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Introduction. Let B be a finite plane domain with the smooth boundary

and A2(J3) the class of all solutions φ of the differential equation Δφ—pφ=Q

such that

where p=p(x,y) is a positive analytic function of real variables x and y in B. S.
Bergman [6] proved the existence of a function K which has the characteristic

reproducing property of a kernel function, with respect to the Dirichlet integral

From the point of view of the axiomatic harmonic function theory, B is

a space with the pre-sheaf: £7—>Λ2(£7), where U is any open subset of B.
The aim of this paper is to show that there exists a reproducing kernel of

a space formed by harmonic functions on harmonic spaces in the sense of H.

Bauer, to study some properties of the kernel function and to obtain the Cauchy-

type representation of harmonic functions by an integral kernel obtained from

the reproducing kernel. The results are immediately applicable to the clas-

sical harmonic functions on Rn and the family of all solutions of the heat equa-

tion on Rn+1

y and moreover to that of all solutions of more general differential

equations on Riemannian manifolds which satisfies Bauer's axioms.

In the paragraph 1, we construct a Hubert space R2(U), formed by har-
monic functions, with a certain scalar product, and in the paragraph 2, by ap-

plying the existence theorem of a kernel function, we discuss that there exists

a reproducing kernel of R2(U). In the paragraph 3, we show the monotoni-

city of the kernel function with respect to the domain of its definition on har-

monic spaces, which is an imprtant property of a class of kernel functions.
In the last paragraph, using an integral kernel obtained by the reproducing

kernel we study an integral representation of harmonic functions in Cauchy-
type.
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1. The spaces L\σ) and R2(U)

Lex X be a locally compact Hausdorff space with a countable base and
suppose that X is a harmonic space relative to a sheaf M of real valued con-
tinuous functions which satisfies the Bauer's four axioms and the following one
more axiom: The constant 1 is super harmonic. μ% is the harmonic measure
with respect to a relatively compact open subset U in X and a point x of U,
that is, the balayaged measure of Dirac mass at x to the complementary set
of U. Let v be a positive measure, defined on a dense subset U' in [7, whose
support Sv is the closure of U. In fact, as X is a locally compact space with a

countable base, surely there exists such a measure v. Then by the super-
harmonicity of the constant 1 we can define a positive measure σ on 9t7, the

boundary of U, by σ(e)=\ μ%(e)dv(x), where e is any Borel set on dU. Denote

by L2(σ) the family of all real valued σ -measurable functions / on 9 U such that

I f2dσ is finite. We define the bilinear functional (/, g)^ and the non-negative

functional \\f\\v on L2(σ) as follows:

at;

for any/(ΞL2(σ).

Then (f,g)<r satisfies the condition of scalar product and, under the condition
that/is equal to g (denoted byf=g) if and only if ||/— £||σ—0, \\f\\σ satisfies the
condition of a norm. It is well known that L2(σ) has the structure of a Hubert

space relative to the scalar product (/,£)σ and the norm \\f\\v.
The following lemmas are very useful for coming arguments.

Lemma 1.1 (H. Bauer [4]). Suppose that f is a real valued function, de-
fined on 3 U, which is μ^-integrable for any point x in a dense subset of U. Then f

is μ%-integrable for all points x of U and the function

*-*( fdμ?
J θ U

is harmonic on U.

Lemma 1.2. For f,g^ L2(σ\ f is equal to g if and only ίff(θ)=g(θ) μ^-a.e.

for all points x of U.

Proof. By the definition,/—£ signifies ||/—£||σ=0. On the other hand, we
obtain following equalities:

||/—£||,2 = ί (f—gfdσ
JθC7
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= j J J/(*)-£(0))W(<«*)
= o,

which implies that, for every point * of a dense subset U" in U,

\ (ffl-g(ff)WW = θ
JoU

By Lemma 1.1, it follows that

( (f(θ)-g(θ)}2dμv(θ) = 0 for all *GE U,
J oU

which implies

f(θ)=g(θ) μ*-*.e. for all *e £7.

The inverse is evident. This completes the proof.

