Carroll, R. Osaka J. Math. 14 (1977), 609–618

SOME REMARKS ON DEGENERATE CAUCHY PROBLEMS IN GENERAL SPACES

ROBERT CARROLL

(Received November 15, 1976)

1. Introduction. We will consider problems of the form

(1.1) $u'' + s(t)u' + Ar(t)u - A^2a(t)u + b(t)u = f$

$$(1.2) u(0) = u'(0) = 0$$

where A is the generator of a locally equicontinuous group T(t) in a complete separated locally convex space $E(cf. [8; 14]), u \in C^2(E), f \in C^0(E), s, r, a, and b$ are continuous real valued functions, while a(t) > 0 for t > 0 with a(0)=0. This is an extension of the Cauchy problem for Tricomi equations and various general versions of (1.1)-(1.2) have been considered for example in [1; 2; 7; 8; 10; 15; 16; 18; 22; 23; 24]; for an extensive bibliography see [8]. We will adapt a method of Hersh [13] as extended by the author in [4, 5; 6; 8], to solve (1.1)-(1.2) and prove some uniqueness theorems. The behavior of $\int_{\tau}^{T} (r^2/a)(\xi) d\xi$ as $\tau \to 0$ again turns out to play a critical role in uniqueness (as in [7; 8; 23; 24]) and is related to conditions of Krasnov [15] and Protter [18] in their specific contexts. Let us note that a typical case involves $A^2 = \Delta$ in a suitable space E (cf. [8]).

2. Following [4; 5; 6; 8; 13] we replace A by -d/dx in (1.1) and consider

(2.1)
$$w'' + s(t)w' - r(t)w_x - a(t)w_{xx} + b(t)w = 0$$

where $w(t) \in \mathscr{G}_{x}'$ (detailed properties are indicated below). Let us Fourier transform (2.1) in the x variable, writing formally $\hat{w}(t) = \mathcal{F}w(t) = \int_{-\infty}^{\infty} w(t) \exp ixy \, dx$, to obtain

(2.2)
$$\hat{w}'' + s(t)\hat{w}' + iyr(t)\hat{w} + a(t)y^2\hat{w} + b(t)\hat{w} = 0$$

It will be convenient to elminate the b(t) term as follows. Let $\hat{w}(t) = \hat{v}(t) \exp \int_{0}^{t} \gamma(\xi) d\xi$ where $\gamma(t)$ satisfies the Riccati equation

(2.3)
$$\gamma' + s\gamma + \gamma^2 + b = 0; \quad \gamma(0) = 0$$

(see below for details). Then \hat{v} satisfies

(2.4)
$$\hat{v}'' + (2\gamma(t) + s(t))\hat{v}' + (a(t)y^2 + iyr(t))\hat{v} = 0$$

and it will be easier to deal with (2.4). In order to produce a suitable function $\gamma(t)$ we note that if one sets $\gamma = \alpha'/\alpha$ then α satisfies

(2.5)
$$\alpha'' + s(t)\alpha' + b(t)\alpha = 0$$

(cf. [12]) and we choose α to be the unique solution of (2.5) satisfying $\alpha(0)=1$ with $\alpha'(0)=0$. Then $\gamma(0)=0$ and the continuous function γ will remain finite on some interval $0 \le t \le T < t_0 < \infty$ where t_0 is the first zero of $\alpha(t)$. It is sufficient for us to solve (1.1) on such an interval since for $t \ge T$ the equation (1.1) is not degenerate and can be handled by standard techniques (cf [3; 17]). Now following [11] we write (2.4) as a system

(2.6)
$$\mathbf{\hat{v}}'(t) = P(y, t)\mathbf{\hat{v}}(t); \quad \mathbf{\hat{v}}(t) = \begin{bmatrix} \hat{v}_1 \\ \hat{v}_2 \end{bmatrix};$$
$$P(y, t) = \begin{bmatrix} 0 & y \\ -ir - ay & -s - 2\gamma \end{bmatrix}$$

where $\hat{v}_1 = y\hat{v}$ and $\hat{v}_2 = \hat{v}'$. We look for solutions \vec{Y} and \vec{Z} of (2.6) satisfying

(2.7)
$$\vec{\hat{Y}}(\tau) = \begin{bmatrix} y \hat{\hat{Y}} \\ \hat{\hat{Y}}_t \end{bmatrix} (\tau) = \begin{bmatrix} 0 \\ 1 \end{bmatrix};$$
$$\vec{\hat{Z}}(\tau) = \begin{bmatrix} y \hat{\hat{Z}} \\ \hat{\hat{Z}}_t \end{bmatrix} (\tau) = \begin{bmatrix} y \\ 0 \end{bmatrix}$$

where $0 \le \tau \le t \le T$. The functions $\hat{Z}(t, \tau, y)$ and $\hat{Y}(t, \tau, y)$, together with their inverse Fourier transforms, will be called resolvants. It is easily shown following [7; 8; 19] that

