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1. Introduction. We will consider problems of the form

(1.1) u"+s(t)u'+Ar(ί)u-A2a(t)u+b(ί)u =/

(1.2) u(ϋ) = u'(ϋ) = Q

where A is the generator of a locally equicontinuous group T(t] in a complete
separated locally convex space E (cf. [8; 14]), u&C2(E),f^C°(E), s, r, α, and b
are continuous real valued functions, while a(t)>0 for ί>0 with #(0)=0. This
is an extension of the Cauchy problem for Tricomi equations and various general

versions of (1.1)-(1.2) have been considered for example in [1; 2; 7; 8; 10; 15;
16; 18; 22; 23; 24]; for an extensive bibliography see [8]. We will adapt a
method of Hersh [13] as extended by the author in [4, 5; 6; 8], to solve (1.1)-

S T
(rila)(ξ)dξ as

T
τ->0 again turns out to play a critical role in uniqueness (as in [7; 8; 23; 24])
and is related to conditions of Krasnov [15] and Protter [18] in their specific
contexts. Let us note that a typical case involves A2—Δ in a suitable space E

(cf. [8]).

2. Following [4; 5; 6; 8; 13] we replace A by —d/dx in (1.1) and consider

(2.1) w"+s(t)w'-r(t)wx~a(t)wxx+b(ί)w = 0

where w(f)^yx (detailed properties are indicated below). Let us Fourier trans-

500
w(t) exp ixy dx,

-oβ

to obtain

(2.2) ώ''+s(t)w'+iyr(t)ίv+a(t)y*w+b(t)ώ == 0

It will be convenient to elminate the b(t) term as follows. Let w(t)—ύ(t) exp

S t
y(ξ)dξ where γ(ί) satisfies the Riccati equation

o
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(2.3) γ'+n+72+£ = 0; <y(0) = 0

(see below for details). Then ϋ satisfies

(2.4) ^+(27(t)+s(t))^+(a(t)^+iyr(t))ύ = 0

and it will be easier to deal with (2.4). In order to produce a suitable function
j(t) we note that if one sets 7= a!\a then a satisfies

(2.5) a"+s(t)a'+b(ί)a = 0

(cf. [12]) and we choose a to be the unique solution of (2.5) satisfying α(0)=l
with α'(0)— 0. Then γ(0)— 0 and the continuous function γ will remain finite
on some interval 0<£<TΌ0<oo where t0 is the first zero of a(t). It is
sufficient for us to solve (1.1) on such an interval since for t>T the equation
(1.1) is not degenerate and can be handled by standard techniques (cf [3; 17]).

Now following [11] we write (2.4) as a system

(2.6) v'(i) — P(y, ifi(i); v(t) =

0 y
P(y,t) = ,

L—ιr—ay —ί—t

where il—yύ and ύί=ύ'. We look for solutions Y and Z of (2.6) satisfying

(2.7) y(r) =

Z(τ) =

t

^^

where 0<τ<ί< T. The functions Z(ty T, j) and Ϋ(t, r, j), together with their

inverse Fourier transforms, will be called resolvants. It is easily shown follow-
ing [7; 8; 19] that

(2.8) Zr =

(2.9) Ϋr=

Now by well known theorems (cf [3; 9; 12] there exist solutions Ϋ(t, T, y)
and Z(t, r, y) of (2.4) (i.e. (2.6)), satisfying the prescribed initial conditions,
which are continuous in (t, τ,y) and analytic in y for 0<τ<£<Γ<oo and

y^C. Moreover by a clever argument in [11] if one writes the solution of (2.6)
in the form

(2.10) V(ty T, y) = 0(ί, T, yfi(τ9 T, y)
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where Q(τ, r,y)=I then \\Q(t, r, y)\<\c exp c\y\(t— r) where || || denotes the

matrix operator norm (so |^y| <||j3ll m particular when £?— fey)). Thus the
entries in Q are entire analytic functions of y of exponential type <c(t—τ)<cT.
This proves

Lemma 2.1. The functions Ϋ(t, τ,y) and Z(t, τ,y) are continuous in (t> ryy)

for 0<r<t<T and y&C while, for (t, r) fixed, yΫ, yZ, Ϋt, and Zt are entire
analytic functions of exponential type <cT.

