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1. Introduction. We will consider problems of the form
(1.1) u" +s(tyu' + Ar(tyu— Aa(tyu+-b(tyu = f
(1.2) u(0) =4'(0)=0

where A is the generator of a locally equicontinuous group 7Y(¢) in a complete
separated locally convex space E (cf. [8; 14]), u CYE), f € CYE), s, 1, a, and b
are continuous real valued functions, while a(f) >0 for >0 with a(0)=0. This
is an extension of the Cauchy problem for Tricomi equations and various general
versions of (1.1)~(1.2) have been considered for example in [1; 2; 7; 8; 10; 15;
16; 18; 22; 23; 24]; for an extensive bibliography see [8]. We will adapt a
method of Hersh [13] as extended by the author in [4, 5; 6; 8], to solve (1.1)-

(1.2) and prove some uniqueness theorems. The behavior of Sj(r’/a) (£)dt as

7—0 again turns out to play a critical role in uniqueness (as in [7; 8; 23; 24])
and is related to conditions of Krasnov [15] and Protter [18] in their specific
contexts. Let us note that a typical case involves 4?>=A in a suitable space E

(cf. [8]).

2. Following [4; 5; 6; 8; 13] we replace A by —d/dx in (1.1) and consider
2.1) w” +s(t)w —r(t)w,—a()w,,+b(t)w = 0
where w(t)e¥,’ (detailed properties are indicated below). Let us Fourier trans-
form (2.1) in the & variable, writing formally u“)(t):fhu(t):Sw w(t) exp ixy dx,
to obtain -
(2.2) W+ s(B)’ +iyr(8)d + a(t)y*d +b(t)w = 0
It will be convenient to elminate the b(¢) term as follows. Let @(¢)=0(t) exp

St'y(E)dE where v(2) satisfies the Riccati equation
0
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(2.3) Y +srv+v4+b=0; ¥(0)=0
(see below for details). Then 9 satisfies
24) 07 +2v(@)+5(£)P +(a(t)y*+iyr())d = 0

and it will be easier to deal with (2.4). In order to produce a suitable function
() we note that if one sets Y=a//a then « satisfies

(2.5) o’ +s(t)a’+b(t)a = 0

(cf. [12]) and we choose «a to be the unique solution of (2.5) satisfying a(0)=1
with @’(0)=0. Then v(0)=0 and the continuous function 7 will remain finite
on some interval 0<t<T<#,<co where #, is the first zero of a(t). It is
sufficient for us to solve (1.1) on such an interval since for t>7 the equation
(1.1) is not degenerate and can be handled by standard techniques (cf [3; 17]).
Now following [11] we write (2.4) as a system

b,
(2.6) '(t) = P(y, to(t); o(t) = [ s :l;

P(y, t ——[ 0 7
0. 1) = —ir—ay —s—2y

where 8,=yd and 6,=#". We look for solutions ¥ and Z of (2.6) satisfying
S y?’ 0

2.7 Y = = s

o =[Fo-[°]

70-[]o0-[3]

where 0<7<t<7T. The functions Z(t, 7, y) and Y(t, 7, y), together with their
inverse Fourier transforms, will be called resolvants. It is easily shown follow-

ing [7; 8; 19] that
(2.8) Z, = (ay+iyr) (VY
(2.9) V.= —Z+4(G+27) (Y.

Now by well known theorems (cf [3; 9; 12] there exist solutions Y(z, T, %)
and Z(t, 7, y) of (2.4) (i.e. (2.6)), satisfying the prescribed initial conditions,
which are continuous in (¢, 7, ¥) and analytic in y for 0<7T<t<T <oco and

yeC. Moreover by a clever argument in [11] if one writes the solution of (2.6)
in the form

(2.10) (e, 7, ¥) = O, 7, Y7, 7, )
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where O(7, 7, y)=1I then ||Q(t, 7, y)|<|c exp é|y|(¢—T) where || || denotes the
matrix operator norm (so |g;;| <||Ql| in particular when Q=(g;;)). Thus the
entries in Q are entire analytic functions of y of exponential type <é(t—7)<¢T.
This proves

Lemma 2.1. The functions Y(t, 7,9) and Z(t, 7, y) are continuous in (2,7, y)
for 0<T<t<T and yC while, for (t, 7) fixed, y¥, yZ, ¥,, and Z, are entire
analytic functions of exponential type <éT.