Here consider the following spaces of real valued functions for a natural
number p:

9U

Then we have

Lemma 1.3. For any natural number p3 there is the following relation
between Lp(σ) and Lp(μ%),

Proof. For any function f^Lp(σ), we have

Jw I /(<?) I "dσ(θ) = J^J8£71 /(ί) I "d

which implies that, in a dense subset [/'" of U,

\ \m\pdtf(ff)< + °°
J9Z7

By Lemma 1.1, we obtain, for any point x of U,

\ l/(0)I
w9ί7

Therefore we have that Lp(σ)d Γ) Lp(μ%) .
ΛΓeσ1

Let us denote by R2(U) the family
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\H/x): Hf(x) = ( fdtf for all ff=L>(σ)} .
I JθΓ7 )

Then there exists the following relation between L2(σ) and R2(U).

Lemma 1.4. R2(U) is a subspace of the space Mv of all harmonic functions

defined on U, and the correspondence

is isomorphίc.

Proof. Since L2(σ)C.L\σ), any function / of L2(σ) is σ-integrable, which
implies, by virtue of Lemma 1.3, that / is μ^-integrable for all x of U. By the

resolutivity theorem [4], Hf(x)=\ fdμ% is harmonic on U for all/ of L2(σ).
J 9C7

It is evident that R2(U) is a vector space and it holds that, for any pair

/, £EίL2(σ) and real numbers a and ό,

af+bg _* Haf+bg = aHf+bHg .

Moreover Lemma 1.2 follows that, for f,g^L2(σ), / is equal to £ if and only if

Hf(x)=\ fdμ% is equal to Hg(x)=\ gdμ% for all Λ? of U. This fact implies
JdC7 Jdί7

that the correspondence between f^L2(σ) and Hf^R2(U) is one-to-one and it
is evident that this mapping is onto. This completes the proof.

On R2(U) we define the scalar product (Hf, Hg) and the norm \\Hf\\ as
follows;

(Hf, Hg) = (/, g)v for Hf,

ίoτHf^R2(U).

Then by Lemma 1.4 and the fact that L2(σ) is a Hibert space with respect
to the scalar product (f,g)<r and the norm \\f\\v9 we have immediately the follow-
ing theorem.

Theorem 1.5. R2(U) is a Hilbert space with respect to the scalar product

(Hf9 Hg) and the norm \\Hf\\.

2. Representation of a function of R2(U) by a reproducing kernel
ofR2(U)

In this paragraph showing that there exists a non-negative reproducing
kernel of R\U), we are going to consider the representation of every function
of R2(U) by the reproducing kernel. In order to prove our theorem, the fol-
lowing theorem proved by H. Bauer [4] is very useful.



EXISTENCE OF A REPRODUCING KERNEL 617

Theorem 2.1 (H. Bauer). Suppose that U is an open subset in X, μ a
o o

positive meausre in U and F any compact subset in ASμ (Ί £/, where ASμ is the interior
of the smallest absorption set containing Sμ, the support of μ. Then there exists a
non-negative constant a depending upon F and μ such that, for all non-negative
harmonic function u defined on U,

sup u(F)^a\udμ .

We can obtain the following analoguous theorem concerning R2(U) to
Theorem 2.1.

Theorem 2.2. Let U be a relatively compact open subset in Xy v and σ
the positive measures mentioned in the paragraph 1 and F any compact subset in
U. Then there exists a non-negative constant 7 depending on F and σ such that

sup \u(F)\ ^γ|MI for allu^R\U).

Proof. By the hypothesis of v, ASv is equal to U and thus ASv Π U= U.
By Theorem 2.1 it holds that, for any compact subset F in ?7, there exists a
non-negative constant a depending on F and v such that, for all non-negative
harmonic function h in R2(U),

(2.1) sup h(F)^a\hdv .

On the other hand, by virtue of Lemma 1.4, there exists for each function u
of R2(U) a unique function /in L\σ) such that u=Hf. Thus we have, for any
point x of F,

(2.2) I u(X) I = I H/x) I = \fdμ" ^ j I / 1 dμ? = #,„(*) .

Noting that/eL2(cr) implies | f \ eL*(cτ) and applying (2.1) to h=H\f], it holds
that

(2.3)

Taking account of the fact that

and

\\f\\*=\\Hf\\ =

we have, by (2.2) and (2.3), the following results,

(2.4) \u(x) ^7\\u\\,
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(2.5) supK/Ol^γlMI,

/ Γ \ V2

where we denote by γ the constant a( \dσ \ . We complete the proof.

