ON THE ALEXANDER POLYNOMIALS OF COBORDANT LINKS

Aкıo KAWAUCHI

(Received November 26, 1976)
(Revised September 1, 1977)
R.H. Fox and J.W. Milnor in [4] showed that the Alexander polynomial of a slice knot is of the form $f(t) f\left(t^{-1}\right)$ for an integral polynomial $f(t)$ with $|f(1)|=1$. This clearly implies that the Alexander polynomials of cobordant knots are identical up to the polynomials of the form $f(t) f\left(t^{-1}\right)$. The purpose of this paper is to generalize this property to that of arbitrary cobordant links. On the basis of the work done by K. Reidemeister, H.G. Shumann and W. Burau, R.H. Fox defined the μ-variable Alexander polynomial $A^{0}\left(t_{1}, \cdots, t_{\mu}\right)$ of a link L^{μ} with μ components. (cf. R.H. Fox [3], G. Torres [9].) One difficulty in our study is that using this definition the polynomial $A^{0}\left(t_{1}, \cdots, t_{\mu}\right)$ vanishes for many links. For example, any decomposable link (that is, a link separated into two sublinks by a 2 -sphere within a 3 -sphere) has $A^{0}\left(t_{1}, \cdots, t_{\mu}\right)=0$. To avoid this difficulty we shall re-define the Alexander polynomial $A\left(t_{1}, \cdots, t_{\mu}\right)$ so that it is always a non-zero polynomial. To measure the difference between $A_{0}\left(t_{1}, \cdots, t_{\mu}\right)$ and $A\left(t_{1}, \cdots, t_{\mu}\right)$, we will also introduce a numerical invariant $\beta\left(L^{\mu}\right)$ with $0 \leq \beta\left(L^{\mu}\right) \leq \mu-1$ such that

$$
A^{0}\left(t_{1}, \cdots, t_{\mu}\right)=\left\{\begin{array}{cc}
A\left(t_{1}, \cdots, t_{\mu}\right) & \text { if } \beta\left(L_{\mu}\right)=0 \\
0 & \text { if } \beta\left(L^{\mu}\right) \neq 0
\end{array}\right.
$$

A link is the disjoint union of piecewise-linearly embedded, oriented 1 -spheres in the oriented 3 -sphere S^{3}. Two links L_{0} and L_{1} with μ components are PL cobordant, if there exist mutally disjoint, piecewise-linearly embedded proper annuli F_{1}, \cdots, F_{μ} in $S^{3} \times[0,1]$ spanning $S^{3} \times 0$ and $S^{3} \times 1$ such that $\left(F_{1} \cup \cdots \cup F_{\mu}\right) \cap S^{3} \times 0=L_{0} \times 0$ and $\left(F_{1} \cup \cdots \cup F_{\mu}\right) \cap S^{3} \times 1=\left(-L_{1}\right) \times 1$, where $-L_{1}$ is L_{1} with orientation reversed. If the annuli F_{1}, \cdots, F_{μ} are locally flat, then the links L_{0} and L_{1} are simply said to be cobordant. A link that is cobordant to the trivial link is called a slice link in the strong sense. (cf. R.H. Fox [3].) For (PL) cobordant links $L_{i}, i=0,1$ with μ components the Alexander polynomials $A_{i}\left(t_{1}, \cdots, t_{\mu}\right)$ of L_{i} should be chosen to be the Alexander polynomials associated with meridian bases of $H_{1}\left(S^{3}-L_{i} ; Z\right)$ consistent through the cobordism annuli F_{1}, \cdots, F_{μ}.

Our main results are as follows:
Theorem A. The integer $\beta(L)$ is the invariant of links that are PL cobordant to the link L.

Theorem B. For cobordant links $L_{i}, i=0,1$, with μ components, there exist two integral polynomials $F_{i}\left(t_{1}, \cdots, t_{\mu}\right), i=0,1$ with $\left|F_{i}(1, \cdots, 1)\right|=1$ such that $\left.A_{0}\left(t_{1}, \cdots, t_{\mu}\right) F_{0}\left(t_{1}, \cdots, t_{\mu}\right) F_{0}\left(t_{1}^{-1}, \cdots, t_{\mu}^{-1}\right) \doteq *\right) A_{1}\left(t_{1}, \cdots, t_{\mu}\right) F_{1}\left(t_{1}, \cdots, t_{\mu}\right) F_{1}\left(t_{1}^{-1}, \cdots, t_{\mu}^{-1}\right)$.

Our proof of Theorem B is based on the Blanchfield duality theorem [1].
Corollary 1. For PL cobordant links $L_{i}, i=0,1$, with μ components, there exist two integral polynomials $F_{i}\left(t_{1}, \cdots, t_{\mu}\right)$ with $\left|F_{i}(1, \cdots, 1)\right|=1$ and (integral) knot polynomials $p_{1}\left(t_{1}\right), \cdots, p_{\mu}\left(t_{\mu}\right)$ such that $A_{0}\left(t_{1}, \cdots, t_{\mu}\right) F_{0}\left(t_{1}, \cdots, t_{\mu}\right) F_{0}\left(t_{1}^{-1}, \cdots, t_{\mu}^{-1}\right)$ $\doteq A_{1}\left(t_{1}, \cdots, t_{\mu}\right) F_{1}\left(t_{1}, \cdots, t_{\mu}\right) F_{1}\left(t_{1}^{-1}, \cdots, t_{\mu}^{-1}\right) p_{1}\left(t_{1}\right) \cdots p_{\mu}\left(t_{\mu}\right)$. [Note that L_{0} is cobordant to a link L_{1}^{\prime} each component of which is obtained from a component of L_{1} by tying a knot in a small 3-cell.]

