Kawasaki, T.
Osaka J. Math.
16 (1979), 151-159

THE RIEMANN-ROCH THEOREM FOR COMPLEX
V-MANIFOLDS

TETsuro KAWASAKIY

(Received January 31, 1978)

Introduction and statement of theorem. This note is the sequel to our
work [10]. We shall apply our method to the d-operators over complex V-
manifolds. Our result is a generalization of the Hirzebruch-Riemann-Roch
Theorem (see Atiyah-Singer [4] and Hirzebruch [8]) to the case of complex V-
manifolds and holomorphic vector V-bundles.

Let M be a compact complex manifold with a holomorphic action of a finite
group G and let E— M be a G-equivariant holomorphic vector bundle. We
denote by O(E) the sheaf of local holomorphic sections of E. Then Atiyah-
Singer [4] proved: For each g=G,

(D X(g, M; O(E)) = 21 (— 1) tracec[g | H'(M; O(E))]
= {I(M; E), [M*]>.

Here 9%(M; E) is the equivariant Todd class.

Now the orbit space M/G has a structure of an analytic space and the local
G-invariant holomorphic sections of £ define a coherent anayltic sheaf O, (E/G)
over M/G. Then, by averaging (I) for all g&G, we have:

(1) X(M|G; O/E|G)) = 3 (1Y dime H(M|G; Oy(E|G))

_ 1 e s
= G DT ), (M
We shall generalize this formula to the case of complex V-manifolds. The
notion of V-manifold was introduced by Satake [11]. In [10] we have stated the
precise definitions concerning F-manifold structures. So, here we put a
brief description of complex F-manifolds and holomorphic vector V-
bundles. Let X be an analytic space admitting only quotient singularities.
A complex V-manifold structure ¢{° over X is the following: For each suffici-
ently small connected open set U in X, V*(U)="(Gy, U)—U” is a ramified
covering U— U such that U is a connected complex manifold with an effective

1) From April 1, 1979, the author will move to: Gakushuin University, Faculty of Science,
Tokyo.
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holomorphic action of a finite group G and the projection U— U gives an identi-
fication U= U/G, of analytic spaces. For a connected open subset ¥ C U, we
assume also, that there is a biholomorphic open embedding @: VU that covers
the inclusion V' U. Then the choice of @ is unique upto the action of Gy and
each @ defines an injective group homomorphism A,: G,— G, that makes ¢ be
Ao-equivariant. Let p: E— X be a holomorphic map between analytic spaces.
A holomorphic vector V-bundle structure B on “E— X" is the following: For
small UcC X, B(U)=(Gy, py: Ey—U) is a Gy-equivariant holomorphic vector
bundle with an identification “p|p~(U): p~(U)— U’ ="py/Gy: Ey|Gy—
U|G,”. For VC U, we assume that there is a holomorphic bundle map @: E,
—E, over some open embedding ¢: V—U that covers the inclusions p~(V)
cp Y (U) and VcU. Then ® becomes a A,-equivariant bundle map. (In the
terminology of [10], (E, B) is a “proper” holomorphic vector V-bundle).

Now let X be a compact complex V-manifold and let £—X be a holomorphic
vector V-bundle. The local Gy-invariant holomorphic sections of E,— U define
a coherent analytic sheaf Oy(E) over an analytic space X. Then we have the
arithemtic genus X(X; Oy(E))=2] (—1)' dim¢ H(X; Oy(E)). We can choose
invariant smooth linear connections on complex vector bundles E,— U, complex
tangent bundles 7U—U and complex normal bundles »(U¥ c U)—UF for all
U and for all g&Gy, such that they are compatible with open embeddings ®’s
and @’s. Then, by the Weil homomorphism, we have the equivariant Todd
form 9%(U; E,) for each Uf. Then we can state our theroem in the following
form. Let {fy} be a (smooth or continuous) partition of unity on X, then,