In order to invoke the Paley-Wiener-Schwartz theorem later (cf. [8; 11; 20])
we examine the growth of Y, Z, etc. for real y. Thus writing first Y=@-ir
we obtain from (2.4)

(2.11) "'+ Q2v+9)9'+ay’p—yryp = 0;

V@Y ayrtyre = 0.
Multiply the first equation in (2.11) by ¢’ and the second by ' and add, ob-
serving that Y?’ @@+’ +i(vrp’ — ) for example so that in particular

djdt| ¥1>=2 Re Y= 2(pg/+yy/) while |yr(yp'—@y!)|=|yr Im PY|
<V{(y%?| ¥ |24 | ¥’|?). This yields then

d 712 712 ?.d 2
(2.12) E'Y' +2@2v+5)| ¥ |+ ay d_tm <
b dEab 4b

Integrating (2.12) now under the assumption that a=C* we obtain for 0 <7<
t<T

(2.13) 2712 @ra) ¥ Pde+aey?) T12<
1+ [ @yt 390 P12 7 70

where ¥= Y(g, 7, ¥) etc. in the integrations. This type of inequality can be
treated by use of Gronwall type lemmas as in [7; 8; 23]. Thus set P=a'y*+y**
and @=1—-2(2v+s) so that |@|<Z on [0, T] by the continuity of v and s.

Then add Z‘gtazyzl Y|2dE to the right side of (2.13), without changing the in-
equality, and setting E= | v |2+-ay?| ¥|? we have
t t
ESl—f—S_P[ ngwj =dt
A straightforward application of the Gronwall lemma (cf. [3]) yields

(2.15) E<E(t, 7)+ XiP| YI2Eq, £)de
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where E(t, £)=expe (t—£). Now forget the | ¥’|2 term in E and following a
Gronwall type procedure written out in [8] we get immediately from (2.15) for
P=>0

(2.16) ay?| PI2< E(t, 7) exp Siﬁd&'

where P=a’[a-+7/a. Integrating the @’/a term and rearranging these results

Lemma 2.2. Given acC', b, r, s€C°, P>0, and Y the solution of (2.4)
satisfying ?('r, 7, y)=0 with Y,(-r, 7, y)=1 it follows that
t
(2.17) a(T)y?| Y(t, T, Y} )< E(t, T) exp S~(rz/a)d§

for y real and 0<7<t<T.

Let now F(t, T):CXP(—S'(fZ/a)dE) and F(r)=F(T, 7) so F(T)<F(t, 7).
Then since E(t, 7)<exp ¢T=*k we have from (2.17) the inequality
(2.18) a(m)F(My| (e, 7, 5) 12<k.

Note that F(7) may tend to zero as 7—0 while a(7)—0 by assumption, but for
7>0 both F(7) and a(7) are positive. Similarly, as in [2], we obtain from (2.14)-
(2.16)

(2.19) | Y2, 7, ) %a(r)F() <F

where k=k max a(t) on [0, T], and going back to (2.4) we have for Q(7)=
(a()E(7))V2

(2.20) O™ Yoult, 7 ¥)| < 129()+5(8) | O(T) | Y|
+(1 yr(t) | +a(ty) Q)| 1 +hy+ky |y

(upon using (2.18)~(2.19) and the continuity of a, 7, s, and 7). Next, setting
W(t, 7, )=0(7) 9’(1!, 7, ), from Lemma 2.1 and the estimate (2.18) arising from
Lemma 2.2 we know that the functions y—y W(t, 7, y) are entire of exponential
type <¢T and are bounded uniformly by a constant for y real and 0<7<t<T.
Further we know that the W(t, T, +) are analytic in the same region (note that
the Q(7) factor arising from (2.18) is only needed to produce a uniform bound
for y real as 7—0—the function y(t, 7,) is continuous in (¢,7,y) for 0<7<:<T

and yeC). Writing Y(t, T, y)=i a,(t, T)y" we have y¥(z, T, y)=i‘, a,(t, Ty !
0 0
=2>3a,_,y* and by definition one has then 1=lim sup k log k/—log|a,_,| as
1

k—> oo (cf. [8; 20]). Consequently we can write lim sup(n+ 1)log(n+1)/—log |4, |
=1 which implies lim sup 7 log n/—log|a,| =1 so P(t, 7, ) is of exponential
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type along with yf)'(t, 7, +). Further, since the type of such a function g(y) is
defined by lim sup log|g(y)|/| y| as | y| =0, we see from lim sup log | yg(v)| /||
=lim sup (log|y|+log|g(¥)|)/| ¥|=Ilim sup log|g(y)|/|y| that the functions