Corollary 2. The Alexander polynomial $A\left(t_{1}, \cdots, t_{\mu}\right)$ of a slice link L with μ components in the strong sense necessarily satisfies $A\left(t_{1}, \cdots, t_{\mu}\right) \doteq F\left(t_{1}, \cdots, t_{\mu}\right) \times$ $F\left(t_{1}^{-1}, \cdots, t_{\mu}^{-1}\right),|F(1, \cdots, 1)|=1$, and $\beta(L)=\mu-1$.

Note that we are dealing with Problem 26 of R.H. Fox [3]. As far as the author knows, this corollary has not been deduced before, but one-variable analogy of this corollary is already known. (See A. Kawauchi [5], K. Murasugi [8].)

As a simple application, the classical Alexander polynomial $A^{0}\left(t_{1}, \cdots, t_{\mu}\right)$ of a slice link L with μ components in the strong sense is 0 if $\mu \geq 2$, since $\beta(L)=$ $\mu-1>0$.

The author is grateful to Y. Matsumoto for suggesting the problem.
Throughout the paper, spaces are considered in the piecewise linear category.

1. Preliminaries and precise definitions

Let Λ be the integral group ring $Z\left[t_{1}, \cdots, t_{\mu}\right]$ of the free abelian multiplicative group $\left\langle t_{1}, \cdots, t_{\mu}\right\rangle$ generated by t_{1}, \cdots, t_{μ}. Consider a finitely generated Λ-module \mathfrak{M} and let P be an $m \times n$ presentation matrix of \mathfrak{M}, that is, a matrix representing a homomorphism $\Lambda^{m} \rightarrow \Lambda^{n}$ with an exact sequence $\Lambda^{m} \rightarrow \Lambda^{n} \rightarrow \mathfrak{M} \rightarrow 0$, where it may be $m=+\infty$. (Note that we can always choose to make m finite, since Λ is Noetherian.) Let $A^{(i)}, i=0,1, \cdots, n-1$, be the g.c.d. of the minors of P of the order $n-i$. For $i \geq n$ we define $A^{(i)}=1$. It is well-known that the polynomials $A^{(i)}=A^{(i)}\left(t_{1}, \cdots, t_{\mu}\right), i=0,1,2, \cdots$, are the invariants of the Λ-module \mathfrak{M} up to units of Λ. Let $\operatorname{Tor}_{\Lambda}(\mathfrak{M})$ be the Λ-torsion part of \mathfrak{M}.

[^0]Lemma 1.1. Let $A^{(d)}$ be the first non-zero polynomial of $\mathfrak{M . ~} A^{(d)}$ is the $0-$ th polynomial of $\operatorname{Tor}_{\Lambda}(\mathfrak{M})$ and $d=\operatorname{dim}_{Q(\Lambda)} \mathfrak{M} \otimes_{\Lambda} Q(\Lambda)$, where $Q(\Lambda)$ is the quotient field of Λ.

For a proof, see R.C. Blanchfield [1], Lemma 4.10.
Now consider a finitely generated group $G=\left(x_{1}, \cdots, x_{n} \mid r_{1}, \cdots, r_{m}\right)$ (possible $m=+\infty$) with an epimorphism $\gamma: G \rightarrow\left\langle t_{1}, \cdots, t_{\mu}\right\rangle$. Let $K=\operatorname{Ker} \gamma$ and K^{\prime} be the commutator subgroup of $K . \quad K / K^{\prime}$ admits a canonical Λ-module structure. Fox's free calculus [3] produces a Jacobian matrix $\left(\gamma\left(\frac{\partial r_{i}}{\partial x_{j}}\right)\right)_{1 \leq i \leq m, 1 \leq j \leq n}$ evaluated at γ that is a presentation matrix of a certain Λ-module \mathfrak{M} with an exact sequence $0 \rightarrow K / K^{\prime} \rightarrow \mathfrak{M} \rightarrow \varepsilon(\Lambda) \rightarrow 0$, where $\varepsilon(\Lambda)$ is the augmentation ideal, that is, the kernel of the augmentation $\varepsilon: \Lambda \rightarrow Z$. (See R.H. Crowell [2].) Since n is finite, \mathfrak{M} and K / K^{\prime} are finitely generated over Λ.

Lemma 1.2. Let $d=\operatorname{dim}_{Q(\Lambda)}\left(K / K^{\prime}\right) \otimes_{\Lambda} Q(\Lambda)$. The 0 -th polynomial of $\operatorname{Tor}_{\Lambda}\left(K / K^{\prime}\right)$ is the g.c.d. of the minors of the Jacobian matrix $\left(\gamma\left(\frac{\partial r_{i}}{\partial x_{j}}\right)\right)$ of the order $n-d-1$. Any minor of $\left(\gamma\left(\frac{\partial r_{i}}{\partial x_{j}}\right)\right)$ of an order greater than $n-d-1$ is 0 .