(1) X(X; OE) = 3 1o 32 | o 03 B,

7 |Gy| Gy

For each local coordinate (Gy, U) and for each g& Gy, we consider Uf asa
complex manifold on which the centralizer Z; (g) acts. For V' CU, the open
embedding ¢@: V—U defines a natural open embedding V”/ch(h)—>[7"'/ZGU(g)
of analytic spaces, where g=2n,(%). This embedding is unique for a fixed pair
(g, h). We patch all ﬁg/ch(g)’s together by these identifications. Then we
get a disjoint union of complex V-manifolds of various dimensions:

Xu3x= U UYZ(g),

(GU,U),gEGU

(X corresponds to the portion defined by g=1).

We have a canonical map 3X—X covered locally by the inclusion 0*c U. For
each x€ X, we can choose a coordinate neighbourhood (G, U,) such that xe U,
is a fixed point of G,. G, is unique upto isomorphisms. Then the number of
pieces of YX over x is equal to the number of the conjugacy classes of G, other
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than the identity class.
Let 2X,, 3X,, -, 2X,. be all the connected components of 3X. To

each EX,-, we assign a number m;, defined by:

= |kernel[Z;,(g) — Aut(TF)]|,
(UF|Zy(g) = 2X,).
Now the formal sum 2 9J5(U; Ey) defines a “differential form” on X LIX.

It represents a cohomology class I9(X; E)+9%(X; E) in H¥X J_LZX 0).
This class is independent of the choice of the connections. Then we get the
following theorem:

Theorem. Let X be a compact complex V-manifold and let E— X be a holo-
morphic vector V-bundle. Then:

(Iv) X(X; 0V<E))=<9(X- E), [X]>
+33 1 <arx; B), BxD .

ReEMARK 1. Since the class 9(X; E) is defined over rationals, the term
{4(X; E), [X] is a rational number.

ReMARK 2. For the case when X=I"\X, where X is a complex manifold
and I is a properly discontinuous group acting holomorphically on X, the
number {I(X; E), [X]> is just the [-index ind,((6+3*)%*°) defined by Atiyah
[1]. (Though I" acts freely in [1], the similar argument holds for the case when
I' has finite isotropies, see III) below).

The proof of our theorem is a combination of our work [10] and Gilkey’s
result [7] on the Lefschetz fixed point formula for the Dolbeault complexes.
Here we shall place a complete proof.

Proof of Theorem. In this proof, we use the ‘“heat kernel-zeta function”
method. We reivew the results briefly. (See Seeley [12], Atiyah-Bott-Patodi
[2], Gilkey [6], [7], Donnelly-Patodi [5] and Kawasaki [10]).

Let U be a germ of a Riemannian manifold and let E,—U be a smooth
complex vector bundle with a smooth Hermitian fibre metric. Let g: Ey—~Ey be
an isometry of the pair (U, E;). Let 4: C°(U; Ey)—C=(U: Ey) be a g-invariant,
formally self-adjoint, positive semi-definite, elliptic differential operator. Then
we have a smooth measure Z4 on the fixed point set U%. Z% is a local invariant
of the action of g and of the operator 4. It is given by a universal expression
in g and A. The explicit form of Z4 is given in [10]. Z% has the following
properties:
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I) Let M be a compact Riemannian manifold and let g: M—M be an
isometry. Let E, F be two g-equivariant smooth complex vector bundles over
M with g-invariant Hermitian fibre metrics. Let D: C~(M; E)—C=(M; F) be
a g-invariant elliptic differential operator. Then we have the adjoint operator
D*:(C~(M; F)—C~(M; E)and two g-invariant, self-adjoint, positive semi-definite,
elliptic differential operators D*D and DD*. Pur p$=Z%.,—Z%p.. Then the
equivariant index ind(g, D) is given by:

ind(g, D) = S dpf .
ME

II) (Kawasaki [10]). Let X be a compact Riemannian V-manifold and
let E, F be two “proper” differentiable complex vector V-bundles over X.
Let D: C3(X; E)—C7%(X; F) be an elliptic differntial operator, that is, a family
{Dy: C~(U; Ey)~C=(U; Fy})p.5) of invariant elliptic differential operators
that are compatible with attaching maps {®}: E,—~E, and {¥}: F,—Fy.
Then D operates on the differentiable I/-sections and the kernel and the cokernel
of the operator D are finite dimensional. We define the V-index ind,(D) of the
operator D by:

ind, (D) = dim¢ kernel[D: C3(X; E) — C3(X; F)]
—dim¢ cokernel [D: C3(X; E) — Cy(X; F)].