Here let us recall into our mind something about the reproducing kernel of
a Hubert space.

Let M be an abstract set and let a system ζF of complex valued functions
defined on M constitute a Hubert space by the scalar product

(/,*) = (/(*),*(*)),,
and the norm

11/11 = ((/,/))1/2

A complex valued function KQ(x,y) defined on MxM is called a reproducing
kernel of £F if it satisfies the condition: for any fixed point y of My K0(x, j>)e£F
as a function of x9

/(y) = (/(*), *.(*,:v)),
and

ffi = (Kt(x,y),f(x)),.

As for the existence of reproducing kernels, we have

Theorem 2.3 (N. Aronszajn [1], S. Bergman [6]). £? has a reproducing
kernel if and only if there exists y for any x of M, a non-negative constant Cχy de-
ending on x, such that

|/(*)|^C,||/|| for all f ^3.

Let us go back to our argument and show that there exists a reproducing
kernel of R2(U). Then we have the following theorems.

Theorem 2.4. There exist a reproducing kernel K(xyy) of R2(U) with the
relation

(a) u(y) = (u(x), K(x, y)) for all u

and a complete orthonormal countable base {«„} of R*( U) such that

(b) K(X,y) = ^un(X)un(y),

which implies the symmetricity of K(x,y), K(x,y)=K(y, x).

Proof. From Theorem 1.5, 2.2 and 2.3 immediately follow the existence of
a reproducing kernel K(x, y) of R2(U) with the relation (a). Since the basic
space X is separable, there exists, in R2(U), a complete orthonormal countable
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base {un} with the property (b), applying theorem 1 in O. Lehto [10] or Satz,
ΠI7 in H. Meschkowski [11].

Theorem 2.5. The reproducing kernel K(x,y) of R2(U) is non-negative.

Proof. For any function u of R2(U), there exists a unique function / of
L\σ) such that

and we define u by

β(*)=Jj/(0)|«W).

Then the function u belongs to R2(U) and we have the relations

u(x) ̂  u(x) for all x e U

and

| |ί/|| — ||#|| = H / l l o .

Let us put

+ 1

and

u-(x) = —(a-u)

Then u+(x) and «"(#) are obviously non-negative functions of R2(U) with the
properties

u = u+—u~

and therefore it holds that, for any u of R2(U),

(2.6) (iΓ, M) = (a", u+)-(u~, u')

As, for every y^U, Ky(x)=K(x,y) is a function of R2(U), Ky(x) satisfies the
above relation (2.6), that is,

y) = (K;, Ky) - -II^JII2 ,

which implies that K~=Q and so Ky=Ky^Q. This completes the proof.
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3. Monotonicity of the reproducing kernel with respect to the
domain of its definition on harmonic spaces

S. Bergman [6] proved the following relation related to the monotonicity of
a kernel function with respect to the domain of its definition on the complex
plane : Let B1 and B2 be respectively finite domains with the smooth boundaries in
the complex plane. If the domain B2 is included in Bly then

at any point (z, z) in B2 x B2ί where KBι(z, z') and KBz(z, z') denote respectively
reproducing kernels of -C2(B^ and J?2(J32), where ~C2(E) denotes the class of all func-
tions f(z] which are regular and single valued in B and

\ \f(z)\2dxdy<™.
J B

In the previous paragraph, we have proved the existence of a non-negative
reproducing kernel K(xy y) of R2(U) in a harmonic space. The purpose of this
paragraph is to prove the above Bergman's Theorem for our reproducing kernel
of R2(U). To do so, it is necessary to prepare some lemmas.

Lemma 3.1. Let U be a relatively compact open subset of X. Denote

by(uyv)u and \\u\\ u=V(u,u)u respectively the inner product and the norm of
R2(U) defined in the paragraph 1. Suppose that x is a point in U. Then there

exists a function UQ of R2(U) such that

, u(x) = 1}

where Kv(x,y) is the reproducing kernel of R2(U).