(2.8)
$$\hat{Z}_{\tau} = (ay^2 + iyr)(\tau)\hat{Y}$$

(2.9)
$$\hat{Y}_{\tau} = -\hat{Z} + (s+2\gamma)(\tau)\hat{Y}.$$

Now by well known theorems (cf [3; 9; 12] there exist solutions $\hat{Y}(t, \tau, y)$ and $\hat{Z}(t, \tau, y)$ of (2.4) (i.e. (2.6)), satisfying the prescribed initial conditions, which are continuous in (t, τ, y) and analytic in y for $0 \le \tau \le t \le T < \infty$ and $y \in C$. Moreover by a clever argument in [11] if one writes the solution of (2.6) in the form

(2.10)
$$\vec{v}(t, \tau, y) = Q(t, \tau, y)\vec{v}(\tau, \tau, y)$$

610

where $Q(\tau, \tau, y) = I$ then $||Q(t, \tau, y)| \le |c \exp \hat{c}| y|(t-\tau)$ where || || denotes the matrix operator norm (so $|q_{ij}| \le ||Q||$ in particular when $Q=(q_{ij})$). Thus the entries in Q are entire analytic functions of y of exponential type $\le \hat{c}(t-\tau) \le \hat{c}T$. This proves

Lemma 2.1. The functions $\hat{Y}(t, \tau, y)$ and $\hat{Z}(t, \tau, y)$ are continuous in (t, τ, y) for $0 \le \tau \le t \le T$ and $y \in C$ while, for (t, τ) fixed, $y\hat{Y}, y\hat{Z}, \hat{Y}_{t}$, and \hat{Z}_{t} are entire analytic functions of exponential type $\le \hat{c}T$.

In order to invoke the Paley-Wiener-Schwartz theorem later (cf. [8; 11; 20]) we examine the growth of \hat{Y} , \hat{Z} , etc. for real y. Thus writing first $\hat{Y}=\varphi+i\psi$ we obtain from (2.4)

(2.11)
$$\varphi^{\prime\prime} + (2\gamma + s)\varphi^{\prime} + ay^2\varphi - yr\psi = 0;$$
$$\psi^{\prime\prime} + (2\gamma + s)\psi^{\prime} + ay^2\psi + yr\varphi = 0.$$

Multiply the first equation in (2.11) by φ' and the second by ψ' and add, observing that $\hat{Y}\overline{\hat{Y}'} = \varphi\varphi' + \psi\psi' + i(\psi\varphi' - \varphi\psi')$ for example so that in particular $d/dt |\hat{Y}|^2 = 2 \operatorname{Re} \hat{Y}\overline{\hat{Y}'} = 2(\varphi\varphi' + \psi\psi')$ while $|yr(\psi\varphi' - \varphi\psi')| = |yr \operatorname{Im} \hat{Y}\overline{Y}| \leq \frac{1}{2}(y^2r^2|\hat{Y}|^2 + |\hat{Y}'|^2)$. This yields then

(2.12)
$$\frac{d}{dt} |\hat{Y}'|^2 + 2(2\gamma + s)|\hat{Y}'|^2 + ay^2 \frac{d}{dt} |\hat{Y}|^2 \le (y^2 r^2 |\hat{Y}|^2 + |\hat{Y}'|^2)$$

Integrating (2.12) now under the assumption that $a \in C^1$ we obtain for $0 < \tau \le t \le T$

(2.13)
$$|\hat{Y}'|^2 + 2 \int_{\tau}^{t} (2\gamma + s) |\hat{Y}'|^2 d\xi + a(t) y^2 |\hat{Y}|^2 \le 1 + \int_{\tau}^{t} [(a'y^2 + y^2 r^2) |\hat{Y}|^2 + |\hat{Y}'|^2] d\xi$$

where $\hat{Y} = \hat{Y}(\xi, \tau, y)$ etc. in the integrations. This type of inequality can be treated by use of Gronwall type lemmas as in [7; 8; 23]. Thus set $P = a'y^2 + y^2r^2$ and $\tilde{Q} = 1 - 2(2\gamma + s)$ so that $|\tilde{Q}| \leq \tilde{c}$ on [0, T] by the continuity of γ and s. Then add $\tilde{c} \int_{\tau}^{t} a^2 y^2 |\hat{Y}|^2 d\xi$ to the right side of (2.13), without changing the inequality, and setting $\Xi = |\hat{Y}'|^2 + ay^2 |\hat{Y}|^2$ we have

$$\Xi \leq 1 + \int_{\tau}^{t} P |\hat{Y}|^{2} d\xi + \hat{c} \int_{\tau}^{t} \Xi d\xi$$

