SIMPLE SYMMETRIC SETS AND SIMPLE GROUPS

Dedicated to the memory of Dr. Taira Honda

Nobuo NOBUSAWA

(Received December 15, 1975) (Revised October 12, 1976)

1. Intorduction

A binary system A is called a symmetric set if $a \circ a = a$, $(b \circ a) \circ a = b$ and $(b \circ c) \circ a = (b \circ a) \circ (c \circ a)$. These conditions imply that the right multiplication by an element a, which we denote by $S_a(i.e., b \circ a = bS_a)$, is an automorphism of A of order 2 leaving a fixed. Note that, if τ is an automorphism of A, then $(b \circ a)\tau = b\tau \circ a\tau$, or $S_{a\tau} = \tau^{-1}S_a\tau$. Every group is a symmetric set by $bS_a = ab^{-1}a$. Also the subset of involutions in a group is a symmetric set. For more of symmetric sets, see [3] and [4].

The group of automorphisms of A generated by all S_a ($a \in A$) is denoted by G, and the subgroup of G generated by all S_aS_b $(a, b \in A)$ is denoted by H. The latter is called the group of displacements. It is easy to see that H is generated by $S_a S_e$ (e is a fixed element and $a \in A$). H is a normal subgroup of G of index 2. A subset B of A is called a symmetric subset if it is closed under the binary multiplication. Every one-point subset is a symmetric subset, and so is A. All the other symmetric subsets are called proper symmetric subsets. A symmetric subset B is called quasi-normal if $B\tau \cap B=B$ or ϕ (the empty set) for every element τ in G. Now we define a simple symmetric set to be one which has no proper quasi-normal symmetric subset. Theorem and Corollary obtained in 2 state that if A is simple then H is either a simple group or a direct product of two simple groups which are conjugate each other in G. If moreover A is finite, then $|H| = |A|^2$ in case H is not simple. Using this fact, we can show a new proof of the simplicity of the alternating group A_n $(n \ge 5)$ in 3 by showing that the subset of all transpositions in S_n (the symmetric group of n letters) is a simple symmetric set. This idea is carried out in 4 to obtain examples of simple symmetric sets in vector spaces with bilinear symmetric forms over F_2 , the field consisting of two elements 0 and 1. As special cases, we obtain simple symmetric sets of positive roots of type E_6 , E_7 and E_8 in Lie algebra theory.

REMARK. The above definition of a simple symmetric set is stronger than a standard definition which should be based on non-existence of normal symmetric subsets (See [3]) rather than quasi-normal symmetric subsets. However, the main technique used in this note is to show non-existence of quasi-normal symmetric subsets. So, we keep our definition.

2. The group of displacements of a simple symmetric set

Theorem. If A is a simple symmetric set, then the group of displacements is either a simple group or a direct product of two simple groups which are conjugate each other in G.

Proof. First we note that if A is simple then it is transitive, i.e., A=aG(=aH) for an element a in A. For, xG for any element x in A is seen to be a quasi-normal symmetric subset and xG can not be equal to x for all x in A, and hence A=aG with some element a in A. Then of course A=xG for any element x in A. Now suppose that H is not simple, and let N be a proper normal subgroup of H. Clearly $S_a N S_a = S_b N S_b$ for any a and b. Put N' = $S_a N S_a$. NN' and $N \cap N'$ are normal subgroup of G contained in H. Generally let I be a normal subgroup of G contained in H. Consider B=eI for an element e in A. B is a symmetric subset. Since $B\sigma = eI\sigma = e\sigma I$ for σ in G, we have $B\sigma \cap B = B$ or ϕ , i.e., B is quasi-normal. Since A is simple by the assumption, eJ=e or A. If eJ=e, then aJ=a for every element a in A, because we have $e\sigma=a$ with some element σ in G due to the transitivity of A and then $aI = e\sigma I = eI\sigma = e\sigma = a$. So, if eI = e, then I = 1. If eI = A, then, for an arbitrary element a in A, $a=e\sigma$ with some element σ in J. Then $S_a = S_{e\sigma} = \sigma^{-1} S_e \sigma = \tau S_e$ for some element τ in J. This implies that $S_a S_e$ is contained in J for every element a in A. Since H is generated by $S_a S_e$ ($a \in A$), we have J=H. Now especially let J=NN'. Since $NN' \neq 1$, we have NN' =H. Let $J=N\cap N'$. Since $N\cap N'\neq H$, we have $N\cap N'=1$. Thus H is a direct product of N and N'. Lastly, we show that N is simple. If M is a normal subgroup of N, then it is a normal subgroup of H. If $M \neq 1$, H is a direct product of M and $S_a M S_a$ as above, which implies M=N. Hence N is a simple group.

The author owes the following corollary to Prof. H. Nagao.

Corollary. Suppose that A is a finite simple symmetric set. If H is not simple, then $|H| = |A|^2$.