Proof. In order to prove this lemma, it is sufficient to apply to R2(U)
the procedure of the minimizing problem to X2(E) which S. Bergman [6]
discussed. In fact, by Theorem 2.4, there exists a complete orthonormal

countable base {un} with Σ I «»Cv) 1 2 < °° m U Hence, for any u of R2(U), we
n — 1

have the representation

u(y) = Σ anun(y) in U ,
« = ι

where an=(u, u^)υ. Then, by following the same method as that of p. 21 in [6],
we can prove that there exists the minimum function uQ(y), belonging to R2(U)
with M0(#)=l, such that the norm \\u\\u is minimum, that is,

), u(x) =

and that
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n

On the other hand, as

= Σ

u0 can be denoted by

u0(y) = —y^-i—' in U

and it holds that

V E "̂ / Λ Λ ΛΛ\ Jf f ΛΛ ΛΛ\/rTx Zvj j lΛ j Λ l - f x j M Λ j Λ K C/

1
Krj(Xy X)

Therefore we obtain the minimum value \\u^\\υ^=\l\/Kv(x9 x).

From now on in this paragraph we suppose that Uι and U2 are relatively
compact open subsets in X such that U1 includes U2 and σ1 and <r2 are the
positive maesures defined by

σfe\ _ f μ^i(e)dvi(x) (i = 1, 2)

where !>,-(/= 1,2) is a positive measure defined on a dense subset [/£ of Ui9 whose
support is the closure of Uίy and v2 is the restriction of vλ on U2.

Let us denote by Hf the general solution of the Dirichlet problem with
respect to an open subset U of X and a resolutive function /on 9[7. Then we
have the following:

Lemma 3.2. If g and h are the following boundary functions on dU2

concerning every function f of L2(σ 1):

ondU^dU,,

then we obtain that

Proof. Since / belongs to L2(σ^) and necessarily to Ll(σ^ by applying
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Lemma 1.3, the following function

Jθί/i

is well defined in Ul and we can write by

u(θ) = H^(θ) mil,.

Then we have, by Schwarz's inequality and the superharmonicity of constants,

that

'~~TT " « - " . . .^ jj(3.1) (H^(θ))2^ \
JoU i

where, by virtue of Lemma 1.3, the function of the right hand is well defined
and harmonic in Ul and the following representation is possible:

(3.2)

It is well known that, using Corollary 4.2.5 of Bauer's book [4],

which implies that h is μ^-integrable f°r a^ y °f U2. On the other hand, by
(3.1) and (3.2), it holds that, in U2

(3.4)

This means the fact that g is also μ^-integrable f°Γ a^ V °f U2 and so we can
denote as follows :

(3.5) H^(y)= g(θ)dμ^(θ) i n C 7 2 .
«/9t/2

It follows from (3.3), (3.4) and (3.5) that

HV*(y)^Hfr(y) = H$(y) in £7, ,

which completes the proof.

Lemma 3.3. For any u of R2(U^)ί the restriction of u on U2) denoted by
u\U2, belongs to R\U2).

Proof. In the first place, consider the case that U^U^U^ Since the
restriction of u on 3Z72, u \ 3C/2, is continuous on dU2 and hence belongs to L2(σ2),
we have the following representation:

tt(y)=ί u\dU2(θ)dμ?(θ) mU2.
wdt/2



EXISTENCE OF A REPRODUCING KERNEL 623

Thus we obtain that the restriction of u on Z72, u\ U2, belongs to R2(U2). In the
case that Uί'DU2 and QU± Π dU2 is not null, we consider the boundary function/
on9C72,

\f(θ) onQ

where /is the function of L2(σl) in Lemma 1.4 such that

Then it is well known that /is a resolutive function on ΘU2 and

n
θC/2

We are going to prove that /(#) is a function of L2(σ2). In fact, it is evident that

where g(θ) is the function in Lemma 3.2 and then by Lemma 3.2 it holds that

H$(y)<H%(y) in U,

and integrating by the measure v2 the above inequality, we have

\ (f(Wd<rtf)<z( H$(y)dVΐ(y)^\ (f(θ}fdσι(θ) ,
JθL/2 v C/2 «Jθ£/ι

which implies / is a function of L2(σ2).

We obtain immediately the following corollary of this lemma.

Corollary. For a fixed point x in U2, it holds that

Λtf^*, X)

and

(Ku^y, x) I U2 Kuι(y,x)\U,
| | W 0 | | t 7 2 = V ΊS /v γ\ » JC (v γ\

^ J!^Ul\X9 X) J* Ul\X> X)

where u0 w ίAe minimum function in Lemma 3.1 to R2(U2).

