \overline{\mathcal{C}}^{s}$.

Next we shall prove that the map $\chi^{r} \mid \mathscr{F}^{s} \times \overline{\mathcal{C}}^{s}: \mathscr{F}^{s} \times \overline{\mathcal{C}}^{s} \rightarrow \mathcal{M}^{s}$ is a local diffeomorphism. Lemma 1.1 implies the smoothness of this map. To prove the smoothness of the inverse map, we choose an open covering $\left\{W_{a}^{r}\right\}$ of W^{r} such that $\chi^{r} \mid W_{a}^{r}$ is a diffeomorphism. We apply the following lemma to $\left(\chi^{r} \mid W^{r}\right)^{-1}$.

Lemma 2.8 [4, Lemma 2.8]. Let E and F be vector bundles over M associated to the frame bundle of M. Then there exists a cannonical linear map $\eta^{*}: H^{0}(E) \rightarrow H^{0}(E)$ for a diffeomorphism η of M. Let A be an open set of $H^{\prime}(E)$ and $\phi: A \rightarrow H^{r}(F)$ be a $C^{\infty}-$ map which commutes with any η^{*}. If we set $A^{s}=A \cap H^{s}(E)$ for $s \geqq r$, then $\phi\left(A^{s}\right) \subset H^{s}(F)$ and the map $\phi \mid A^{s}: A^{s} \rightarrow H^{s}(F)$ is C^{∞}.

If we set $\operatorname{Im}\left(\chi^{r} \mid W_{\alpha}^{\gamma}\right)=A$ and $\left(\chi^{r} \mid W_{\alpha}^{\gamma}\right)^{-1}=\phi$, then ϕ is a C^{∞}-map from A into $H^{r}(M) \times H^{r}\left(S^{2}\right)$ which commutes with the action of the diffeomorphism group \mathscr{D} of M. Hence Lemma 2.8 implies that the map

[^0]$$
\left(\chi^{r} \mid W_{a}^{r}\right)^{-1} \mid A^{s}: A^{s} \rightarrow H^{s}(M) \times H^{s}\left(S^{2}\right)
$$
is C^{∞}. But here $\mathscr{F}^{s} \times \overline{\mathcal{C}}^{s}$ is a submanifold of $H^{s}(M) \times H^{s}\left(S^{2}\right)$, hence the map $\left(\chi^{r} \mid W^{r}\right)^{-1} \mid A^{s}: A^{s} \rightarrow \mathscr{F}^{s} \times \overline{\mathcal{C}}^{s}$ is C^{∞}. Thus χ^{s} is a local diffeomorpnhism and $\chi=\lim \chi^{s}$ is an ILH-diffeomorphism, which implies that $\overline{\mathcal{C}}$ is an ILH-submanifold $\overleftarrow{\text { of }} \mathcal{M}$

Corollary 2.9. Let $g=f g$, where $f \in \mathscr{F}$ and $\bar{g} \in \overline{\mathcal{C}}$. If $g(t)$ is a deformation of g with sufficiently small domain of t, then there exist a 1-parameter family of positive functions $f(t)$ on M, a 1-parameter family of diffeomorphisms $\gamma(t)$ of M and a deformation $g(t)$ in $\overline{\mathcal{C}}$ such that $f(0)=f, \delta g^{\prime}(0)=0$ and $g(t)=f(t) \gamma(t) * g(t)$.

Proof. By Theorem 2.5, $g(t)$ is decomposed into $f(t) \tilde{g}(t)$, where $\tilde{g}(t)$ is a deformation in $\overline{\mathcal{C}}$. Applying Slice theorem [4, Theorem 2.2] to $\tilde{g}(t)$, we get $\tilde{g}(t)=\gamma(t)^{*} g(t)$, where $g(t)$ is a deformation such that $\delta \bar{g}^{\prime}(0)=0$. Also we easily see that $g(t) \in \overline{\mathcal{C}}$ for each t.

The author wishes to express his thanks to Professor J.P. Bourguignon for his kind informations concerning with Lemma 2.3 and Theorem 2.5.

Osaka University

References

[1] M. Berger: Quelques formules de variation pour une structure riemannienne, Ann. Sci. Ecole Norm. Sup. 4 e serie 3 (1970), 285-294.
[2] D.G. Ebin: The manifold of riemannian metrics, Global Analysis (Proc. Sympos. Pure Math.) 15 (1968), 11-40.
[3] J.J. Kazdan and F.W. Warner: Scalar curvature and conformal deformation of riemmanian structures, J. Differential Geometry 10 (1975), 113-134.
[4] N. Koiso: Non-deformability of Einstein metrics, Osaka J. Math. 15 (1978), 419433.
[5] H. Omori: On the group of diffeomorphisms of a compact manifold, Global Analysis (Proc. Sympos. Pure Math.) 15 (1968), 167-183.
[6] R.S. Palais: Foundations of non-linear functional analysis, Benjamin, New York, 1968.
[7] J.P. Bourguignon: Une stratification de l'espace des structures riemanniennes, Compositio Math. 30 (1975), 1-41.
[8] A,E. Fischer and J.E. Marsden: Manifolds of riemannian metrics with prescribed scalar curvature, Bull. Amer. Math. Soc. 80 (1974), 479-484.
[9] A. Lichnerowicz: Propagateurs ei cummutateurs en relativité générale, Inst. Hautes Etudes Sci. Publ. Math. 10 (1961), 293-344.

[^0]: (2) J.P. Bourguignon [7, VIII. 8. Proposition] shows that $\tau: \mathscr{M} \rightarrow \mathscr{F}$ is a submersion around a metric $g \in \mathscr{M}$ such that τ_{g} is not non-negative constant.

