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1. Introduction

A discrete subgroup T" of a Lie group G is called a lattice of G if the homo-
geneous space G/T" is of finite volume. It is known that any lattice T of a solvable
Lie group G is uniform, i.e., such that G/T" is compact. In this note we shall
prove the following theorem. "

Theorem. Let G be a connected complex solvable Lie group and T be a lattice
of G. Suppose that T is nilpotent. Then G is nilpotent.

It is known that Theorem is not true in general for real solvable Lie group
([1] Chapter 3, Example 4).

2. Proof of Theorem

First we note that our theorem will be valid in general if it is proved for the
case where G is simply connected. In fact, let G be the universal covering
group with the projection z: G—>G. Then I'=7"(T") is a lattice in G and it is
nilpotent, since the kernel of = is contained in the center of I'. Thus G is nil-
potent by Theorem for the case where the complex solvable Lie group is simply
connected, and so is G.

From now on assume that G is simply connected. Let g be the Lie algebra
of G and I the canonical complex structure. We denote by n the maximal nil-
potent ideal of n regarded as real Lie algebra. Since n is given by {X €g|ad(X)
is nilpotent}, n is invariant by 7, so that nis a complex subalgebra of g. Let g*
denote [g, g*~!] where we put g°=g. Then {g*} is a descending sequence of
ideals. Put g”:ir:f g*. It is obvious that g~ equals g” for some m and is a

complex subalgebra. We thus have a sequence of ideals:

gon>D[g, g]DOg”.

*) Partially supported by Yukawa Foundation.
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Let g€ denote the complexification of g. Then g¢=g*+g~ (direct sum),
where "= {X€g¢|[X=++/—1X}. By Theorem of Lie, we can take a basis
{Xi, -+, X,} of the complex solvable Lie algebra g+ such that

1) {X,+, -+, X,} is a basis of (g~)*

2) {X,., -, X,} is a basis of [g*, g*]

3) {Xip, o+, X,} is a basis of n*, where n*={Xen¢|/X=y/—1X}, n¢
being the complex subalgebra spanned by .

4) the subspaces g; (p=1, -+, n) spanned by {X,, -, X,}

are ideals of g*.

Put Yj:%(X,.—H_(,-) for j=1, -, n. Then IY,.:%(X,jo) and
{Y, 1Y,,---, Y, IY } is a basis of g (over R). Moreover, if g,;-, (resp. g,;)
denotes the real vector space spanned by {Y;, 1Y, -, Y,, IY,} (resp. {IY},
Y, IY 4y, -+, Y,, IY,}). Then g, (i=1, ---, 2n) are subalgebras of g and g;+,
is contained in g; as an ideal. Since G is simply connected, it follows that every
element g&G can be written in one and only one way in the form

g = (exp t,Y))(exp s,/Y,)---(exp 2, Y ,)(exp 5[V ),

where t;=t,(g), s;=s;(g) (j=1,---,n) are real numbers (cf. [2]). Since
[1Y;, Y ;]=0 for j=1, -+, n.

g=-cexp(t,Y,+s1Y,)--exp(¢t,Y+s,1Y,).
Thus we get a biholomorphic map ®: G—C” defined by
D(g) = (L&) +V —15:(8), -+ L&)+ —15,(8)) -

Let {2C%;} be the structure constants of the Lie algebra g+ with respect to
the basis {X, ---, X,}. Then we may regard {C* ;} as the structure constants
of the complex Lie algebra g with respect to the basis {Y;, ---, Y,}.

Note that, for i=s-+1. ---, n,

s r—s l—r n—I]

N TN T N

00 0 s

ad(X;)=| O 0 0 0 \yr—s
* * A, 0 |)l—r
* * * B; )yn—I

0o O 0 O
where A4, = and B, =
x 0 * 0
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and, for =1, .-+, s,

ad(X,) =

W o o o

* * © ©
*¥ © ©
¥ AN o o

*

where

I+1

0 0 2C;ith 0
4;= ( ) and B;= )
* 0 * 2Ct, 0 .

In the following, decomposition of a matrix in sixteen blocks is always taken
in sizes as indicated above.

We note that (C{;, -+, C%;)=*(0, -++, 0) for any j=I/+1, ---, n, by the defini-
tion of g~.

Since Ad(g)—(exp #,(g)ad(Y))-(exp 2,(g)ad(Y),

1 0 00
(1) Ad(g Yy, -+, Y,) = (Y, -+, Y)) oo
“|B, B, B, 0
B-I BS Bﬁ B7
where
0 0 exp (3 Cith(g)) 0
(0], mo(E, 0
* 0 * exp(jg_,: Chzi(8)/ -

Consider g as a real Lie algebra and let /(g) denote the number of eigen-
values different from 1 of Ad(g): g—g forg&G. Define rank G=sup /(g). An
e

element g=G is called regular if /(g)=rank G. Thenitis easy to see that g&G
is regular if and only if exp ( i] Ctz,(g))+1 for all k=I+1, .-+, n.
=1

Lemma 1. Let T be a lattice of a simply connected complex solvable Lie
group G. Then T contains a regular element of G.