We now prove the following lemma which plays the essentially important
role in studing our purpose of this paragraph.

Lemma 3.4. It holds that, for every u Oj
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Proof. For every u of R^UJ, there exists a unique function/ of Lz(σl)

such that

Jθt/i

Denoting \yy f(θ) the same function used in the proof of Lemma 3.3, it holds

that, by Lemma 3.3, /belongs to L2(σ2) and u\ U2 does to R2(U2) and

Then by applying Lemma 3.2, we have the following:

U2

= (
Jo

where ^(^) means the same function as that of Lemma 3.2. This completes

the proof.

We have immediately the following corollary of this Lemma 3.4.

Corollary. We obtain that

where x is a fixed point in U2.

Now we are going to prove our main theorem in this paragraph.

Theorem 3.5. Let U1 and U2 be relatively compact open subsets such that

E/! includes U2. Then the following relation between the reproducing kernels

KUλ(yy x) and KUz(yy x) is held in U2 X U2 :

Proof. By Corollary of Lemma 3.3, for a fixed point x of U29 we obtain
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that

We have, by the minimum property and Corollary of Lemma 3.4, that

1

(x, x) '

On the other hand, by Lemma 3.1, we obtain the minimum value

Hence it holds that, in U2 X E72,

This completes the proof of this theorem.

4. Integral representation of harmonic functions in Cauchy-type

In this paragraph it is very useful to recall into our mind Lemma 1.4:

The correspondence

is isomorphic. For every y of U, the reproducing kernel K(x, y) of R2(U) be-
longing to R2( U) as a function of x, there exists uniquely the function k(θ, y) of
L2(σ) such that

Jdt7

Then we have the following Cauchy-type integral representation, for every

function u of R2(U), with respect to the integral kernel k(θ,y).

Theorem 4.1. Let U be a relatively compact open subset of X and σ

the positive measure mentioned in the paragraph 1. Then for any function u of

R2(U)y there exists a unique function f of L2(σ) and u can be represented in the fol-
lowing manner so called, in the Cauchy-type integral representation:

u(y)=\ k(θ,y)f(θ)d<r(θ).
J ou
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Conversely, for any function f of L2(σ), the function of y

\ k(θ,y)f(θ)dσ(θ)
<* o U

belongs to R2(U).

Proof. For any function u of R2(U), by Lemma 1.4, there exists uniquely

the function of L2(σ) such that

v(*) = \wf(θ)dμ°(θ) mU.

Taking account of the relation between the inner product of L2(θ) and that
of R2(U) and the isomorphism between L2(θ) and R2(U), we have immediately
that

u(y) = (K(x,y),u(X))

= (*(*, y)>/(*))σ

Conversely, for any function / of L2(σ), consider the function of y

and denote this by u(y). It is sure that this function u(y) is well defined, since
k(θ,y) and f(θ) belong to L2(σ). On the other hand, we consider the following
function u0(y) of R2(U) associated with this given function/ of L2(σ),

We are going to prove that u(y) is equal to u0(y). By Lemma 1.4 and the re-
producing property of K(x,y) in the space R2(U), we have the followings:

u(y)=\wk(θ,y}f(θ)dσ(θ)

= (k(θ,y),f(θ))σ

= (K(x,y), u0(x))

•= u0(y).

We now define the spaces

L(U) =JίW(μV)

R(U) = \H,: Hf(x) = { f(θ)dμV(θ)for allfεiL(U) and for all x^ U\ .
I Jθt7 )

By the Brelot's resolutivity theorem, L(U) is constructed by all resolutive func-
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tions relative to Dirichlet problem for U and R(U) is the set of all general solu-
tions to all resolutive functions. Lemma 1.3 follows that L(U)'DL2(σ) and so
R(U)IDR2(U). We are going to discuss the Cauchy-type integral representation
of every function u of R(U) concerning a non-negative integral kernel k(θ,y).
To do so we must prepare some lemmas.

Lemma 4.2. For any Borel subset e of dU and any point x of U, we have

that

where k(θ,x) is the same function that appeared in Theorem 4.1.

Proof. In the procedure of the proof of Theorem 4.1, we have that

Z(θ) = \ f(θ)k(θ,x)dσ(θ) for any/eL'(σ) .