Proof. Since $\varepsilon(\Lambda)$ is torsion-free, we have $\operatorname{Tor}_{\Lambda}\left(K / K^{\prime}\right)=\operatorname{Tor}_{\Lambda}(\mathfrak{M})$. Using $\operatorname{dim}_{Q(\Lambda)} M \otimes_{\Lambda} Q(\Lambda)=d+1$, from Lemma 1.1 we obtain the desired results.

Definition 1.3. The 0 -th polynomial of $\operatorname{Tor}_{\Lambda}\left(K / K^{\prime}\right)$, denoted by $A_{\gamma}=$ $A_{\gamma}\left(t_{1}, \cdots, t_{\mu}\right)$ is called the Alexander polynomial of G with $\gamma: G \rightarrow\left\langle t_{1}, \cdots, t_{\mu}\right\rangle$.

If $G(L)$ is a μ-link group (that is, the fundametal group of the exterior of a link L with μ components) and the epimorphism $\gamma: G(L) \rightarrow\left\langle t_{1}, \cdots, t_{\mu}\right\rangle$ is specified by the meridian curves of $L \subset S^{3}$, then A_{γ} is simply denoted by A and called the Alexander polynomial of the link L.

Lemma 1.4. The Alexander polynomial of G / K^{\prime} with the induced epimorphism $\gamma^{\prime}: G / K^{\prime} \rightarrow\left\langle t_{1}, \cdots, t_{\mu}\right\rangle$ is the Alexander polynomial of G with $\gamma: G \rightarrow$ $\left\langle t_{1}, \cdots, t_{\mu}\right\rangle$.

Proof. It follows from $\operatorname{Ker} \gamma^{\prime}=K / K^{\prime}$.
Definition 1.5. Let $\beta^{\gamma}(G)=\operatorname{dim}_{Q(\Lambda)}\left(K / K^{\prime}\right) \otimes_{\Lambda} Q(\Lambda)$. For a link group $G=G\left(L^{\mu}\right)$ with the specified epimorphism $\gamma: G\left(L^{\mu}\right) \rightarrow\left\langle t_{1}, \cdots, t_{\mu}\right\rangle, \beta^{\gamma}(G(L))$ is simply denoted by $\beta(L)$.

The classical Alexander polynomial $A_{\gamma}^{0}\left(t_{1}, \cdots, t_{\mu}\right)$ is defined as the 0 -th polynomial of the Λ-module K / K^{\prime}. [In fact, it should be noted that $A_{\gamma}^{0}\left(t_{1}, \cdots, t_{\mu}\right)$ is the g.c.d. of the minors of the Jacobian matrix $\left(\gamma\left(\frac{\partial r_{i}}{\partial x_{j}}\right)\right)$ of the order $n-1$
by Lemma 1.2, provided $G=\left(x_{1}, \cdots, x_{n} \mid r_{1}, \cdots, r_{m}\right)$.]
The following is immediately clear from the definitions and Lemma 1.2:

Lemma 1.6.

$$
A_{\gamma}^{0}\left(t_{1}, \cdots, t_{\mu}\right)=\left\{\begin{array}{cc}
A_{\gamma}\left(t_{1}, \cdots, t_{\mu}\right) & \text { if } \beta^{\gamma}(G)=0 \\
0 & \text { if } \beta^{\gamma}(G) \neq 0
\end{array}\right.
$$

2. Proof of Theorem \mathbf{A}

Now consider a finite connected complex X with an epimorphism $\gamma: \pi_{1}(X) \rightarrow\left\langle t_{1}, \cdots, t_{\mu}\right\rangle$. For a subcomplex X_{0} of X (possible $X_{0}=\phi$), let $p:\left(\tilde{X}, \tilde{X}_{0}\right) \rightarrow\left(X, X_{0}\right)$ be the free abelian covering of $\left(X, X_{0}\right)$ associated with the epimorphism γ. The integral homology group $H_{*}\left(\tilde{X}, \tilde{X}_{0}\right)$ admits a finitely generated Λ-module structure. Denote $\operatorname{Tor}_{\Lambda} H_{*}\left(\tilde{X}, \tilde{X}_{0}\right)$ by $T_{*}\left(\tilde{X}, \tilde{X}_{0}\right)$ and $\operatorname{dim}_{Q(\Lambda)} H_{*}\left(\tilde{X}, \widetilde{X}_{0}\right) \otimes_{\Lambda} Q(\Lambda)$ by $\beta_{*}^{\gamma}\left(X, X_{0}\right)$. Clearly, the 0-th polynomial of $T_{1}(\tilde{X})$ is the Alexander polynomial of $\pi_{1}(X)$ with γ and $\beta_{1}^{\gamma}(X)$ is equal to $\beta^{\gamma}\left(\pi_{1}(X)\right)$.

Lemma 2.1. For some i, if $H_{i}\left(X, X_{0}\right)=0$, then $\beta_{i}^{\gamma}\left(X, X_{0}\right)=0$, i.e., $T_{i}\left(\tilde{X}, \tilde{X}_{0}\right)=H_{i}\left(\tilde{X}, \tilde{X}_{0}\right)$ and the $0-$ th polynomial A of $H_{i}\left(\widetilde{X}, \tilde{X}_{0}\right)$ satisfies $|A(1, \cdots, 1)|=1$.