A straightforward application of the Gronwall lemma (cf. [3]) yields

(2.15)
$$\Xi \leq E(t, \tau) + \int_{\tau}^{t} P |\hat{Y}|^{2} E(t, \xi) d\xi$$

where $E(t, \xi) = \exp \tilde{c} (t - \xi)$. Now forget the $|\hat{Y}'|^2$ term in Ξ and following a Gronwall type procedure written out in [8] we get immediately from (2.15) for $P \ge 0$

(2.16)
$$ay^2 |\hat{Y}|^2 \leq E(t, \tau) \exp \int_{\tau}^t \hat{P} d\xi$$

where $\tilde{P} = a'/a + r^2/a$. Integrating the a'/a term and rearranging these results

Lemma 2.2. Given $a \in C^1$, b, r, $s \in C^0$, $\hat{P} \ge 0$, and \hat{Y} the solution of (2.4) satisfying $\hat{Y}(\tau, \tau, y)=0$ with $\hat{Y}_t(\tau, \tau, y)=1$ it follows that

(2.17)
$$a(\tau)y^2 | \hat{Y}(t, \tau, y)|^2 \leq E(t, \tau) \exp \int_{\tau}^{t} (r^2/a) d\xi$$

for y real and $0 < \tau \le t \le T$.

Let now $F(t, \tau) = \exp(-\int_{\tau}^{t} (r^{2}/a) d\xi)$ and $F(\tau) = F(T, \tau)$ so $F(\tau) \le F(t, \tau)$. Then since $E(t, \tau) \le \exp \tilde{c}T = k$ we have from (2.17) the inequality

(2.18)
$$a(\tau)F(\tau)y^2|\hat{Y}(t,\,\tau,\,y)|^2 \leq k.$$

Note that $F(\tau)$ may tend to zero as $\tau \rightarrow 0$ while $a(\tau) \rightarrow 0$ by assumption, but for $\tau > 0$ both $F(\tau)$ and $a(\tau)$ are positive. Similarly, as in [2], we obtain from (2.14)-(2.16)

$$(2.19) \qquad \qquad |\hat{Y}_{i}(t,\,\tau,\,y)|^{2}a(\tau)F(\tau) \leq \tilde{k}$$

where $\tilde{k} = k \max a(t)$ on [0, T], and going back to (2.4) we have for $Q(\tau) = (a(\tau)F(\tau))^{1/2}$

(2.20)
$$Q(\tau) | \dot{Y}_{tt}(t, \tau, y)| \le |2\gamma(t) + s(t)|Q(\tau)| \dot{Y}_t | + (|yr(t)| + a(t)y^2)Q(\tau)| \dot{Y}| + k_1 + k_2 |y|$$

(upon using (2.18)-(2.19) and the continuity of $a, r, s, and \gamma$). Next, setting $\hat{W}(t, \tau, y) = Q(\tau) \hat{Y}(t, \tau, y)$, from Lemma 2.1 and the estimate (2.18) arising from Lemma 2.2 we know that the functions $y \rightarrow y \hat{W}(t, \tau, y)$ are entire of exponential type $\leq \hat{c}T$ and are bounded uniformly by a constant for y real and $0 \leq \tau \leq t \leq T$. Further we know that the $\hat{W}(t, \tau, \cdot)$ are analytic in the same region (note that the $Q(\tau)$ factor arising from (2.18) is only needed to produce a uniform bound for y real as $\tau \rightarrow 0$ —the function $\hat{Y}(t, \tau, y)$ is continuous in (t, τ, y) for $0 \leq \tau \leq t \leq T$ and $y \in C$). Writing $\hat{Y}(t, \tau, y) = \sum_{0}^{\infty} a_n(t, \tau)y^n$ we have $y \hat{Y}(t, \tau, y) = \sum_{0}^{\infty} a_n(t, \tau)y^{n+1} = \sum_{1}^{\infty} a_{k-1}y^k$ and by definition one has then $1 = \limsup k \log k / -\log|a_{k-1}|$ as $k \rightarrow \infty$ (cf. [8; 20]). Consequently we can write $\limsup (n+1)\log(n+1)/-\log|a_n| = 1$ which implies $\limsup n \log n / -\log|a_n| = 1$ so $\hat{Y}(t, \tau, \cdot)$ is of exponential