(¢, 7, +) are also of exponential type <¢T for 0<7<¢t<T. Now for y real
with | y| <R, say | W(¢, 7, )| is bounded by continuity in (¢, 7, y) and by (2.18)
| W(t,'r, »)| <kY?/|y| is bounded for | y| > R,. From the Paley-Wiener-Schwartz
theorem it then follows that W(¢, 7, )=~ 1T’li’(t 7, y)€&,” with supp W con-
tained in a fixed compact set for 0<<7<¢<T. Similar conclusions apply to W,
and W,, from Lemma 2.1, (2.4), and the estimates (2.19)—(2.20). Reasoning as
in [8] one can verify that W, and W,, indeed represent the derivatives of W in
&,/ and we can state

Theorem 2.3. Let the hypotheses of Lemma 2.2 hold with Q(7)=(a(7)F(T))"?
where F(T)=exp(— ST(rZ/a)dE) and set W(t, 7, y)= O(7) Y(t, 7, y) where Y is the

unique solution of (2.4) satisfying Y(-r 7, 9)=0 and Y1, 7, y)=1. Then W=

F W, W,, and W,, belong to &, and have supports contained in a fixed compact
set for 0<T<t<T. Moreover (t, 7)—W, W,, and W, are continuous with values
in &, for 0K <t <T with t—W(t, Ty C¥&))).

3. Going back to (1.1) and (2.1) we omit the b(¢) term in view of (2.3) and
replace s(2) by s(t)+2v(£)=3(f). Let us write h()=f(¢)/Q(¢) and assume k()€
CY%E) with f(t)eD(4?) for fixed t, while Ak(-) and 4%(-)eC*E) on [0, T].
We define a bracket <WA¢, &, -), T(-)h(E)> as in [4; 5; 6; 8] for fixed (¢, £) and
observe that (&, x)—T(x)i(€)=CYE) since x—T(x)=C (L (E)) and, for any
continuous seminorm p on E, there is a continuous seminorm ¢ such that
p(T(x)e)<q(e) for |x| <x, suitably large and e E (cf. [14]). The operation <,
indicates a pairing between distributions S€&,” of order <2 with supp SCK
compact and functions g€ C%(E) on R (recall here that T/(x) is a group). Given
this situation we can think of K C K= {x;|x] <x,} and represent C*(E) on K as
C?® E (cf. [4; 5; 21]) for details in the present discussion). Then S ECZ(K)2
and the pairing {S, g> is well defined with S—{S, g> continuous CZ(K)’—>F
The map A=AQR1=d?dx*®Q1: CYE)—C%E) is defined by extension from
C?*QE—C°QE and is continuous; it can be transported around under <, > in a
distribution sense for suitable .S and g as above (i.e. (AS, g>={S, Ag) for S of
order zero, the bracket for (S, Ag> being defined in the same way). We remark
that in fact (S,£)—><S,g>: & X CYE)—E is easily seen to be separately continuous
for S restricted as indicated and since &’ is barreled (S, g)—<S, g> will be
hypocontinuous on bounded sets in C*E) (cf. [21]). Consider then for 7>0

(3.1) u(t) = (<, &, -, T

We calculate formally in remarking that all the operations are legitimate. First
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(3.2) ' (f) = §i<Wt(t, £, +), T()h(E)dE
since W(t, t, -)=0 and since W (¢, t, -)=0(t)S there results

(3.3) wi(t) = JO+ | <Walt, &, -, T(- V(e

Now look at our new version of (1.1) and observe that for example
(3.4) Au(t) = Si<W(t, g, ), AT(-)h(E)>dE
= [ame, g, 2, Lremepa
T X
= —{<Lwie, &, ), T mEa
= dx