Proof. Let $\Delta_{1}^{q}, \cdots, \Delta_{s_{q}}^{q}$ be the q-simplexes of X forming a basis for the q-chain complex $C_{q}\left(X, X_{0}\right)$. Let $\widetilde{\Delta}_{1}^{q}, \cdots, \widetilde{\Delta}_{s_{q}}^{q}$ be the q-simplexes of \tilde{X} such that, for each $j, \widetilde{\Delta}_{j}^{q}$ corresponds to Δ_{j}^{q} under the projection p. $\left\{\widetilde{\Delta}_{1}^{q}, \cdots, \widetilde{\Delta}_{s_{q}}^{q}\right\}$ forms a Λ-basis for the q-chain complex $C_{q}\left(\tilde{X}, \tilde{X}_{0}\right)$. With these bases, the boundary homomorphism $\partial: C_{q}\left(\tilde{X}, \tilde{X}_{0}\right) \rightarrow C_{q-1}\left(\tilde{X}, \tilde{X}_{0}\right)$ represents a matrix ($\alpha_{j k}^{q}$) with $\alpha_{j k}^{q}$ in Λ. Let $\widetilde{\gamma}_{q}$ be the rank of this matrix. The boundary homomorphism $\partial: C_{q}\left(X, X_{0}\right) \rightarrow C_{q-1}\left(X, X_{0}\right)$ is represented by the integral matrix $\left(\alpha_{j k}^{q}(1, \cdots, 1)\right)$ whose rank r_{q} satisfies $r_{q} \leq \widetilde{r}_{q}$. Since $H_{i}\left(X, X_{0}\right)=0$, the sequence $C_{i+1}\left(X, X_{0}\right) \xrightarrow{\partial} C_{i}\left(X, X_{0}\right) \xrightarrow{\partial} C_{i-1}\left(X, X_{0}\right)$ is exact at $C_{i}\left(X, X_{0}\right)$. Hence $r_{i+1}=$ $s_{i}-r_{i}$. Using $H_{q}\left(\tilde{X}, \tilde{X}_{0}\right) \otimes_{\Lambda} Q(\Lambda)=H_{q}\left(C_{*}\left(\tilde{X}, \tilde{X}_{0}\right) \otimes_{\Lambda} Q(\Lambda)\right), \beta_{q}^{\gamma}\left(X, X_{0}\right)$ is equal to $s_{q}-\tilde{r}_{q}-\tilde{r}_{q+1}$. In particular, $\beta_{i}^{\gamma}\left(X, X_{0}\right)=s_{i}-\tilde{r}_{i}-\tilde{r}_{i+1} \leq s_{i}-\boldsymbol{r}_{i}-\boldsymbol{r}_{i+1}=0$. That is, $\beta_{i}^{\gamma}\left(X, X_{0}\right)=0, \widetilde{r}_{i}=r_{i}$ and $\widetilde{r}_{i+1}=r_{i+1}$.

Consider the short exact sequence

$$
0 \rightarrow H_{i}\left(\tilde{X}, \tilde{X}_{0}\right) \rightarrow C_{i}\left(\tilde{X}, \tilde{X}_{0}\right) / \widetilde{B}_{i} \rightarrow C_{i}\left(\tilde{X}, \tilde{X}_{0}\right) / \tilde{Z}_{i} \rightarrow 0
$$

where $\tilde{B}_{i}=\operatorname{Im}\left[\tilde{\partial}: C_{i+1}\left(\tilde{X}, \tilde{X}_{0}\right) \rightarrow C_{i}\left(\tilde{X}, \tilde{X}_{0}\right)\right] \quad$ and $\quad \tilde{Z}_{i}=\operatorname{Ker}\left[\tilde{\partial}: C_{i}\left(\tilde{X}, \tilde{X}_{0}\right) \rightarrow\right.$ $\left.C_{i-1}\left(\tilde{X}, \tilde{X}_{0}\right)\right]$.

Note that the matrix $\left(\alpha_{j k}^{i+1}\right)$ is a presentation matrix of $C_{i}\left(\tilde{X}, \tilde{X}_{0}\right) / \tilde{B}_{i}$ and the $C_{i}\left(\tilde{X}, \tilde{X}_{0}\right) / \tilde{Z}_{i}$ is Λ-torsion-free of rank r_{i}. By lemma 1.1 the 0 -th polynomial A of $H_{i}\left(\tilde{X}, \tilde{X}_{0}\right)$ is the r_{i}-th polynomial of $C_{i}\left(\tilde{X}, \tilde{X}_{0}\right) / \tilde{B}_{i}$. Now let $Z_{i}=$ $\operatorname{Ker}\left[\partial: C_{i}\left(X, X_{0}\right) \rightarrow C_{i-1}\left(X, X_{0}\right)\right]=\operatorname{Im}\left[\partial: C_{i+1}\left(X, X_{0}\right) \rightarrow C_{i}\left(X, X_{0}\right)\right]$. Since
$C_{i}\left(X, X_{0}\right) / Z_{i}$ is free of rank r_{i} and $\left(\alpha_{j k}^{i+1}(1, \cdots, 1)\right)$ is a presentation matrix of $C_{i}\left(X, X_{0}\right) / Z_{i}$, it follows that the g.c.d. of the minors of $\left(\alpha_{j k}^{i+1}(1, \cdots, 1)\right)$ of the order $s_{i}-r_{i}$ is ± 1. This implies $|A(1, \cdots, 1)|=1$. This completes the proof.