type along with $y \hat{Y}(t, \tau, \cdot)$. Further, since the type of such a function g(y) is defined by lim sup $\log |g(y)|/|y|$ as $|y| \to \infty$, we see from lim sup $\log |g(y)|/|y|$ =lim sup $(\log |y| + \log |g(y)|)/|y| = \lim$ sup $\log |g(y)|/|y|$ that the functions $\hat{Y}(t, \tau, \cdot)$ are also of exponential type $\leq \hat{c}T$ for $0 \leq \tau \leq t \leq T$. Now for y real with $|y| \leq R_0$ say $|\hat{W}(t, \tau, y)|$ is bounded by continuity in (t, τ, y) and by (2.18) $|\hat{W}(t, \tau, y)| \leq k^{1/2}/|y|$ is bounded for $|y| > R_0$. From the Paley-Wiener-Schwartz theorem it then follows that $W(t, \tau, \cdot) = \mathcal{F}^{-1}\hat{W}(t, \tau, y) \in \mathcal{E}'_x$ with supp W contained in a fixed compact set for $0 \leq \tau \leq t \leq T$. Similar conclusions apply to W_t and W_{tt} from Lemma 2.1, (2.4), and the estimates (2.19)-(2.20). Reasoning as in [8] one can verify that W_t and W_{tt} indeed represent the derivatives of W in \mathcal{E}'_x and we can state

Theorem 2.3. Let the hypotheses of Lemma 2.2 hold with $Q(\tau) = (a(\tau)F(\tau))^{1/2}$ where $F(\tau) = \exp(-\int_{\tau}^{T} (r^2/a)d\xi)$ and set $\hat{W}(t, \tau, y) = Q(\tau)\hat{Y}(t, \tau, y)$ where \hat{Y} is the unique solution of (2.4) satisfying $\hat{Y}(\tau, \tau, y)=0$ and $\hat{Y}_t(\tau, \tau, y)=1$. Then $W = \mathcal{F}^{-1}\hat{W}$, W_t , and W_{tt} belong to \mathcal{E}'_x and have supports contained in a fixed compact set for $0 \le \tau \le t \le T$. Moreover $(t, \tau) \rightarrow W$, W_t , and W_{tt} are continuous with values in \mathcal{E}'_x for $0 \le \tau \le t \le T$ with $t \rightarrow W(t, \tau) \in C^2(\mathcal{E}'_x)$.

3. Going back to (1.1) and (2.1) we omit the b(t) term in view of (2.3) and replace s(t) by $s(t)+2\gamma(t)=\tilde{s}(t)$. Let us write h(t)=f(t)/Q(t) and assume $h(\cdot)\in$ $C^{0}(E)$ with $f(t) \in D(A^{2})$ for fixed t, while $Ah(\cdot)$ and $A^{2}h(\cdot) \in C^{0}(E)$ on [0, T]. We define a bracket $\langle W(t, \xi, \cdot), T(\cdot)h(\xi) \rangle$ as in [4; 5; 6; 8] for fixed (t, ξ) and observe that $(\xi, x) \to T(x)h(\xi) \in C^0(E)$ since $x \to T(x) \in C^0(L_s(E))$ and, for any continuous seminorm p on E, there is a continuous seminorm q such that $p(T(x)e) \leq q(e)$ for $|x| \leq x_1$ suitably large and $e \in E$ (cf. [14]). The operation \langle , \rangle indicates a pairing between distributions $S \in \mathcal{E}_x'$ of order ≤ 2 with supp $S \subset K$ compact and functions $g \in C_x^2(E)$ on **R** (recall here that T(x) is a group). Given this situation we can think of $K \subset \hat{K} = \{x; |x| \leq x_0\}$ and represent $C^2(E)$ on \hat{K} as $C^2 \otimes_{s} E$ (cf. [4; 5; 21]) for details in the present discussion). Then $S \in C^2(\hat{K})^2$ and the pairing $\langle S, g \rangle$ is well defined with $S \rightarrow \langle S, g \rangle$ continuous $C^2(\hat{K})' \rightarrow E$. The map $\Delta = \Delta \otimes 1 = d^2/dx^2 \otimes 1$: $C^2(E) \rightarrow C^0(E)$ is defined by extension from $C^2 \otimes E \to C^0 \otimes E$ and is continuous; it can be transported around under \langle , \rangle in a distribution sense for suitable S and g as above (i.e. $\langle \Delta S, g \rangle = \langle S, \Delta g \rangle$ for S of order zero, the bracket for $\langle S, \Delta g \rangle$ being defined in the same way). We remark that in fact $(S,g) \rightarrow \langle S,g \rangle : \mathcal{E}' \times C^2(E) \rightarrow E$ is easily seen to be separately continuous for S restricted as indicated and since \mathcal{E}' is barreled $(S, g) \rightarrow \langle S, g \rangle$ will be hypocontinuous on bounded sets in $C^{2}(E)$ (cf. [21]). Consider then for $\tau > 0$

