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THE ADDITIVE STRUCTURE OF G*(L«(f>*))
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Let Ln(k)=Ln(k'y 1, •••, 1) be the (2w+l)-dimensional standard lens space
mod k where n and k are positive integers and k>2.

The structure of -K-ring and KO-ήng of Ln(k) are determined by J.F.
Adams [1] for k=2 and by T. Kambe [5] for k an odd prime.

For the case k=p2, p a prime, there exist results by T. Kobayashi, M.
Sugawara, and T. Kawaguchi [6], [7].

Let^> be a prime. By Adams [2], there is a cohomology theory G* which
decomposes jSΓ-cohomology localized at^>.

In this note we determine the additive structure of G*(LM(r)) where r=pk,
2<&<oo, which results to the determination of K(Ln(pk)) for any prime p and
KO(Ln(pk)) for an odd prime p.

After manuscript, Professor M. Sugawara kindly communicated to the
author that recently N. Mahammed ([9]) has determined the additive struc-
ture of K(L"(pk)) and KO(L"(pk)) for !<&<oo. But the method of author's
is not same as his. Our basic tool is the formal group of G-cohomology esta-
blished by S. Araki [3].

In § 1 we summarize the well known facts about G-cohomology of lens spaces.
In §2 the coefficients of the formal power series [pk]c(T) are partially discussed,
and the order of the group G2*(Ln(pk)) is determined. In §3 we calculate the
order of e* in G2*(Ln(pk)). In §4 we construct the elements wf which are in the
form wi=eί-\-lower degree terms, and has a smaller order than e*. In §5 it is
proven that a part of the above w^s generate Gzβ(Ln(pk)) for l</3< p— 1, and
in fact, they give a direct sum decomposition of G2β(Ln(pk)). In §6, the additive
structure of K(Ln(pk)) are determined by the preceding results.

The author owes to Professors S. Araki and Z. Yosimura their valuable
discussions and criticisms. He wishes to express his hearty thanks to them.

1. Summary on G-cohomology groups of lens spaces

Following Adams [2], there is a generalized cohomology theory G which
gives a decomposition of 7£-cohomology localized at a prime p, i.e., for a finite
CW-complex X
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where Zc/0 is the ring of integers localized at p.
The coefficient ring of G-cohomology is the following [3];

Moreover, G-cohomology is complex oriented [3] so is there defined the Euler
class e(L) for a complex line bundle L over X such that

e(L)^G2(X] and G*(CP")^G*(pf) [e(ι)]l(e(η)*+l = 0) .

where η is the canonical line bundle over CPn.
The associated formal group FG was investigated by Araki [3].

The formal power series [k]G(T), k<=Z is defined so that [k]G(e(η))=e(ηk)
in G*(CPn) for all k, where ηk is A-fold tensor power of η.

Observing the Gysin sequence of the sphere bundle,

S1 = SηZpk -» Ln(pk) ^ CPn

we have the following exact sequence [8], [10]:

(1.1) O^G2'+1(CPW) -> G2ί+\Ln(pk)) -> G2i(CPn)

^ G2i+2(CPn) π-> G2i+2(Ln(pk)) -* G2i

where Ψ is the Gysin homomorphism which is obtained by multiplying the

element [pk]G(e(^}) Using (1.1) we have

Lemma 1.1. G2*(D\p*})^G*(pt} [e\l(e*+\ [pk]G(e])

where e=π*(e(η)) and G*(pt) [e] means the subgroup of G*(pt) [e] generated by

G*(pt), e\ ί>0.

The proof is straightfo wards by (1.1).

Let L\ Ln~l(pk)->Ln(pk) be the inclusion.

Lemma 1.2. Ifi—n^Q mod p— 1,

if i—n=0 mod p— I, L* is epimorphic and Kernel i,* is the cyclic subgroup generated

by uΐe", a=(i-n)l(p-l).

Proof. By Lemma 1.1, we see immediately that 4* is epimorphic.
Next, take a truncated polynomial f(e(η)) of G2ί(CPn) such that τr

Kernel Λ*. Since 7Γ*^*(/(^(?7)))=0, we have that
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/W=[P*]GM *W mode".

That is, if y&G2i(L*(p*)) belongs to Kernel **, then y=xe*, x^G2^~n\pt).
Therefore the result is immediate.

2. The coefficients of [pk]G( T) and the order of G2*(Ln(pk))

For simplicity we put

(2.1) pξ = l+p+...+p'-\ />0, .i.e,/>, - (p'-l)/(p-l) .

First we observe certain divisibilities of coefficients of [/>*]<?( T) by powers

of p.

Proposition 2.1. Put [pk]G(T] = Σ a^T*, then
» =1

(1) α, = Oί/ί

(2) «„ = />*,

(3) j>*-'|βy-1

(4) />*-'+1|α,

(5) ^-'Ifl; forpl-\<i<pl^-\,\<l<k-\.

Proof. (1) is trivial by the sparsness of G*(pt), and (2) is well-known.
Let logG(7Λ) be the logarithm of FG (see [3]), we have

(2.2) logc(Γ) =

(2.3)

where o means the composition of formal power series.
We prove (3) and (4) by induction on /. If i=ρ—ly by substituting (2.2)

into (2.3), we get

(aJΓ)* = p'-^T* mod T^Λ .

As a0=pk, ρk~l I ap_, but pkXap_,.

Next assume that the proposition holds for any / such that p — l<i<r — 1
<pk—l, and also assume that p*—l<r<pί+l—l<pk—l. Substituting (2.2)
into (2.3), we obtain

Έzp' -'uSiT*1 mod Γ r + 2.