For each coordinate neighbourhood (G, U ), we have a formal sum of measures:
&g 8 g
~ — Z...*... _Z._ ~k A
geEGUM Dy gezclf( Dyly bgD If)

These formal sums define a measure pp+pp over X ijX. Then the V-index
ind,(D) is given by:

IIT) (See Aityah [1]). Let X be a (non-compact) Riemannian manifold
and let /" be a properly discontinuous group acting on X as isometries. We
assume that the orbit V-manifold X=/"\X is compact. Let E, F be two I'-
equivariant complex vector bundles over X with /™-invariant Hermitian fibre
metrics. Let D: C*(X; E)—C=(X; F) be a T-invariant elliptic differential
operator. Then we consider the completions L% X; E), L% X; F) and the
unbounded operators D: ¥ X; E)— L% X; F), D*: L%X; F)—>L(X; E).
(In this case the formal adjoint coincides with the Hilbert space adjoint). We
put:

Hy= {feL¥X; E)|Df =0} C.L¥X; E),
Y, = {gELYX; F)|D*g = 0} c LXX; F).
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Then H, becomes a /’-invariant closed subspace (=0, 1). Let H, be the ortho-
gonal projection onto 4,. Then H, has a smooth kernel H,(%, ) and we get a
smooth measure tracec[H (%, X)] over X. Since the operator H, is /-invariant,
we may consider tracec[H (%, %)] as a measure over X=/"\X. Then the /-
index of the operator D is defined by:

indr(D) = SX d (traceo[Hy(%, %) —traced[Hy(%, B)]) .

Now the elliptic differential operator D over X defines an elliptic differential
operator D: C3(X; E)—C7(X; F) over a V-manifold X and we have a measure
up over X. Then ind;(D) is given by:

indn(D) = SX dp .

Now we return to our problem: Let X be a compact complex V-manifold
and let £— X be a holomorphic vector V-bundle. We denote by 7 the holomor-
phic part of the complexified cotangent vector F-bundle. Consider the sheaf
@YY(E)=C3(A* TQA' T®E) of germs of E-valued (p, g)-forms over X. Then
we have the d-operators d: @%%(E)—Q@%**}(E) and a soft resolution:

0 b 0
0 = Oy(A? TQE) < QY(E) — @} \(E) — + — @4"(E)— 0.

Put A4 X; E)=T(X; @) %E)), then we have a complex:

F) a 0
0 — AYX; E) > AYN(X; E) = -+ —> A¥Y(X; E)— 0,

whose i-th cohomology group is H{(X; Oy(A? TQE)). Choose a Hermitian
metric 2 on X and a Hermitian fibre metric 4z on E. Then we have the adjoint
operator 9*: Ay Y(X; E)—>A%*Y(X; E) of 0. Consider a differential operator:

(4395 = 34-0% | ape: AV (X; B) — AY(X; E),
(AV5i(X; E) = & AV«(X; E)).
758"
Then (9+9*)%*’ is an elliptic operator and:
ind, (3+-39)%*7) = X(X; O(E))