(3.1)
$$u(t) = \int_{\tau}^{t} \langle W(t, \xi, \cdot), T(\cdot)h(\xi) \rangle d\xi$$

We calculate formally in remarking that all the operations are legitimate. First

(3.2)
$$u'(t) = \int_{\tau}^{t} \langle W_t(t, \xi, \cdot), T(\cdot)h(\xi) \rangle d\xi$$

since $W(t, t, \cdot) = 0$ and since $W_t(t, t, \cdot) = Q(t)\delta$ there results

(3.3)
$$u''(t) = f(t) + \int_{\tau}^{t} \langle W_{tt}(t, \xi, \cdot), T(\cdot)h(\xi) \rangle d\xi$$

Now look at our new version of (1.1) and observe that for example

(3.4)
$$Au(t) = \int_{\tau}^{t} \langle W(t, \xi, \cdot), AT(\cdot)h(\xi) \rangle d\xi$$
$$= \int_{\tau}^{t} \langle W(t, \xi, \cdot), \frac{d}{dx}T(\cdot)h(\xi) \rangle d\xi$$
$$= -\int_{\tau}^{t} \langle \frac{d}{dx}W(t, \xi, \cdot), T(\cdot)h(\xi) \rangle d\xi$$

Similarly $A^2u(t) = \int_{\tau}^{t} \langle \Delta W(t, \xi, \cdot), T(\cdot)h(\xi) \rangle d\xi$ where $\Delta = d^2/dx^2$. Putting u(t), defined by (3.1), in the modified equation (1.1) we obtain

(3.5)
$$u'' + \tilde{s}(t)u' + Ar(t)u - A^2 a(t)u = f(t) + \int_{\tau}^{t} \langle W_{tt} + \tilde{s}(t)W_t - r(t)\frac{d}{dx}W - a(t)\Delta W, Th \rangle d\xi$$

and the integral term vanishes because W, along with Y, satisfies the correspondingly modified equation (2.1). There is no trouble now in passing to the limit $\tau=0$ under our hypotheses and, using γ to transform back to the original equation (1.1), we have proved

Theorem 3.1. Let a(t) > 0 for t > 0 with a(0) = 0 and $a \in C^1$; let b, r, and s belong to C^0 , $\hat{P} \ge 0$ and choose T as in (2.3)–(2.4); let Q and F be defined as in Theorem 2.3 and assume $h(\cdot) = f(\cdot)/Q(\cdot) \in C^0(E)$ on [0, T] with $Ah(\cdot)$ and $A^2h(\cdot) \in C^0(E)$ on [0, T], where A generates a locally equicontinuous group T(x) in E. Then, after modification by a factor $exp \int_0^t \gamma(\xi) d\xi$, u(t) given by (3.1) with $\tau = 0$ is a solution of (1.1)–(1.2) on [0, T].

4. We go now to questions of uniqueness and will have to determine some properties of the other resolvant $\hat{Z}(t, \tau, y)$. First we duplicate our procedure (2.11)-(2.12) in order to estimate $|\hat{Z}|$ and $|\hat{Z}_t|$ for y real. This yields

(4.1)
$$\frac{d}{dt} |\hat{Z}'|^2 + 2\tilde{s}(t)|\hat{Z}'|^2 + a(t)y^2 \frac{d}{dt} |\hat{Z}|^2 \\ \leq y^2 r^2(t) |\hat{Z}|^2 + |\hat{Z}'|^2 \\ |\hat{Z}'|^2 + 2 \int_{-}^{t} \tilde{s}(\xi) |\hat{Z}'|^2 d\xi + a(t)y^2 |\hat{Z}|^2$$

614

We will develop now a uniqueness procedure based on [6; 8] which uses the following formal calculations, valid for $\tau > 0$. Define first