Proof. Suppose that A is finite and simple and that H is not simple. Then $H=N\times N'$ (a direct product) as in Theorem. The mapping f of A in G defined by $f(a)=S_a$ is a homomorphism of symmetric sets. Therefore we can see that $f^{-1}(S_a)$ is a quasi-normal symmetric subset for every a in A.

From this, we can conclude that $f^{-1}(S_a)=a$ for every element a and hence f is a monomorphism. On the other hand, A is transitive, i.e., A=aH. So, $f(A)=\{\sigma^{-1}S_a\sigma \mid \sigma\in H\}$. Then |A|=|f(A)|=|H: $C_H(S_a)|$. Here $C_H(S_a)=\{\sigma\in H\mid S_a\sigma=\sigma S_a\}$. $H=N\times S_aNS_a$ implies that $C_H(S_a)=\{\sigma S_a\sigma S_a\mid \sigma\in N\}$. Thus, $|C_H(S_a)|=|N|$. Then $|A|=|H|/|C_H(S_a)|=|N|^2/|N|=|N|$. Therefore, $|H|=|A|^2$.

3. Simple symmetric sets in the symmetric groups S_n $(n \ge 5)$

Let S_n be the symmetric group of n letters where $n \ge 5$. Consider the subset A of S_n consisting of all transpositions (i,j) $(1 \le i \ne j \le n)$. A is a symmetric set. Here $(i,j)S_{(s,t)}=(p,q)$ where $p=i^{(s,t)}$ and $q=j^{(s,t)}$. We show that A is simple. Let B be a quasi-normal symmetric subset which contains at least two elements a and b. Since $a \ne b$ and $n \ge 5$, there exists an element c in A such that $aS_c \ne a$ and $bS_c = b$. The latter implies that $BS_c = B$ due to the definition of quasi-normality of B. Then aS_c is in B. Let $d=aS_c$. It is easy to see that $aS_c = d$, $cS_d = a$ and $dS_a = c$, i.e., a, c and d form a cycle. For example, a = (1, 2), c = (2, 3) and d = (1, 3). In this case, for any element a which is not equal to a, we have that either $aS_a = a$ or a. This implies that a is transitive. Therefore, a and a is simple. Clearly, a is easy to see that a is transitive. Therefore, a and a is simple. Clearly, a is a simple group. Of course, a is a in a and hence by Corollary a is a simple group. Of course, a is a in a in

REMARK. In the above, we can take the set consisiting of all (i, j) (r, s) where i, j, r and s are all distinct. The set is also a simple symmetric set, whose order is greater than that of the set given in 3. For example, if we take n=5, we get two simple symmetric sets. One has order 10 and the other 15. But both have the same group of displacements which is A_5 .

4. Symmetric sets of vectors over F_2

Let V be a finite dimensional vector space over $F_2 = \{0, 1\}$. Given a bilinear symmetric form Q(x, y) on V with Q(x, x) = 0, we can give a symmetric structure on V by defining $aS_b = a + Q(a, b)b$. In other words, $aS_b = a$ or a+b according to Q(a, b) = 0 or ± 0 . A cycle in a symmetric set is defined to be a symmetric subset generated by two elements x and y such that $xS_y \pm x$.

Proposition 1. Every cycle in V has order 3. If $\{a, b, c\}$ is a cycle, then, for any element x in V, at least one of a, b and c is left fixed by S_x .

Proof. In our case, c=a+b. Then Q(c, x)=Q(a, x)+Q(b, x). So at least one of Q(a, x), Q(b, x) and Q(c, x) is equal to 0.

Proposition 2. Let A be a symmetric subset of V and B a quasi-normal sym-

metric subset of A. If B contains a cycle, then $BS_x=B$ for every element x in A.

Proof. Proposition 2 is a direct consequence of Proposition 1 and the definition of a quasi-normal symmetric subset.

Proposition 3. Suppose that A is transitive. Suppose also that, if $xS_y=x$, there exists an element u such that S_u moves one of x and y and leaves the other fixed. Then A is a simple symmetric set.

Proof. Suppose that all the conditions in Proposition 3 are satisfied. Let B be a quasi-normal symmetric subset containing at least two elements x and y. If $xS_y \neq x$, then $BS_a = B$ for every element a in A by Proposition 2. So, assume that $xS_y = x$. Then we have an element u such that, say, $xS_u \neq x$ and $yS_u = y$. The latter implies that $BS_u = B$. Then xS_u is in B. B contains a cycle $\{x, xS_u, u\}$, and hence as in former $BS_a = B$ for every element a in A. Since A is transitive, we have B = A. So, A is simple.

In the following, we take a special Q as follows. Let $Q(x) = \sum_{i < j} x_i x_j$, where $x = (x_1, \dots, x_n)$. $n = \dim V$. Let Q(x, y) = Q(x+y) - Q(x) - Q(y). Then $Q(x, y) = \sum_{i \neq j} x_i y_j$. Denote by V^* the set of all non-zero vectors in V and by V_1 the set of all vectors x such that Q(x) = 1. We also denote by $V^{(i)}$ the set of all vectors that have exactly i non-zero components (i.e., i ones and n-i zeros). For the following examples, also see [1] and [2].