Remark 2.2. For a finitely generated Λ-module $\mathfrak{M}, \mathfrak{M} \otimes_{\Lambda} Z=0$ if and only if the 0 -th polynomial A of \mathfrak{M} satiesfies $|A(1, \cdots, 1)|=1$. [Note that if $\left(\alpha_{j k}\right)$ is a presentation matrix of \mathfrak{M}, then $\left(\alpha_{j k}(1, \cdots, 1)\right)$ is a presentation matrix of $\mathfrak{M} \otimes_{\Lambda} Z$.]

Corollary 2.3. Let $H_{1}(X)$ have a free abelian group of rank μ^{\prime}. Then $\beta_{1}^{\gamma}(X) \leq \mu^{\prime}-1$ for any epimorphism $\gamma: \pi_{1}(X) \rightarrow\left\langle t_{1}, \cdots, t_{\mu}\right\rangle$ with $\mu \leq \mu^{\prime}$. In particular, $\beta(L) \leq \mu-1$ for a link L with μ components.

Proof. Let X_{0} be a connected graph in X with the inclusion isomorphism $H_{1}\left(X_{0}\right) \approx H_{1}(X)$. We have $H_{1}\left(X, X_{0}\right)=0$. By Lemma $2.1 \quad H_{1}\left(\tilde{X}, \tilde{X}_{0}\right)$ is a torsion Λ-module. Since $H_{1}\left(\tilde{X}_{0}\right) \rightarrow H_{1}(\tilde{X}) \rightarrow H_{1}\left(\tilde{X}, \tilde{X}_{0}\right)$ is exact and $H_{1}\left(\tilde{X}_{0}\right)$ is a Λ-module of rank $\mu^{\prime}-1$, it follows that $\beta_{1}^{\gamma}(X) \leq \mu^{\prime}-1$, which completes the proof.

Consider a short exact sequence $0 \rightarrow T^{\prime} \rightarrow T \rightarrow T^{\prime \prime} \rightarrow 0$ of finitely generated torsion Λ-modules T^{\prime}, T and $T^{\prime \prime}$. Let us denote the 0 -th polynomials of T^{\prime}, T and $T^{\prime \prime}$ by A^{\prime}, A and $A^{\prime \prime}$, respectively.

Lemma 2.4.

$$
A \doteq A^{\prime} A^{\prime \prime} .
$$

Proof. The proof will depend on the fact that Λ is a unique factorization domain. For a prime element p of Λ, let $A^{\prime}=p^{\lambda^{\prime}} q^{\prime}, A=p^{\lambda} q$ and $A^{\prime \prime}=p^{\lambda^{\prime \prime}} q^{\prime \prime}$, where q^{\prime}, q and $q^{\prime \prime}$ are elements in Λ prime to p, and $\lambda^{\prime}, \lambda$ and $\lambda^{\prime \prime}$ are nonnegative integers. Denote by Λ_{p} the local ring of Λ at the element p. Note that Λ_{p} is a principal ideal domain. By using the presentation matrices of T^{\prime}, T and $T^{\prime \prime}$, it follows that the ideal orders (i.e., the generators of the order ideals) of $T^{\prime} \otimes_{\Lambda} \Lambda_{p^{\prime}} T \otimes_{\Lambda} \Lambda_{p}$ and $T^{\prime \prime} \otimes_{\Lambda} \Lambda_{p}$ are $p^{\lambda^{\prime}}, p^{\lambda}$ and $p^{\lambda^{\prime \prime}}$, respectively. Since the sequence $0 \rightarrow T^{\prime} \otimes_{\Lambda} \Lambda_{p} \rightarrow T \otimes_{\Lambda} \Lambda_{p} \rightarrow T^{\prime \prime} \otimes_{\Lambda} \Lambda_{p} \rightarrow 0$ is exact, $p^{\lambda}=p^{\lambda^{\prime}} p^{\lambda^{\prime \prime}}$. Hence $A \doteq A^{\prime} A^{\prime \prime}$. This proves Lemma 2.4.

Let X be a finite connected complex with an epimorphism $\gamma: \pi_{1}(X) \rightarrow$ $\left\langle t_{1}, \cdots, t_{\mu}\right\rangle$ and A_{γ} be the Alexander polynomial of $\pi_{1}(X)$ with γ. Using the unique factorization domain Λ, one can decompose A_{γ} into two factors u_{γ} and v_{γ} uniquely up to units of Λ such that $\left|v_{\gamma}(1, \cdots, 1)\right|=1$ (yet u_{γ} does not contain any non-unit factor f of Λ with $|f(1, \cdots, 1)|=1)$.

Theorem 2.5. Let $X_{i}, i=0,1$, be finite, connected complexes with rank $H_{1}\left(X_{i} ; Z\right) \neq 0$. If there exists a finite connected complex Y which contains X_{i} and such that $H_{j}\left(Y, X_{i}\right)=0, j=1,2$, then $\beta_{1}^{\gamma} 0\left(X_{0}\right)=\beta_{1}^{\gamma_{1}}\left(X_{1}\right)$ and $u_{\gamma_{0}} \doteq u_{\gamma_{0}}$ for all com-
patible epimorphisms ${ }^{* *)} \gamma_{i}: \pi_{1}\left(X_{i}\right) \rightarrow\left\langle t_{1}, \cdots, t_{\mu}\right\rangle$.
Proof. Let $\left(\tilde{Y}, \tilde{X}_{0}, \tilde{X}_{1}\right)$ be the free abelian cover of $\left(Y, X_{0}, X_{1}\right)$ associated with an epimorphism $\gamma: \pi_{1}(Y) \rightarrow\left\langle t_{1}, \cdots, t_{\mu}\right\rangle$. Consider the following exact sequence of the pair $\left(\tilde{Y}, \tilde{X}_{i}\right)$:

$$
\rightarrow H_{2}\left(\tilde{Y}, \tilde{X}_{i}\right) \xrightarrow{\partial} H_{1}\left(\tilde{X}_{i}\right) \xrightarrow{i_{*}} H_{1}(\tilde{Y}) \xrightarrow{j_{*}} H_{1}\left(\tilde{Y}, \tilde{X}_{i}\right) \rightarrow \cdots .
$$