(4.9)
$$R(t, \xi) = \langle Z(t, \xi, \cdot), T(\cdot)u(\xi) \rangle;$$
$$S(t, \xi) = \langle Y(t, \xi, \cdot), T(\cdot)u'(\xi) \rangle$$

where *u* is any solution of our modified equation (1.1) (i.e. s(t) is replaced by $\tilde{s}(t)=s(t)+2\gamma(t)$ and b(t)=0) with f=0. For $\tau>0$, *Y*, *Z*, *Y*₋ and *Z*_{τ} belong to $\mathcal{E}_{x'}$ with supports contained in a fixed compact set so (4.9) makes sense, as do the following computations (cf. (2.8)-(2.9)), but we will mercifully omit detailed examination of each step. Thus

$$(4.10) R_{\xi} = \langle Z_{\xi}, Tu \rangle + \langle Z, Tu' \rangle = \langle Z, Tu' \rangle \\ - \langle a(\xi) \Delta Y, Tu \rangle - \langle r(\xi) \frac{d}{dx} Y, Tu \rangle = \langle Z, Tu' \rangle \\ + \langle Y, r(\xi) A Tu \rangle - \langle Y, a(\xi) A^2 Tu \rangle \\ (4.11) S_{\xi} = \langle Y_{\xi}, Tu' \rangle + \langle Y, Tu'' \rangle = \langle Y, Tu'' \rangle \\ - \langle Z, Tu' \rangle + \langle \tilde{s}(\xi) Y, Tu' \rangle = \langle Y, Tu'' \rangle \\ + \langle Y, \tilde{s}(\xi) Tu' \rangle - \langle Z, Tu' \rangle.$$

Letting $\varphi(t, \xi) = R(t, \xi) + S(t, \xi)$ we have from (4.10)-(4.11)

$$(4.12) \qquad \qquad \varphi_{t} = \langle Y, T(u'' + \tilde{s}u' + rAu - aA^{2}u) \rangle = 0.$$

Consequently $\varphi(t, t) = \varphi(t, \tau)$ which implies that

$$(4.13) u(t) = \langle Z(t, \tau, \cdot), T(\cdot)u(\tau) \rangle \\ + \langle Y(t, \tau, \cdot), T(\cdot)u'(\tau) \rangle = \langle F^{1/2}(\tau)Z(t, \tau, \cdot), T(\cdot)F^{-1/2}(\tau)u(\tau) \rangle \\ + \langle Q(\tau)Y(t, \tau, \cdot), T(\cdot)Q^{-1}(\tau)u'(\tau) \rangle$$

Now let $\tau \to 0$ and if $F^{-1/2}(\tau)u(\tau)$ and $Q^{-1}(\tau)u'(\tau)\to 0$ we have $u(t)\equiv 0$. Hence, referring back to the original equation (1.1) via γ as before we have proved

Theorem 4.3. Let u satisfy (1.1) (modified) under the stipulations that $F^{-1/2}(\tau)u(\tau) \rightarrow 0$ and $Q^{-1}(\tau)u'(\tau) \rightarrow 0$ as $\tau \rightarrow 0$. Assume the hypotheses of Lemma 2.2. Then u is unique.

REMARK 4.4. The condition $\hat{P} \ge 0$ has been discussed in [7; 8; 23; 24].

In general the requirements of Theorem 4.3 regarding the growth of $u(\tau)$ and $u'(\tau)$ as $\tau \rightarrow 0$ are too strong (cf. [7]) although the solution u of (1.1) given by (3.1) could be made to satisfy them by imposing further hypotheses on f. It is therefore of some interest to consider the case when $F(\tau) \rightarrow 0$ as $\tau \rightarrow 0$ and the relation of this to certain conditions of Krasnov [15] and Protter [18] has been

616

DEGENERATE CAUCHY PORBLEMS

$$\leq \! a(au) y^2 \! + \! \int_{-}^{t} \! [(a'y^2 \! + \! y^2 r^2) |\hat{Z}|^2 \! + \! |\hat{Z}'|^2] d\xi \; .$$

Setting $P = a'y^2 + y^2r^2$ as before and $\tilde{Q} = 1 - 2\tilde{s}$ with $|\hat{Q}| \leq \tilde{c}$ on [0, T], we write $\Xi = |\hat{Z}'|^2 + ay^2|\hat{Z}|^2$ and add. $\tilde{c} \int_{-1}^{t} ay^2|\hat{Z}|^2 d\xi$ to the right side of (4.2) to obtain

(4.3)
$$\widetilde{\Xi} \leq a(\tau) y^2 + \int_{\tau}^{t} P |\hat{Z}|^2 d\xi + \tilde{c} \int_{\tau}^{t} \widetilde{\Xi} d\xi$$