In order to invoke the Paley- Wiener- Schwartz theorem later (cf. [8; 11 20])
we examine the growth of Ϋ, Z, etc. for real y. Thus writing first Ϋ—
we obtain from (2.4)

(2.11) φ»+(27+s)φ'+ay2φ-yrψ = 0;

- 0 .

Multiply the first equation in (2.11) by φ1 and the second by Λ// and add, ob-

serving that YY'==φφ'-\-ψ ψ>'-{-i(tyφ/—φ'^r) for example so that in particular

d/dt\Ϋ\2=2Re ΫΫ'=2(φφ'+W) while \yr(ψφ'-φtf)\ = \yr Im ΫY\
< l/2(y2r2 1 Ϋ 1 2+ I Ϋ'\ 2). This yields then

(2.12) \ ^|2+2(2γ+.)| γ\*+ay*\ Ϋ\2

at at

Integrating (2.12) now under the assumption that αeC1 we obtain for 0<τ<
t<T

(2.13) I t'|2+2'(27+ί)| f'\2dξ+a(t)y2\ Ϋ\*<

where Y— Y(ξ, r, y) etc. in the integrations. This type of inequality can be
treated by use of Gronwall type lemmas as in [7; 8; 23]. Thus set P=a'y2+y2r2

and Q=l— 2(2rγ+s) so that |Q| <£ on [0, Γ] by the continuity of γ and s.

Then add £\ a2y2\ Ϋ\2dξ to the right side of (2.13), without changing the in-

equality, and setting H= | Y' \ 2+ay2 \ Y\ 2 we have

A straightforward application of the Gronwall lemma (cf. [3]) yields

(2.15) B<E(t, τ)+ P| Ϋ\*E(t,ξ)dξ
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where E(t, f)=exp£ (t— ξ). Now forget the | Ϋ'\2 term in Ξ and following a
Gronwall type procedure written out in [8] we get immediately from (2.15) for

P>0

(2.16) ay2 1 Ϋ\2<E(t, T) exp

where jP=α'/α+^2/α Integrating the α'/α term and rearranging these results

Lemma 2.2. Given a^C\ b, r, s<ΞC°, ^>0, and Ϋ the solution of (2.4)
satisfying Ϋ(r, r, y)=0 with Ϋt(τ, r, y)=l it follows that

(2.17) a(r)f I ty, T, y) \*<ZE(t, r) exp

/or y real and Q<r<t< T.

Let now F(t, τ)=eχp(-(t(r2la)dξ) and F(τ)=F(T,τ) so F(r)<F(t, r).

Then since £"(*, τ)<exp ?J"=/i we have from (2.17) the inequality

(2.18) a(τ)F

Note that F(τ) may tend to zero as τ-»0 while #(τ)-»0 by assumption, but for
τ>0 both F(r) and a(τ) are positive. Similarly, as in [2], we obtain from (2.14)-
(2.16)

(2.19) \*(t,τ,y)\*a(τ)F

where k=k max a(t) on [0, T], and going back to (2.4) we have for
(a(τ)F(τψ*

(2.20) ρ(τ) I γtt(t, τ,y)\<\ 27(t)+s(t) I ρ(τ) I γt I

(upon using (2.18)-(2.19) and the continuity of a, r, s, and γ). Next, setting

(̂*> T>y)=Q(T)Y(t, τ> y)y from Lemma 2.1 and the estimate (2.18) arising from
Lemma 2.2 we know that the functions y-^y]^(ty T, y) are entire of exponential

type < cT and are bounded uniformly by a constant for y real and 0 < T < t < T.
Further we know that the T (̂ί, T, ) are analytic in the same region (note that

the Q(τ) factor arising from (2.18) is only needed to produce a uniform bound
for y real as τ-»0 — the function Ϋ(t,τ,y) is continuous in (t,τ,y) foτO<r<t<T

and y^C). Writing Ϋ(t, r, ;y)=f] an(t, τ)y* we have yΫ(t, T, y)=f^ an(t, τ)y^
0 °— *Σlak-ιyk an<i by definition one has then l=lim sup k log k/—log\ak_1\ as