Thus we can express the arithmetic genus as the I-index of an elliptic
operator (49%)3“°. Then, by IT) above, we have a measure 54599+ {51509
over X 11 XX that gives the arithmetic genus. But this measure is not equal to
the Todd class in general. So we use the Spin® Dirac operator instead, which
gives the arithmetic genus for complex I'-manifolds and is defined over more
general V-manifolds.
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Now let (X, #) and (E, kj;) be as before. Consider the almost complex
structure (7X, J). (T'X, J) is a holomorphic vector V-bundle. The Hermitian
metric & define a reduction U(n) (TX) of the principal tangent V-bundle. We
consider U(n) as a subgroup of Spin’(2n)=Spin(2n)X z,U(1). (See Atiyah-
Bott-Shapiro [2]). Let Spin‘(2n) (TX) be the associated Spin‘(2n)-principal tangen
V-bundle. We construct a connection V° on Spin‘(2n) (TX) as follows: We
have a Riemannian connection Vg, on SO(27) (TX) and a Hermitian connection
V.on L=A"((TX,]). Then V°isaunique lift of V5, X V,on (SO(2n) x U(1))(TX)
by the double covering Spin‘(2n)— SO(2n) x U(1). Let A** be the half Spin‘-
representations. Then we have two complex vector V-bundles:

AB(TX) = Spin'(2n) (TX) X spueend™",

with induced connections V*¢. The Clifford module structures on A*'¢ define
the Clifford multiplications:

m: TX @pA*(TX) — A™(TX).

On (E, hg) we have the Hermitian connection V. Then the Spin° Dirac
operator d3° is defined by:

dye: C3(X; A (TX)RE)
VHR14+1QV,

C3(X; T*X QpAT(TX)RE)
S 03X A(TX)RCE) .

Here we identify TX=T*X by the real Hermitian metric Re h.
Since Spin‘(2n) (TX) has a reduction U(n) (TX), we have:

A=(TX) = AYTX, ]).

The Hermitian metric % defines a V-bundle isometry +: (TX, J)= T. So we
have a I’-bundle isomorphism:

Wt AS(TX)QE ~ A“TRE .
C c
By a standard computation (see Hitchin [9]), we have:

Proposition. The two operators (0-9*)%°* and d}° have the same principal
symbol (via \r*) upto a constant factor.

As a corollary, we have:
X(X; Oy(E)) = indy(d3")

_ S 1 3
- Ld”d?”ﬁz‘l %S?x,d“di'” '
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Now the operator d%** does not depend on the complex structure on X. It
depends only on the Spin“-structure Spin‘(2n) (TX), the metric connection
V. and the Hermitian V-bundle (E, Az V;). Its index ind,(d%*) does not
depend on the choices of metrics / and A, nor the choices of connections V, and
V. So we can change metrics and connections.

We consider over a coordinate neighbourhood (Gy, U)—>U Choose a
metric & on U so that, for each g& Gy, on a neighbourhood of U? in U, & is equal
to the Riemannian metric over the total space N, of the normal bundle »,=
»(U¢ c U) induced from a g-invariant Hermitian structure (v, h,,, V,,). We
identify N, with a neighbourhood of U¥in U. 'Then, ov er N,, the pr1nc1pal bun-
dle Spin© (2n)(T(z ) reduces equivariantly to z*(Spin’ (2n,,)(TUg)><¢7gU(n~n0)(vg)),
where 7z: N,—U* is the projection of v, and 2n,=dimgU%. The associated
line bundle L splits into a tensor product #*(L,&QA" ™v,), where L, is the
associated line bundle of Spin‘(2n,) (T U?).

The actions of g on the first factors Spin‘(2n,)(7 U¥)) and L, are trivial. On
L,, we have the induced metric /#,,. Choose a metric connection V,, on (Lo, k).
Then we choose a metric connection V, so that, over N,, V. is equal to the
induced connection z*(V, QA" ™V, ). Also, we choose a Hermitian struc-
ture (E, hg, V) so that, over IV, it is equal to the induced structure (z*(E|U*),
w*(hyg | UF), n*(V| U%)).

Then, over a neighbourhood N, of U* in U, the operator d}* is completely
determined by the data over U%, that is, the Spin‘-structure Spin‘(2n,) (T U¥),
the metric connection V, and the g-equivariant Hermitian bundles (g; v,, A4,,,
v,,) and (g; E|U%, hy|U%, V| U*).