Consequently as in (2.15) there results

(4.4)
$$\widetilde{\Xi} \leq a(\tau) y^2 E(t, \tau) + \int_{\tau}^{t} P |\hat{Z}|^2 E(t, \xi) d\xi$$

and as in (2.16) we obtain

(4.5)
$$a(t)y^2 |\hat{Z}|^2 \leq a(\tau)y^2 E(t, \tau) \exp \! \int_{\tau}^{t} \hat{P} d\xi$$

which yields

Lemma 4.1. Given the hypothesis of Lemma 2.2 on a, b, r, s, \hat{P} , with $\hat{Z}(t, \tau, y)$ the unique solution of (2.4) satisfying $\hat{Z}(\tau, \tau, y)=1$ and $\hat{Z}_t(\tau, \tau, y)=0$ it follows that for y real and $0 \le \tau \le t \le T$

(4.6)
$$|\hat{Z}(t, \tau, y)|^2 \leq E(t, \tau) \exp \int_{\tau}^{t} (r^2/a) d\xi$$

which can be written as $F(\tau)|\hat{Z}(t, \tau, y)|^2 \leq E(t, \tau)$.

Similarly, as in (2.19)–(2.20), we could estimate $|\hat{Z}_t|$ and $|\hat{Z}_{tt}|$ but this will not be needed here. Instead we want estimates on \hat{Y}_t and \hat{Z}_{τ} which will follow from (2.8)–(2.9). Thus, from (2.8) one obtains, using (2.18),

$$(4.7) \qquad \qquad |Q(\tau)\hat{Z}_{\tau}| \leq \hat{k} + \hat{k}_1|y|$$

while, using (2.18) and (4.6), we get from (2.9)

$$(4.8) \qquad |yQ(\tau)\hat{Y}_{\tau}| \leq \hat{k}_2 + \hat{k}_3|y| .$$

From their expressions (2.8)–(2.9) (and reasoning about \hat{Z} from Lemma 2.1 as was done for \hat{Y} before Theorem 2.3) we know that \hat{Y}_{τ} and \hat{Z}_{τ} are entire functions in y of exponential type $\leq \hat{c}T$. The estimates (4.7)–(4.8) and an argument as in Theorem 2.3 then proves (cf. Lemma 4.1)

Theorem 4.2. Under the hypothesis of Theorem 2.3, $F^{1/2}(\tau)Z = F^{1/2}(\tau)\mathcal{F}^{-1}\hat{Z}$, $Q(\tau)Z_{-}$ (and $Q(\tau)Z$), and $Q(\tau)Y_{\tau}$ belong to \mathcal{E}'_{x} with supports contained in a fixed compact set for $0 \le \tau \le t \le T$. The derivatives in τ can be taken in \mathcal{E}'_{x} for $\tau > 0$ and $(t, \tau) \rightarrow F^{1/2}Z$ or QZ, QZ_{τ} , and $Q(\tau)Y_{\tau}$ are continuous with values in \mathcal{E}'_{x} .

discussed in [7; 8]. In this event the requirements of Theorem 4.3 on u are only that u(0)=0 and $a^{-1/2}(\tau)u'(\tau)\rightarrow 0$ as $\tau\rightarrow 0$. To examine the feasibility of this let u satisfy the modified equation (1.1) with f=0, u(0)=0, and u'(0)=0. Multiply this equation by $\exp \int_{0}^{t} \tilde{s}(\xi)d\xi$ and integrate to obtain (cf. [7; 8])

(4.14)
$$u'(t) = -\int_0^t [Ar(\xi)u - A^2 a(\xi)u] e^{-\int_{\xi}^t \tilde{s}(\eta) d\eta} d\xi$$

Let p be any continuous seminorn in E so that, since $\exp(-\int_{t}^{t} \tilde{s}(\eta) d\eta) \leq M$ on [0, T],

(4.15)
$$p(u'(t)) \leq \int_0^t [r(\xi)p(Au) + a(\xi)p(A^2u)] M \, d\xi$$

Now $\int_0^t r(\xi)d\xi = \int_0^t a^{1/2}(r/a^{1/2})d\xi \le (\int_0^t a(\xi)d\xi)^{1/2}(\int_0^t (r^2/a)d\xi)^{1/2}$ whereas $\int_0^t a(\xi)d\xi = ((\int_0^t a(\xi)d\xi)^{1/2})^2$. Since p(Au) and $p(A^2u)$ will be bounded for a solution $u \in C^2(E)$ on [0, T] we have for $\int_0^t (r^2/a)d\xi$ bounded