Example 1. Let n=6 and $A=V_1$. From the definition of Q(x), we can see that $A = V^{(2)} \cup V^{(3)} \cup V^{(6)}$. First of all we note that $V^{(2)}$ is a symmetric subset which is isomorphic with the symmetric set consisting of transpositions in S_6 . As a matter of fact, if we denote by 1(i, j) the vector which has 1 in the i-th and j-th positions and 0 everywhere else, the correspondence $1(i, j) \rightarrow (i, j)$ gives the isomorphism of symmetric sets. Elements in $V^{(3)}$ are denoted by 1(i, j, k) as above. Then $1(i,j)S_{1(s,t,u)} \neq 1(i,j)$ if and only if $\{i,j\} \cap \{s,t,u\} = \{r\}$ (one-point set). In this case, $1(i,j)S_{1(s,t,u)}=1(j,t,u)$ if, say, i=s=r. $V^{(6)}$ contains only one element which we denote by $1(1, 2, \dots, 6)$. Then $1(i, j)S_{1(1,2,\dots,6)}=1(i, j)$ and $1(i, j, k)S_{1(1,2,\cdots,6)} = 1(r, s, t)$ where $\{i, j, k, r, s, t\} = \{1, 2, \cdots, 6\}$. These rules determine the binary operation in A. Now we can show that A is a simple symmetric set. For it, we check the conditions in Proposition 3. A is seen to be transitive. Now let x and y be such that $xS_y=x$. If x and y are in $V^{(2)}$, we can easily find u such that $xS_u \neq x$ and $yS_u = y$. If x = 1(i, j) and y = 1(r, s, t), then $\{i,j\} \cap \{r,s,t\} = \phi$ or, say, i=r and j=s. In the former case, let u=1(j,k)where $k \neq i, j, r, s, t$. In the latter case, let u=1(i, t). If x and y are $V^{(3)}$, xS_y =x implies that, if x=1(i, j, k) and y=1(r, s, t), then $\{i, j, k\} \cap \{r, s, t\} = \{h\}$ (one element). We may assume that i=h=r. Then let u=1(j,g) where $\{j,g\}$ $\cap \{r, s, t, k\} = \phi$. When lastly $x = 1(1, 2, \dots, 6)$ and y any element such that $xS_y=x$, it is not difficult to find u such that $xS_u=x$ and $yS_u \neq y$. Thus we have shown that A is simple.

Next, we consider basis or generators of A. Clearly, we have generators $1(1, 2)=a_1$, $1(2, 3)=a_2$, $1(3, 4)=a_3$, $1(4, 5)=a_4$, $1(5, 6)=a_5$ and $1(1, 2, 3)=a_6$. In a similar sense as Coxeter diagram, we have a diagram

From this fact, we can show that A is isomorphic with the symmetric set of positive roots of type E_6 . Note |A|=36. In this case, $H=\Omega_6(F_2, Q)$. In the following examples, we state the results and details are omitted.

EXAMPLE 2. n=6 and $A=V^*$. A is simple and |A|=63. A is isomorphic with the set of positive roots of type E_7 . In this case, $H=PSp_6(F_2)$ ($=Sp_6(F_2)$).

EXAMPLE 3. n=8 and $A=V_1=V^{(2)}\cup V^{(3)}\cup V^{(6)}\cup V^{(7)}$. A is simple and |A|=120. A is isomrophic with the set of positive roots of type E_8 . $H=\Omega_8$ (F_2, Q) .

Example 4. n=8 and $A=V^*$. A is simple and |A|=255. $H=PSp_8(F_2)$.

EXAMPLE 5. n=10 and $A=V_1=V^{(2)}\cup V^{(3)}\cup V^{(6)}\cup V^{(7)}\cup V^{(10)}$. A is simple and |A|=496.

Example 6. n=10 and $A=V^*$. A is simple and |A|=1023.

Example 7. n=11 and $A=V^{(2)} \cup V^{(6)} \cup V^{(10)}$. A is simple and |A|=528.

Example 8. n=12 and $A=V^{(2)} \cup V^{(6)} \cup V^{(10)}$. A is simple and |A|=1056.

University of Hawaii

References

- [1] N. Bourbaki: Groupes et algèbres de Lie, Chapts IV, V et VI, Hermann, Paris, 1968.
- [2] H.M.S. Coxeter and W.O.J. Moser: Generators and relations for discrete groups. 3rd ed., Springer-Verlag, Berlin, New York, 1972.
- [3] M. Kano, H. Nagao and N. Nobusawa: On finite homogeneous symmetric sets, Osaka J. Math. 13 (1976), 399-406.
- [4] N. Nobusawa: On symmetric structure of a finite set. Osaka J. Math. 11 (1974) 569-575.