k-*oo (cf. [8;20]). Consequently we can write limsup(w+l )log(n+ 1)/— log | an\

= 1 which implies lίm sup n log w/— log|αj =1 so F(f, T, •) is of exponential
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type along with yY(t> ry • ). Further, since the type of such a function g(y) is
defined by lim sup log | g(y) \/\y\ as | y \ -> °o 9 We see from lim sup log | yg( y) \/\y\
— lim sup (log \y\+ log | g(y) \ )/ 1 y\ — lim sup log \ g ( y ) \ l \ y \ that the functions
Ϋ(t, T, •) are also of exponential type <cT for 0<r<t<T. Now for y real
with \y\ <R0 say | T^(ί, r, y) \ is bounded by continuity in (ί, τ,y) and by (2.18)

I f^fr r >j) I ̂  £1/2/ 1 ̂  I is bounded for | y | > Λ0. From the Paley- Wiener- Schwartz
theorem it then follows that W(t, T, )~3<-lW(t, r, y)&Gx' with supp W con-
tained in a fixed compact set for 0<τ<z < T. Similar conclusions apply to Wt

and Wn from Lemma 2.1, (2.4), and the estimates (2.19)-(2.20). Reasoning as
in [8] one can verify that Wt and Wtt indeed represent the derivatives of W in
8χ and we can state

Theorem 2.3. Let the hypotheses of Lemma 2.2 hold with Q(τ)=(a(τ)F(τ))V2

where F(τ)=exp(—(T(r2/a)dξ) and set W(t, T, y)= Q(τ)Ϋ(t, T, y) where Ϋ is the

unique solution of (2.4) satisfying Ϋ(τ, r, y)— 0 and Ϋt(τ, τ,y)=l. Then W=
3'~1WJ Wt, and Wtt belong to 6x

f and have supports contained in a fixed compact
set for Q<r<t<T. Moreover (t, τ)~+W, Wt, and Wtt are continuous with values
in SI for 0<r<t<Twith t-+W(t, τ)eC2((?/).

3. Going back to (1.1) and (2.1) we omit the b(t) term in view of (2.3) and
replace s(t) by s(t)+2fγ(t}^ §(t). Let us write h(t)=f(t)/Q(t) and assume /z( )e
C*(E) with f(t)<ΞD(A2) for fixed ί, while Ah( ) and A2h( }<=ΞC\E) on [0, T}.
We define a bracket <HF(f, f , •), Γ( )*(?)> as in [4; 5; 6; 8] for fixed (ί, f) and
observe that (f, *)-*Γ(Λ?)A(f)eC°(£) since Λ?-> Γ(Λ?) e C°(L,(jE)) and, for any
continuous seminorm p on £", there is a continuous seminorm q such that
p(T(x)e)<q(e) for |#| <^ suitably large and e^E (cf. [14]). The operation < , >
indicates a pairing between distributions S^£J of order <2 with supp S C.K
compact and functions g^Cl(E) on R (recall here that T(x) is a group). Given
this situation we can think of K C K= {x | x \ < x0} and represent C2(E) on /t as
C2®.^ (cf. [4; 5; 21]) for details in the present discussion). Then S(=C2(K)2

and the pairing <S, £> is well defined with S-XS, £> continuous C2(Ky~*E.
The map Δ=Δ®l^rf2/rf#2$ξ>l: C2(J?)->C°(^) is defined by extension from
C2®E-*CQξξ)E and is continuous; it can be transported around under < , > in a
distribution sense for suitable S and^ as above (i.e. <(ΔS, g>— <(*??, Δg> for 5 of
order zero, the bracket for <5, Δ^> being defined in the same way). We remark
that in fact (5,<§

r)-»<Sr,^f>: Gf X C2(E)->E is easily seen to be separately continuous
for S restricted as indicated and since 6' is barreled (S, g)-+(S, £> will be
hypocontinuous on bounded sets in C2(E) (cf. [21]). Consider then for τ>0