Similarly Azu(t)zg'@ Wit, &, -), T(-)h(E)>dE where A—d?/dx. Putting u(?),
defined by (3.1), in the modified equation (1.1) we obtain

(3.5) w’ + 5y + Ar(tyu— A%a(t)u = f(2)
+{ W soyw—ro) Lw—awaw, Th> a

and the integral term vanishes because W, along with Y, satisfies the correspon-
dingly modified equation (2.1). There is no trouble now in passing to the limit
7=0 under our hypotheses and, using v to transform back to the original equa-
tion (1.1), we have proved

Theorem 3.1. Let a(t)>0 for t>0 with a(0)=0 and ac= C*; let b, 7, and s
belong to C°, P>0 and choose T as in (2.3)~(2.4); let O and F be defined as in
Theorem 2.3 and assume h(+)==f(-)/O(-)EC(E) on [0, T with Ah(-) and A%h(-)
eC%E) on [0, T, where A generates a locally equicontinuous group T(x) in E.

Then, after modification by a factor expgt'y(éf)dg, u(t) given by (3.1) with T=014s a
0
solution of (1.1)~(1.2) on [0, T1.

4. We go now to questions of uniqueness and will have to determine some
properties of the other resolvant Z(t, 7, y). First we duplicate our procedure
(2.11)~(2.12) in order to estimate |Z| and |Z,| for y real. This yields

d . 5 <\ | D d, s
4.1 — |22 4-25(8) 1 Z' | *H-a(t)y*—| Z|*
() 412 142500) 2 P+ a2 121
<yt Z| | 2|2

t

(+:2) 2142 581 Z g+ ate)y?| 21
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We will develop now a uniqueness procedure based on [6; 8] which uses the
following formal calculations, valid for 7>0. Define first

(4.9) R(t, £) = <Z(t, &, +), T(-)u(E)

S(t, &) = <Y(, &, ), T( W ()
where u is any solution of our modified equation (1.1) (i.e. s(¢) is replaced by
5(8)=s(¢)+2v(t) and b(¢)=0) with f=0. For 7>0, Y, Z, Y. and Z, belong to
&,/ with supports contained in a fixed compact set so (4.9) makes sense, as do

the following computations (cf. (2.8)~(2.9)), but we will mercifully omit detailed
examination of each step. Thus

(4.10) Ry = <Z¢, Tup+<{Z, Tw'> = <Z, Tu">
—a(©)AY, Tuy—<r®) LY, Tu) = <2, Tu'>
+CY, HEVATUy <Y, a(€)A'Tu>

(4.11) Se = <Yy, Tu'>+<Y, Tu"> =Y, Tu">
—Z, TW>+<3)Y, Tu> =Y, Tu'">
+LY, 3(6)Tw>—<Z, Tu'> .

Letting o(2, £)=R(¢, £)+ S(¢, £) we have from (4.10)—(4.11)

(4.12) pr =Y, T’ +35u +rAu--ad%u)y, = 0.

Consequently o(t, #)=(t, 7) which implies that

(4.13) u(t) = <Z(, 7, +), T(-)w(7)>
+Y(E, T, ), T/ (7)) = SF()Z(E, 7, +), T()F4(mu(T)>
+OMY(@, 7, -), T(-)Q (' (7)>
Now let 7—0 and if F~Y%(1)u(7) and O }(7)u/(7)—0 we have u(t)=0. Hence,
referring back to the original equation (1.1) via ¥ as before we have proved

Theorem 4.3. Let u satisfy (1.1) (modified) under the stipulations that
F7(1yu(t)—>0 and Q 7y (7)—0 as 7—0. Assume the hypotheses of Lemma 2.2.
Then u is unique.

REMARK 4.4. The condition >0 has been discussed in [7; 8; 23; 24].