(4.16)

$$p(a^{-1/2}(t)u'(t)) \leq a^{-1/2}(t)p(u'(t))$$

$$\leq M_1 a^{-1/2}(t) \left(\int_0^t ad\xi\right)^{1/2} + M_2 a^{-1/2}(t) \int_0^t ad\xi$$

$$\leq M_3 a^{-1/2}(t) \left(\int_0^t ad\xi\right)^{1/2}$$

Hence $a^{-1/2}(t)u'(t) \rightarrow 0$ if $a^{-1/2}(t) (\int_0^t ad\xi)^{1/2} \rightarrow 0$. This condition is examined in [7; 8; 23; 24] and since oscillations in a(t) are permitted by the stipulation $\hat{P} \ge 0$ (or $a' \ge -r^2$) it is not automatically satisfied. However if a is monotone increasing near t=0 it is obviously valid since then $(\int_0^t ad\xi)^{1/2} \le a(t)^{1/2}t^{1/2}$. Thus it makes sense to state the result (after modification) as

Theorem 4.5. Assume the hypothesis of Lemma 2.2 and suppose $F(\tau) > 0$ on [0, T] with $a^{-1/2}(t) \left(\int_{0}^{t} a(\xi) d\xi \right)^{1/2} \rightarrow 0$ as $t \rightarrow 0$. Then $a^{-1/2}(\tau)u'(\tau) \rightarrow 0$ as $\tau \rightarrow 0$ and if u satisfies (1.1)–(1.2) with f=0 it follows that $u(t) \equiv 0$ on [0, T].

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

References

- L. Bers: Mathematical aspects of subsonic and transonic gas dynamics, Wiley, N.Y., 1958.
- [2] R. Carroll: Some degenerate Cauchy problems with operator coefficients, Pacific J. Math. 13 (1963), 471-485.
- [3] R. Carroll: Abstract methods in partial differential equations, Harper-Row, N.Y., 1969.
- [4] R. Carroll: On some hyperbolic equations with operator coefficients, Proc. Japan Acad. 49 (1973), 233-238.
- [5] R. Carroll: On a class of canonical singular Cauchy problems, Anal. fonct. appl., Act. Sci. Ind. 1367, Hermann, Paris, 1975, pp. 71-90.
- [6] R. Carroll: A uniqueness theorem for EPD type equations in general space, Applicable Anal. to appear.
- [7] R. Carroll and C. Wang: On the degenerate Cauchy problem, Canad. J. Math. 17 (1965), 245-256.
- [8] R. Carroll and R. Showalter: Singular and degenerate Cauchy problems, Academic Press, N.Y., 1976.
- [9] E. Coddington and N. Levinson: Theory of ordinary differential equations, McGraw-Hill, N.Y., 1955.
- [10] G. Gangeux: These 3^{me} cycle, Paris, to appear.
- [11] I. Gelfand and G. Šilov: Some questions of the theory of differential equations, Generalized functions, Vol. 3, Moscow, 1958.
- [12] P. Hartman: Ordinary differential equations, Wiley, N.Y., 1964.
- [13] R. Hersh: Explicit solution of a class of higher order abstract Cauchy problems, J. Differential Equations 8 (1970), 570-579.
- [14] T. Komura: Semigroups of operators in locally convex spaces, J. Functional Analysis 2 (1968), 258-296.
- [15] M. Krasnov: Mixed boundary value problems for degenerate linear hyperbolic differential equations of second order, Mat. Sbornik 91 (1959), 29-84.
- [16] C. Lacomblez: Une équation d'évolution du second order en t à coefficients dégénérés ou singuliers, Pub. Math. Univ. Bordeux 4 (1974), 33-64.
- [17] J. Lions: Equations différentielles-opérationnelles, Springer, Berlin, 1961.
- [18] M. Protter: The Cauchy problem for a hyperbolic second order equation with data on the parabolic line, Canad. J. Math. 6 (1954), 542-553.
- [19] L. Schwartz: Les équations d'évolution liées au produit de composition, Ann. Inst. Fourier 2 (1950), 19-49.
- [20] L. Schwartz: Théorie des distributions, Edition "Papillon", Hermann, Paris, 1966.
- [21] F. Treves: Topological vector spaces, distributions, and kernels, Academic Press, N.Y., 1967.
- [22] W. Walker: A nonsymmetric singular Cauchy problem, Report 99, Math. Dept. Univ. Auckland, 1976.
- [23] C. Wang: On the degenerate Cauchy problem for linear hyperbolic equations of the second order, Thesis, Rutgers Univ., 1964.
- [24] C. Wang: A uniqueness theorem on the degenerate Cauchy problem, Canad. Math. Bull. 18 (1975), 417-421.