(3.1) «(*) = (ί, ξ, •), T(.)h(φdξ

We calculate formally in remarking that all the operations are legitimate. First
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(3.2) «'(ί) = j[<W t(t, ξ, • ), T( }h(φdξ

since W(ί, t, )=0 and since Wt(t, t, )=O(ί)δ there results

(3.3) u"(i) =f(t)+\t<.Wtl(t, ξ, •), T(-)h(φdξ

Now look at our new version of (1.1) and observe that for example

(3.4) Au(t) = [<W(t, ξ, •), AT( )h(φdξ

= J'<W(ί, ξ, •), j-τ(>}

Similarly A2u(t)=\' <.ΔW(t, ξ, • ), T(-)h(φdξ where Δ=d2ldx\ Putting «(*).
•/ 7

defined by (3.1), in the modified equation (1.1) we obtain

(3.5) u"+s(ί)u'+Ar(t)u-A2a(f)u = f(t)

(
j

t<Wtί+s(t)Wt-r(t)^W-a(t)ΔWy Thy dξ
ax

and the integral term vanishes because W, along with Y, satisfies the correspon-
dingly modified equation (2.1). There is no trouble now in passing to the limit
r=0 under our hypotheses and, using 7 to transform back to the original equa-
tion (1.1), we have proved

Theorem 3.1. Let a(t)>Qfor t>0 with a(0)=0 and a<=Cl\ let b, r, and s
belong to C°, 7^>0 and choose T as in (2.3)-(2.4); let Q and F be defined as in
Theorem 2.3 and assume h( )=^f( )IQ( )(ΞC0(E) on [0, T] with Ah( ) and A2h( )
&C\E) on [0, T], where A generates a locally equicontinuous group T(x) in E.

Then, after modification by a factor exp\ 7(ξ)dξ, u(t) given fry (3.1) with r— 0 is a
Jo

solution 0/(l.l)-(1.2) on [0, T}.

4. We go now to questions of uniqueness and will have to determine some
properties of the other resolvant Z(ty r, y). First we duplicate our procedure
(2.11)-(2.12) in order to estimate \Z\ and \Zt\ for y real. This yields

(4.1) \Z'
at at

(4.2)
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We will develop now a uniqueness procedure based on [6 8] which uses the
following formal calculations, valid for τ>0. Define first

(4.9) Λ(f, ?)

where u is <my solution of our modified equation (1.1) (i.e. s(t) is replaced by
s(t)=s(t)+2j(t) and b(t)=0) with/-0. For τ>0, Y, Z, Y, and Zτ belong to
<?/ with supports contained in a fixed compact set so (4.9) makes sense, as do
the following computations (cf. (2.8)-(2.9)), but we will mercifully omit detailed
examination of each step. Thus

(4.10) Rξ = <Z€, 7X>+<Z, 7V> - <Z, 7Y>

-<α(f)Δ Y, Tuy-<j(ξ)j-Y, Tu> = <Z, 7V>
αtf

+<F, r(ξ)ATuy-<Y, a(ξ)A*Tιi>

(4.11) S$ == <Y f, 7

, Γtt'> - < Y, 2V'>

Letting φ(t, ξ}=R(t, ξ)+S(t, ξ) we have from (4.10)-(4.11)

(4.12) 9>f = < Y, Γ^+^+r^M-α^^ - 0 .

Consequently φ(t, t)=φ(t, T) which implies that

(4.13) n(f) = <Z(f, T, •), Γ(.χτ)>

Now let τ^0 and if F-1/2(τ)w(τ) and O~I(T)U'(T)-»Q we have w(ί) = 0. Hence,
referring back to the original equation (1.1) via 7 as before we have proved

Theorem 4.3. Let u satisfy (1.1) (modified) under the stipulations that
F'l/2(τ)u(τ)-^Q and O~\r)u\r)-^Q as τ->0. Assume the hypotheses of Lemma 2.2.
Then u is unique.

REMARK 4.4. The condition P>0 has been discussed in [7; 8; 23; 24].