We remark here that we can choose a metric 4, a metric connection V, and
a hermitian structure (Z, hy, Vz) over a V-manifold X so that the above condi-
tions are satisfied for all coordinate neighbourhood (Gy, U)—U and for all
g€ Gy at the same time.

Now we consider differently: Let (U, &) be a germ of (2n,)-dimensional
Reimannian manofold with trivial g-action and assume that we are given a Her-
mitian line bundle (L,, %&;, V) with trivial g-action and two g-equivariant
Hermitian bundles (g; », &, V,) (dim¢ v =n—n,) and (g; E, hg, Vi) over U,,.
So g acts on each fibre of » and E. We assume that the fixed points in v are
all in the zero section. We may assume that U, is contractible. Then an orienta-
tion o, the Riemannian metric %, and the Hermitian line bundle (L, 4., V) de-
fine a unique Spin’-structure Spin‘(2n,)(TU,) upto Spin‘-isomorphisms.
(There are two canonical isomorphisms). The Riemannian metric /4, and the
metric connection V,, define a connection V§ on Spin(2n,) (TU,). Consider
the total space N of v. The Hermitian structure (», 4,, V,) define a Spin‘(2n,)
x U(n—ny)-structure over N. Also we have the action of g that preserve
the above structure. Then we have the associated Spin‘(2n)-structure with
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g-action over N. Its associated line bundle is z*(L,®QA" ") and the metric
connection V, QA" "V, defines a connection V° on Spin‘(2n) (TN). Also we
have an induced g-equivariant Hermitian bundle (g; n*E, n*hy, n*Ag) over N.

Then the Spin‘-structure Spin‘(2n) (T'N) with connection V° and the
Hermitian bundle (n*E, n*hy, n*V;) define the Spin® Dirac operator d}i.
The operator d}:; and the action of g define a measure wyiye over U The
only ambiguity of this construction comes from the choice of the orientation o
over U,. If we change the orientation, then the measure pji;c changes its
sign. So the measure pgic defines a 2n,-form dpgtie with no ambiguity.

Thus we have shown that the 2n,-form dpghe is a local invariant of a
Riemannian structure (U, %,) and Hermitian bundles (Lo, k., V), (g5 Vs, hes
V.)and (g; E, hz, V). In[10], we have an explicit form of p%. Then we can
see that the 2n,-form dpj+;c is a homogeneous regular local invariant of weight
0, in the terminology of Atiyah-Bott-Patodi [2]. Then, by Gilkey’s Theorem
(see [2]), we can conclude:

Proposition. duj,c is expressed by a universal polynomial in the Pontrjagin
forms of (U,, hy), the first Chern form of (Ly, hy,, V. ), the equivariant Chern forms
of (g; v, h,, V) and the equivariant Chern forms of (g; E, hg, V).

We restrict ourselves to the case when TU, has an almost complex structure
Joand Ly=A"(TU,, J). Let M be a compact complex manifold and let E—M
be a holomorphic vector bundle. Let g be an automorphism of the pair (M,

E) that generates a compact transformation group. Then by Atiyah-Singer
[4] we know:

SMgd,bg,E.c — 31(—1 tracecg| Hi(M; O(E))]
= <9%M; E), [M*]>.

The computations over the products of complex projective spaces with linear
actions show that the expression of duj+;c in the characteristic classes must be
T

unique. This shows:

d,u,jg.c = gg(M; E) .

Now we return to the original situation. Over a coordinate neighbourhood
(Gy, U)—U, we have:

+, 2ie = &y,c,
Hgy ’+”’dg ¢ g;UMdE ¢
Then, by choosing suitable metrics and connections, we have:
dpgi-ctdpgc = (X5 E)y+9°(X; E).

Hence we have:
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X5 0N = { dugie S, i
= {d(X; E), [X]>
+ 3,1 <9X; B), [BX)

i
The both sides are independent of the metrics and connections.
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