Proof. If we denote by NV the connected maximal normal nilpotent Lie
group of G, NNT is a lattice of N by a theorem of Mostow ([3], [4]). Let
w: G—G|N be the projection. Then z(T) is a lattice of G/N and (G/N)/=(T")
is a complex torus. By the definition of ®: G—C®, it is obvious that G/N is
biholomorphic to C* by G/N>#(g)—(2(g), -, 2(g))EC*. We identify G/N
with R* by
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7(8) = (Re z(g), Im 2,(g), -+, Re 2,(g), Im 2,(g)) .

Consider the real subspaces H, of codimension 1 defined by

H, = {(xy, yy, -, %,, ;)€ R*| 2 (Re (C%)x;—Im (Chy)y;) = 0}

for k=I+1, ---,n. Since n(T") is a lattice of R¥, there are infinitely many
different real subspaces of codimension 1 which are generated by 2s—1 lattice
points of z(I"). Hence, there exists a point y&T such that =(y)eH, for

k=141, .-, n. Then |exp ( 2 Chzi(v))| *1 for all k=I41, .-, n and yET is
a regular element of G. q.e.d.

Lemma 2. (Mostow) Let G be a simply connected solvable Lie group and
T a uniform subgroup of G containing a regular element. Let G= denote the
connected Lie subgrovp of G corresponding to g°. Then G~ N\T is uniform in G=.

Proof. See [3] Lemma 5.

Proof of Theorem. Suppose that G is not nilpotent. Then G*~== {e}.
Since G is a simply connected nilpotent Lie group, G* NT = {¢} by Lemma 2.
Since T is nilpotent, G*NT contains a non-trivial element of the center C of T'.
Choose an element y+e of G"NTNC. We can write v uniquely as

v = (exp 2,1, Y;1y) -+ (exp 5,Y,)
where (244, 17, 2,)EC" .

Note that ad(Y;) is represented by the basis {Y}, :--, Y,} as follows:

R o o o
W o oo
N o oo
S ocooe

ad(Y)) = for j=1I+1,.,n
where
0 ceeeer 0 0 -eeeer 0
0 ceeeer 0 0 eeeee 0
A4;= B,=|0...... 0| <i—14
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j—1
Vv
0 eveee 0 Qeeeven Q.eeee 0
8 onn b SN S
Cj= 0 ceevee 0 <]___l and D,. = Qeeeeee 0 eereen 0 <]—l
K cevens * PR % 0..-0
Pk KRN

Fix a j=I+1, -+, n and put §;=(exp 2;Y;)-(exp 2,Y,). Then Ad(3;)=
(exp z;ad(Y;))--+(exp z,ad(Y,)) is written as follows:

1 0 0 O
0100
2 AdS)) =
@ @) =6 o 1 o
P; O; R; S;
where
0 ceeee- 0 [\ 0
0 eeveen 0 [ N 0
P, =| Ciyzjeeeer Ciz; | <j—I, Q;=| 0. 0 |<j—1,
K eevees % B eecees %
o e . e
10 ceeveonee 0 ceveernne 0
(:) ...... 0 010 : A
() ...... () § KB g :
Ri=|0.e 0 |<j—I and S;=| 0-eeeeeer 100 0 |<j—L
K cevaseses £ 1 Qeeeeer 0
sk eecene * . .
: : : * :
. . E M .-' 0
Koeree * K oeeeeecestersentannnn: * 1

We claim that if v,6,=38,v, for a regular element 7,ET, then 2;=0. Put

1 0 0O

ddyg—| O 100
Y =1p B B, 0

B, B, B, B, ).
Since Ad(v,) Ad(3,)=Ad(3,) Ad(,), we get

(3) B4+B7Pj = Pj+RjBl+SjB4EMn-l.S(C) .
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Consider the (j—I, k)-component of both hands of (3), by (1) we get
exp ( 2 C1,2(7,)) Cis R; = C.J;kzj

for k=1, .--,s. Since v, is a regular element of G, exp (23 Ci;2;(7,))=*1 and
Ciyz;=0 for k=1, ---,s. Thus z;=0, since (C{}, ---. Ci;)=(0, -+, 0).

Now, starting with j=I4-1, we get ;=0 successively for all j=I4-1, ---, n.
This contradicts our assumption y=e. Hence, G is nilpotent, and this proves
our Theorem.

RemaRk. The special case of our Theorem has been proved in a stronger
form in the section 2 of [5].
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