By Lemma 2.1, $H_{j}\left(\tilde{Y}, \tilde{X}_{i}\right), j=1,2$, is a torsion Λ-module. This implies that the following induced sequence

$$
T_{2}\left(\tilde{Y}, \tilde{X}_{i}\right) \xrightarrow{\partial^{\prime}} T_{1}\left(\tilde{X}_{i}\right) \xrightarrow{i_{*}} T_{1}(\tilde{Y}) \xrightarrow{j_{*}} T_{1}\left(\tilde{Y}, \tilde{X}_{i}\right)
$$

is exact and that $\beta_{1}^{\gamma}\left(X_{i}\right)=\beta_{1}^{\gamma}(Y)$, where $\gamma_{i}: \pi_{1}\left(X_{i}\right) \rightarrow\left\langle t_{1}, \cdots, t_{\mu}\right\rangle$ are the epimorphisms induced from γ. Again by Lemma 2.1, we have $T_{2}(\tilde{Y}, \tilde{X})_{i} \otimes_{\Lambda} Z=$ $T_{1}\left(\tilde{Y}, \tilde{X}_{i}\right) \otimes_{\Lambda} Z=0$ (cf. Remark 2.2). From this and Lemma 2.4, it follows that $u_{\gamma_{i}} \doteq u_{\gamma}$, where u_{γ} is the factor of the 0 -th polynomial of $T_{1}(\tilde{Y})$, not containing any non-unit factor f with $|f(1, \cdots, 1)|=1$. Thus, $\beta_{1}^{\gamma}\left(X_{0}\right)=\beta_{1}^{\gamma}\left(X_{1}\right)$ and $u_{\gamma_{0}} \doteq u_{\gamma_{1}}$. This completes the proof.

Proof of Theorem A. Consider the union of piecewise-linearly embedded annuli $F_{1} \cup \cdots \cup F_{\mu} \subset S^{3} \times[0,1]$ that reveals the $P L$ cobordism of two links $L_{0} \subset S^{3}$ and $L_{1} \subset S^{3}$ (with μ components). Take a regular neighborhood N of $F_{1} \cup \cdots \cup F_{\mu}$ in $S^{3} \times[0,1]$ meeting the boundary $S^{3} \times 0 \cup S^{3} \times 1$ regularly. Let $Y=S^{3} \times[0,1]-N$ and $X_{i}=Y \cap S^{3} \times i, i=0,1$. By applying Theorem 2.5 to the triple (Y, X_{0}, X_{1}), we obtain Theorem A. This completes the proof.

3. Proof of Theorem B

Consider a finite, connected and oriented 4-manifold W with an epimorphsim $\gamma: \pi_{1}(W) \rightarrow\left\langle t_{1}, \cdots, t_{\mu}\right\rangle$, and let W be the free abelian cover of W associated with γ. Suppose ∂W is connected.

For any element f in Λ, let us define $\bar{f}\left(t_{1}, \cdots, t_{\mu}\right)=f\left(t_{1}^{-1}, \cdots, t_{\mu}^{-1}\right)$.
The following theorem is basic to the proof of Theorem B.
Theorem 3.1. Assume the sequence $T_{2}(\tilde{W}, \partial \mathscr{W}) \xrightarrow{\partial^{\prime}} T_{1}(\partial W) \xrightarrow{i_{*}} T_{1}(W)$ is exact at $T_{1}(\partial W)$, where ∂^{\prime} is defined by the boundary homomorphism $\partial: H_{2}(W, \partial W)$ $\rightarrow H_{1}(\partial W)$. Then the 0 -th polynomial A of $T_{1}(\partial W)$ is of a form $F \bar{F}: A \doteq F \bar{F}$ for an element F in Λ.

Remark 3.2. For the special case that $\beta_{*}^{\gamma}(W)=0$, the torsions $\Delta(W)$,

[^1]$\Delta(\partial W) \in Q(\Lambda)-\{0\} \mid\left\langle t_{1}, \cdots, t_{\mu}\right\rangle$ may be defined and the conclusion of Theorem 3.1 also follows from the duality theorem for torsions due to J.W. Milnor [7], i.e., $\Delta(\partial W)=\Delta(W) \cdot \bar{\Delta}(W)$.