In general the requirements of Theorem 4.3 regarding the growth of u(τ)
and u'(τ) as r— »0 are too strong (cf. [7]) although the solution u of (1.1) given by
(3.1) could be made to satisfy them by imposing further hypotheses on /. It is
therefore of some interest to consider the case when F(τ)-μ 0 as τ->0 and the
relation of this to certain conditions of Krasnov [15] and Protter [18] has been
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(βy +y>r*) \Z\*+\Z'

Setting P=a'yl+y2r* as before and Q=l — 2S with | $| <ΐ on [0, T], we write

Ξ= |Z'|2+αj2 |Z|2 and add. aΓβy2iZ|2rff to the right side of (4.2) to obtain

(4.3)

Consequently as in (2.15) there results

(4.4) B <a(τ)?E(t, τ)+ (p | 2| *E(t, ξ)dξ
JT

and as in (2.16) we obtain

(4.5) a(t)f\Z\*<a(τ}fE(t, T) expJ'Aί?

which yields

Lemma 4.1. Given the hypothesis of Lemma 2.2 on a, b, r, sy Py with
Z(t, T, y) the unique solution of (2.4) satisfying Z(τ, r, j;)— 1 and Zt(τ, r, y)=0 it
follows that for y real andO<r<t<T

(4.6) I Z(t, r, y) I ^ < £(,, r) exp

which can be written as F(τ) \ Z(t, T, y) \2<E(t, T).

Similarly, as in (2.19)-(2.20), we could estimate \Zt\ and \Ztt\ but this
will not be needed here. Instead we want estimates on Ϋt and Zτ which will

follow from (2.8)-(2.9). Thus, from (2.8) one obtains, using (2.18),

(4.7)

while, using (2.18) and (4.6), we get from (2.9)

(4.8)

From their expressions (2.8)-(2.9) (and reasoning about Z from Lemma 2.1 as
was done for Y before Theorem 2.3) we know that Yr and Z_ are entire functions

in y of exponential type <cT. The estimates (4.7)-(4.8) and an argument as in

Theorem 2.3 then proves (cf. Lemma 4.1)

Theorem 4.2. Under the hypothesis of Theorem 2.3, F1/2(τ)Z-JF
1/2(τ)£F-1Z,

O(τ)Z~ (and Q(τ)Z), and Q(r) Yτ belong to c?/ with supports contained in a fixed
compact set for 0<τ<t<T. The derivatives in r can be taken in βx' for r > 0 and
(ty τ)->F1/2Z or OZ, OZry and O(τ)Fr are continuous with values in £x' .
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discussed in [7; 8]. In this event the requirements of Theorem 4.3 on u are only
that «(0)=0 and aΓ1/2(τ)z/(τ)-»0 as τ->0. To examine the feasibility of this let
u satisfy the modified equation (1.1) with/=0, w(0)=0, and u'(Q)=Q. Multiply

!

t
s(ξ)dξ and integrate to obtain (cf . [7 8])

0

(4.14) u'(t) = -
o

J t
$(η)dη)<M on

[0, Γ],

(4.15) P(u'(t))< (\r(ξ)p(AU)+a(ξ)p(A*u)]Mdξ
JO

Now ^r(ξ}dξ=^a^(rla^}dξ<(\!a(ξ)dξ)'ί'2(^(rila)dξγ'2 whereas ['a(ξ)dξ =
Jo Jo Jo Jo Jo

(( [a(ξ)dξ)l/2)2. Since p(Au) and p(A2u) will be bounded for a solution u e C2(E)
Jo

on [0, T] we have for I (r2lά)dξ bounded
Jo

(4.16) p(a-

Hence <r1/2(ίK(*)^0 if β-'/2(ί) (('adξ)1'2-*^. This condition is examined in [7;
Jo

8; 23; 24] and since oscillations in a(t) are permitted by the stipulation P>0
(or af> — r2) it is not automatically satisfied. However if a is monotone increas-

ing near t=Q it is obviously valid since then (I adξ}l/2 < a(t)1/2t1/2. Thus it makes
Jo

sense to state the result (after modification) as

Theorem 4.5. Assume the hypothesis of Lemma 2.2 and suppose F(τ)>Q on

[0, T] with a~l/2(t) (^a(ξ)dξγ/2->0 as *->0. Then α-1/2(τ)w

/(τ)->0 as τ->0 and if

u satisfies (1.1)-(1.2) wiΐhf^Q it follows that u(t)==Q on [0, T].
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