In general the requirements of Theorem 4.3 regarding the growth of u(7)
and #'(7) as 7—0 are too strong (cf. [7]) although the solution u of (1.1) given by
(3.1) could be made to satisfy them by imposing further hypotheses on f. Itis
therefore of some interest to consider the case when F(7)+0 as 7—0 and the
relation of this to certain conditions of Krasnov [15] and Protter [18] has been
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<a(ry+ [ @yt +y) 2104 1219

Setting P=a’y*+1%? as before and @=1—25 with Ié | <€ on [0, T, we write
N N f -
BE=|Z"|*+ay?| Z|? and add. ES ay*| Z|*dE to the right side of (4.2) to obtain

(4.3) & < a(r)y+ SiPl A 2d§+5$i§d.§
Consequently as in (2.15) there results

(4.4) = < a(r)yPE(, T)+SiP[Z[2E(t, £)dE
and as in (2.16) we obtain

(+5) a0y’ Z|*<a(r)*E(t, 7) exp| Pae
which yields

. Lemma 4.1. Given the hypothesis of Lemma 2.2 on a,b,7, s, 13, with
Z(t, 7, y) the unique solution of (2.4) satisfying Z(t, 7, y)=1 and Z(, 7, y)=0 it
Jollows that for y real and 0 <7<t<T

(4.6) |21, 7, 5) 1)< E(t, 7) exp | (?la)a
which can be written as F(t)| Z(t, T, y)|2<E(t, 7).

Similarly, as in (2.19)«(2.20), we could estimate |Z,| and | ?,,I but this
will not be needed here. Instead we want estimates on ¥, and Z, which will
follow from (2.8)~(2.9). Thus, from (2.8) one obtains, using (2.18),

(4.7) 10(M)Z.| <h+h Y]
while, using (2.18) and (4.6), we get from (2.9)
(48) YOO Yol <kt bl ¥ -

From their expressions (2.8)~(2.9) (and reasoning about Z from Lemma 2.1 as
was done for ¥ before Theorem 2.3) we know that Y. and Z. are entire functions
in y of exponential type <é7T. The estimates (4.7)-(4.8) and an argument as in
Theorem 2.3 then proves (cf. Lemma 4.1)

Theorem 4.2. Under the hypothesis of Theorem 2.3, F¥¥(1)Z=F"(1)F"'Z,
O(MZ. (and Q(7)Z), and O(7)Y. belong to & with supports contained in a fixed
compact set for 0<t<t<T. The derivatives in T can be taken in &, for >0 and

(t, T)=F"*Z or QZ, QZ,, and Q(7)Y . are continuous with values in £/ .
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discussed in [7; 8]. In this event the requirements of Theorem 4.3 on % are only
that #(0)=0 and a ¥(7)u/(t)—>0 as 7—0. To examine the feasibility of this let
u satisfy the modified equation (1.1) with f=0, %(0)=0, and #’(0)=0. Multiply

this equation by exp St.s"'(f)de‘;’ and integrate to obtain (cf. [7; 8])
0
(4.14) W(t) = — St[Ar(E)u—Aza(E)u]e'f Fmang
0
Let p be any continuous seminorn in E so that, since exp(—gi.?(n)dn)SM on
[0, 7],

(4.15) Pl ) < [ [HEp(A0) + a€)p( A0 d

Now Str(g)dz,f:S:alfz(r/al/z)d’g‘S(S;a(.f)d’g’)‘”(g;(rz/a)d’g‘)lfz whereas g:a(g)dg -
((Ya(g)dg)my. Since p(Au) and p(A%) will be bounded for a solution u & C¥E)

on [0, T] we have for St(rz/a)dfj bounded
0

(4.16) pla™ Aty (t)) <a™Vi(t)p(u'(2))
< Mya~v2(t) (S;adg)"2+Mza“/2(t)Stad&

<M 7(0) ([ adty”

t
Hence a2(ty'(t)—0 if a=4(t) (S adg)?—0. This condition is examined in [7;
0

8; 23; 24] and since oscillations in a(t) are permitted by the stipulation P>0
(or @’>—7?%) it is not automatically satisfied. However if @ is monotone increas-

ing near ¢=0 it is obviously valid since then (Stada‘;')‘/2 <a(t)'%#"2, Thus it makes
sense to state the result (after modification) as 0

Theorem 4.5. Assume the hypothesis of Lemma 2.2 and suppose F(7)>0 on
[0, T] with a~(t) (S;a(g)dg)w——)o as t—0. Then a= V(v (1)—0 as 7—0 and if
u satisfies (1.1)-(1.2) with f=0 it follows that u(t)=0 on [0, T].
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