Before proving Theorem 3.1, we shall prove Theorem B.
Proof of Theorem B. Let $F_{1} \cup \cdots \cup F_{\mu} \subset S^{3} \times[0,1]$ be the cobordism annuli between the links $L_{0} \subset S^{3}, L_{1} \subset S^{3}$. Let N be the regular neighborhood of $F_{1} \cup \cdots \cup F_{\mu}$ in $S^{3} \times[0,1]$ meeting the boundary $S^{3} \times 0 \cup S^{3} \times 1$ regularly. Since each F_{i} is locally flat, it follows that N is homeomorphic to $F_{1} \times D^{2} U$ $F_{2} \times D^{2} \cup \cdots \cup F_{\mu} \times D^{2}, D^{2}$ being a 2-cell. Let $W=S^{3} \times[0,1]-\stackrel{N}{N}$ and $W \cap S^{3} \times i$ $=X_{i}, i=0,1$. Consider the specified epimorphisms $\gamma: \pi_{1}(W) \rightarrow\left\langle t_{1}, \cdots, t_{\mu}\right\rangle$ and $\gamma_{i}: \pi_{1}\left(X_{i}\right) \rightarrow\left\langle t_{1}, \cdots, t_{\mu}\right\rangle, i=0,1$.

Now, consider the following diagram:

$$
\begin{gathered}
H_{2}(W) \xrightarrow{y} H_{2}(W, \partial W) \xrightarrow{j_{*}} H_{1}(\partial W) \xrightarrow{i_{*}} H_{1}(W) \\
H_{2}\left(W, \tilde{X}_{i}\right)
\end{gathered}
$$

Here, the row sequence is exact and the triangle is commutative.
By Lemma 2.1, $H_{2}\left(W, \tilde{X}_{i}\right)=T_{2}\left(W, \tilde{X}_{i}\right)$. Then, the above diagram implies that the sequence $T_{2}(W, \partial W) \xrightarrow{\partial^{\prime}} T_{1}(\partial W) \xrightarrow{i_{*}} T_{1}(W)$ is exact. Henc from Theroem 3.1, $A \doteq f \bar{f}$ for an element f in Λ, where A is the 0 -th polynomial of $T_{1}(\partial W)$. Notice that ∂W is obtained from X_{0} and X_{1} by pasting along the tori of the boundaries ∂X_{0} and ∂X_{1}, and that the restriction epimorphism $\pi_{1}(\partial W) \rightarrow$ $\left\langle t_{1}, \cdots, t_{\mu}\right\rangle$ of γ is determined by the epimorphisms $\gamma_{0}: \pi_{1}\left(X_{0}\right) \rightarrow\left\langle t_{1}, \cdots, t_{\mu}\right\rangle$ and $\gamma_{1}: \pi_{1}\left(X_{1}\right) \rightarrow\left\langle t_{1}, \cdots, t_{\mu}\right\rangle$.

Consider the following exact sequence (obtained from the Mayer-Vietories sequence),

$$
\sum_{i=1}^{\mu} \Lambda / t_{i}-1 \rightarrow T_{1}\left(\tilde{X}_{0}\right) \oplus T_{1}\left(\tilde{X}_{1}\right) \rightarrow T_{1}(\partial \tilde{W}) \rightarrow \sum_{i=1}^{\mu} \Lambda / t_{i}-1
$$

Let $A_{i}, i=0,1$, be the Alexander polynomials of $\pi_{1}\left(X_{i}\right)$ with γ_{i}, and split $A_{i}=u_{i} v_{i}$, where $\left|v_{i}(1, \cdots, 1)\right|=1$ (yet u_{i} does not contain any non-unit factor f^{\prime} with $\left.\left|f^{\prime}(1, \cdots, 1)\right|=1\right)$. Also, split $f=f_{u} f_{v}$, where $\left|f_{v}(1, \cdots, 1)\right|=1$ (yet f_{u} does not contain any non-unit factor $f^{\prime \prime}$ with $\mid\left(f^{\prime \prime}(1, \cdots, 1) \mid=1\right.$).

From the sequence above, Lemma 2.4 and the reciprocity $A_{i} \doteq \bar{A}_{i}$ (see R.C. Blanchfield [1]), it follows that $v_{0} \delta_{1}=f_{v} \bar{f}_{v}$ and hence that there exist F_{i} in Λ, $i=0,1$, with $\left|F_{i}(1, \cdots, 1)\right|=1$ and such that $v_{0} F_{0} \bar{F}_{0} \doteq v_{1} F_{1} \bar{F}_{1}$. Theorem 2.5 implies $u_{0} \doteq u_{1}$ and hence we have $A_{0} F_{0} \bar{F}_{0}=A_{1} F_{1} \bar{F}_{1}$. This completes the proof.

By using a similar argument in the proof of Theorem B, from Theorems 2.5 and 3.1 we also obtain the following:

Corollary 3.3. Let M be a closed, connected and orientable 3-manifold with
an epimorphism $\gamma: \pi_{1}(M) \rightarrow\left\langle t_{1}, \cdots, t_{\mu}\right\rangle$. The integer $\beta^{\gamma}=(M)$ and the Alexander polynomial $A_{\gamma}($ modulo $F \bar{F}$-form for $F \in \Lambda$ with $|F(1, \cdots, 1)|=1)$ are the invariants of the homology cobordism of M.

Notation. For a Λ-module \mathfrak{M} let
$D(M)=\left\{x \in M \mid\right.$ There exist coprime elements $\alpha_{1}, \cdots, \alpha_{s}$ in $\Lambda(s>1)$ with $\left.\alpha_{i} x=0, i=1,2, \cdots, s\right\}$ and $\hat{\mathfrak{M}}=\mathfrak{M} / D(\mathfrak{M})$.