And hence it is evident that the above relation holds for all continuous functions
/ o n dU. This fact implies immediately the result of this lemma.

Furthermore we can improve slightly Lemma 4.2 as follows:

Lemma 4.3. For any Borel subset e of QU and any point x of U, there
exists a non-negative function k(θ, x) such that

and

k(θ, x) = k(θ, x) in L2(σ) .

Proof. If we note that the measures μ% and σ are positive measures, from
Lemma 4.2 immediately it follows that for any x of U

σ-a.e. on dU.

We define the non-negative function k(θ, x) by

on*,,

where we put for each x of U

Ex= {θedU:k(θ,x)<0} .

Then we have immediately

k(θ,x)ZΞL\σ } fora l l*et/,
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and

K(X,y)=\ k(θ,y)dμv(θ)
JftU

= = ( k(θ,y)~k(θ,X)dσ(θ)
JθC7

= ( ~k(θ,x)k(θ,y)dσ(θ)

- K(y, x) ,

which implies that, by Lemma 1.4,

k(θ, x) = k(θ, x) in L2(σ) .

This lemma means that the measure μ% has the density function k(θ,x) with
respect to the measure σ.

Thus we obtain the following extension of Theorem 4.1.

Theorem 4.4. Let U be a relatively compact open subset of X and σ the
positive meaure mentioned in the paragraph 1. Then any function u of R(U) is
represented in the Cauchy-type integral representation with respect to the integral

kernel k(θy x), a function f of L(U) and the measure σ, that is,

u(y)=\ l(θ,y)f(θ)d<τ(θ).
JaU

Conversely, for each function f of L(U)y the function of y in U,

\ l(θ,y)f(θ)dσ(θ)
JoU

belongs to R(U).

Proof. For any function u of R(U)y there exists, by the definition, a func-

tion/ of L(U) such that

J υU

By virtue of Lemma 4.3, we have the following expression,

oU

Conversely, for any function / of L(U), by the resolutivity theorem, we can
define the following function u of R(U)
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JoU

Using again Lemma 4.3, this function u(y) is equal to the function of y in U,

\ k(θ,y)f(θ)dσ(θ).
J dU

This completes the proof of this theorem.

In the last place, let us note that we obtain as a special case of Theorem

4.4 the following result in the investigation by H.S. Bear and A.M. Gleason

[5].

Theorem 4.5. Let U be a relatively compact open subset in X, Γ the to-

pologίcal boundary of U and H( U) the set of all harmonic functions on U such that

there exist their continuous extensions over the closure of U, denoted by U. Then,

for any u of H( U) there exist a Borel probability measure X on Γ and a non-

negative measurable function q(θ, y) on TxU such that in U

where f denotes the restriction of the continuous extension of u over U on the boun-

dary.

KOBE UNIVERSITY

KYOTO PREFECTURAL UNIVERSITY

References

[1] N. Aronszajn: Theory of reproducing kernel, Trans. Amer. Math. Soc. 68 (1950),
337-404.

[2] N. Aronszajn and K.H. Smith: Functional spaces and functional completion,
Ann. Inst. Fourier 6 (1955-56), 125-185.

[3] ancι : Characterization of positive reproducing kernels. Ap-

plications to Green's functions, Amer. J. Math. 129 (1957), 611-622.
[4] H. Bauer: Harmonische Raume und ihre Potentialtheorie, Springer Verlag,

Berlin, 1966.
[5] H.S. Bear and A.M. Gleason: A global integral representation for abstract har-

monic function, J. Math, and Mech. 16 (1967), 639-654.
[6] S. Bergman: The kernel function and conformal mapping, Amer. Math. Soc.,

1950.
[7] N. Bourbaki: Integration, Hermann, Paris, 1965.
[8] M. Brelot: Lectures on potential theory, Tata Inst. of Fund. Research, Bombay,

1960.
[9] P.R. Halmos: Measure theory, Van Nostrand, New York, 1950.



630 S. OGAWA AND T. MURAZAWA

[10] O. Lehto: On Hilbert spaces with a kernel function, Ann. Acad. Fenn. Ser A
1, 74 (1950).

[11] H. Meschkowski: Hilbertsche Raume mit Kernfunktion, Springer Verlag,
Berlin, 1962.

[12] K. Yoshida: Functional analysis, Springer Verlag, Berlin, 1967.