Proof of Theorem 3.1. According to R.C. Blanchfield [1], there exist the (linking) pairings $V^{\prime}: T_{1}(\partial \mathscr{W}) \times T_{1}(\partial \mathscr{W}) \rightarrow Q(\Lambda) / \Lambda$ and $V: T_{2}(W, \partial W) \times T_{1}(W)$ $\rightarrow Q(\Lambda) / \Lambda$ and the induced pairings $\hat{V}^{\prime}: \hat{T}_{1}(\partial W) \times \hat{T}_{1}(\partial W) \rightarrow Q(\Lambda) / \Lambda$ and $\hat{V}: \hat{T}_{2}(W, \partial W) \times \hat{T}_{1}(W) \rightarrow Q(\Lambda) / \Lambda$ are primitive. By the assumption, the sequence $0 \rightarrow \operatorname{Im} \partial^{\prime} \xrightarrow{\subset} T_{1}(\partial W) \xrightarrow{i_{*}} \operatorname{Im} i_{*} \rightarrow 0$ is exact. Note that $V^{\prime}\left(\partial^{\prime}(y), x\right)=$ $V\left(y, i_{*}(x)\right)$ for all $y \in T_{2}(W, \partial W)$ and $x \in T_{1}(\partial W)$. Suppose for all $y^{\prime}=\partial^{\prime}(y) \in$ $\operatorname{Im} \partial^{\prime}, V^{\prime}\left(y^{\prime}, x\right)=0$. This is equivalent to $V\left(y, i_{*}(x)\right)=0$ for all $y \in T_{2}(W, \partial W)$, since $V^{\prime}\left(y^{\prime}, x\right)=V^{\prime}\left(\partial^{\prime}(y), x\right)=V\left(y, i_{*}(x)\right)$. Using the primitive pairing \hat{V}, we obtain that $V^{\prime}\left(y^{\prime}, x\right)=0$ for all $y^{\prime} \in \operatorname{Im} \partial^{\prime}$ is equivalent to $i_{*}(x) \in D\left(T_{1}(W)\right)$ and hence $i_{*}(x) \in D\left(\operatorname{Im} i_{*}\right)$, i.e., $x \in i_{*}^{-1}\left(D\left(\operatorname{Im} i_{*}\right)\right)$. Thus, the primitive pairing \hat{V}^{\prime} induces the primitive pairing $\hat{V}^{\prime \prime}: \hat{\operatorname{Im}} \partial \times\left[T_{1}(\partial \tilde{W}) / i_{*}^{-1}\left(D\left(\operatorname{Im} i_{*}\right)\right)\right] \rightarrow Q(\Lambda) / \Lambda$.

Let f, A and g be the 0 -th polynomials of $\operatorname{Im} \partial^{\prime}, T_{1}(\partial W)$ and $\operatorname{Im} i_{*}$, respectively. By Lemma 2.4 we have $A \doteq f g$. By a result of R.C. Blanchfield ([1, Theorem 4.7]), f and g are also the 0 -th polynomials of $\hat{\operatorname{Im}} \partial^{\prime}$ and $\hat{\operatorname{I} m} i_{*} \approx$ $T_{1}(\partial W) / i_{*}^{-1}\left(D\left(\operatorname{Im} i_{*}\right)\right)$, respectively. The primitive pairing $\hat{V}^{\prime \prime}$ asserts the equality $\bar{f} \doteq g$. (See [1, Theorem 4.5].) Therefore, $A \doteq f g \doteq f \bar{f}$. This completes the proof.

Final Remark. Theorem B was independently proved by Y. Nakagawa slightly earlier than the present author, whose proof is based on the Fox's free calculus [3]. (cf. A. Kawauchi and Y. Nakagawa [6].)

Osaka City University

References

[1] R.C. Blanchfield: Intersection theory of manifolds with operators with applications to knot theory, Ann. of Math. 65 (1957), 340-356.
[2] R.H. Crowell: Corresponding groups and module sequences, Nagoya Math. J. 19 (1961), 27-40.
[3] R.H. Fox: A quick trip through knot theory, some problems in knot theory, Topology of 3-manifolds and related topics, M.K. Fort, Jr., ed., Prentice-Hall, 1962, 120-176.
[4] R.H. Fox and J.W. Milnor: Singularities of 2-spheres in 4-space and cobordism of knots, Osaka J. Math. 3 (1966), 257-267.
[5] A. Kawauchi: On quadratic forms of 3-manifolds, Invent. math. 43 (1977), 177-198.
[6] A. Kawauchi and Y. Nakagawa: On the Alexander polynomials of cobordant links (mimeographed notes), 1976.
[7] J.W. Milnor: A duality theorem for Reidemeister torsion, Ann. of Math. 76 (1962), 137-147.
[8] K. Murasugi: On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1967), 387-422.
[9] G. Torres: On the Alexander polynomial, Ann. of Math. 57 (1953), 57-89.

[^0]: *) The notation \doteq means 'equal up to $\pm t_{1}^{a} 1 t_{2}^{a} \cdots t_{\mu}^{a} \mu$ for all integers $a_{1}, a_{2} \cdots a \mu$ ".

[^1]: ${ }^{* *)} \gamma_{i}: \pi_{1}\left(X_{i}\right) \rightarrow\left\langle t_{1}, \cdots, t \mu\right\rangle$ are compatible epimorphisms, if γ_{i} are the restrictions of a common epimorphism $\pi_{1}(Y) \rightarrow\left\langle t_{1}, \cdots, t^{\mu}\right\rangle$ to $\pi_{1}\left(X_{i}\right)$, respectively.