By the assumption of induction, we see
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pk-i+l\aj^for l<j<r and; — lΦ^— 1, and pk'l\apι^ .

The coefficient of Tr+1 of (Σ a^^T^ is the sum of monomials of Λ, _I, diίfer-
j = l

ing from (apι_^)ps .

Therefore, (Σ ^j^TjY for s</ is divisible by

Therefore, if r=pl— 1, />*-' 1 ar, p
k~l+l^ar

and if r>pl—l,pfc-l+l\ar.

The case r—pk—l is also easily proven by the same s argument with a little
care to degrees.

Finally (5) follows from (3) and (4). q.e.d.

Proposition 2.2. In G2n(Ln(pk)), order en=ρk.

Proof. By Proposition 2.1, (2), we see

pken=[p*]G(e) en-1 mod en^\ i.e.,

pken = 0 in G2n(Ln(pk)) .

On the other hand, assume that plen=Q for /<&.

Then, there exists an element x(e)= Σ ̂ e'' of G2*(Ln(pk)), ^eG2*"2^), such

that

Comparing the coefficients of both sides, we see that

*ι = *2 = — = *v.2 = 0 and/)*^.! =pl, xn_

This is a contradiction.
Next, we calculate the order of the group G2*(L"(pk)).

Proposition 2.3. | G2β(Ln(pk)) \ =p*«+κ*-βWP-w forl<β<p-l.

Proof. The proof is by induction on n. In the case n=l,
The proof is straightfoward by Lemma 1.1.

Next, assume that the equality holds for n— 1.

By Lemma 1.2 and Proposition 2.2 we get that if n — /3^0 mod p — 1

I G2β(Ln(pk)) I = ££cl+[CΛ~1~/3V(/>-ι>]> — Λfe

and if n — /3=0 mod p — 1,
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3. The order of 4 in G2i(L"(pk))

We assume k>2 from now until last section, and n>p in this section and
the next section.

Proposition 3.1. In G2*(L"(pk)),

(1) order ? = pk+κ*-MP-w far l<ί<n .
(2) bpk-i+K*-f>/Wlei — βfc+[(«-/VC />-!)]£» -C/»-D

for p<i<n, where b is a unit element of G~2<ip~^(pi).

Proof. The proof is by induction on decending order of i. For i=n,
(1) follows from Proposition 2.2.

Next, multiplying [pk]G(e) by en~p, we have that

If we put

then b is a unit element by Proposition 2.1, (3), and we obtain (2).

Next, assume (1) and (2) holds for / such that /><y+ !</<#.
We prove (2) for i=j. Multiply [pk]G(e) by pL<*~M<p~™e*~p, then we obtain,

Π n o — Λ*+K

by Proposition 2.1, (1).

If t>pΛ9 then, k+[(n-{j+(t-l)(p-l)})/(p-l)]<[(n-j)/(p-l)] because

pk>k.
Next, let ̂ ;<ί </>/+1 for />2, then, by Proposition 2.1, (5),

, and

because t— l>ρ/ — !>/— 1 for />2.
Finally, if^

by Propositon 2.1, (4), but

k+[(n-{j+(t

Therefore, by the assumption of induction, we obtain from (3.1) that
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Then, we have (2) for i=j.
Next, apply (2) for i=j

Therefore, if we assume that o/γfer ej ^pk+i^-j^P-v^ then,

order ej+^p~Ό < f)fe+tc«-c>+c^-υ))/c/>-i)]

This cotradicts to (1) for i=j-\-(ρ— 1). Finally we have

pk+K*-j->/tρ-Όlej _ ^fe+ccw-cy+^-DVC^-D^y+^-i __ Q

So we obtain (1) for /==/. q.e.d.

4. The construction of the generators {10,-}

Put Zι(k)=[k/(pl+1—p1)] for />0. As is easily seen

(4.1) (̂α

(4.2) ^(α

Lemma 4.1. ίY# an integer I such that
For each integer t such that t>\ andpl-{-t(p—\)<n, we have,

Proof. (1) In case ̂ +^— 1)> :̂

-̂̂ )> -̂{̂ +^
by (4.1). On the other hand, t(p—\)>pk—pl by the assumption, thus

Therefore, we get

(2) In case pl-\-t(p— 1) <pk: Fix an integer m such that

pm<pl+t(p-l}<pm+\ (so, m>ΐ) .

Then, pk~m\apι+κp_l )_^ by Proposition 2.1, (5). So, we have only to see that

But, n—pm+(pl+1—pl) (m—ϊ)<n—pl, because m>L Therefore,
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and we obtain that

zl(n-pl}+k—m>k-l+zl(n-ρm)>k-l+zl(n-{pl+t(p-\}}). q.e.d.

Lemma 4.2. Fix an integer I such that !</<&. For integers tyj, such that
t>\,pl+t(p—l}<n, and2<j<pl, we have that

Proof. In case pl+t(p—l)>pk, we have to see that

in case pl+t(p— !)</>*, let m be
an integer such that pm<pl+t(p—l)<pm+\ then pk~m\αpι^p.^. Therefore
we have only to see that

-̂

But these results is easily obtained by similar argument in Lemma 4.1. q.e.d.

Now, we prove the following important result which is a generalization
of Proposition 4 of [4].

Therein 4.3. Fix an integer I such that pl<n and \<l<k—\.
For i such that pl<pl+i<n, in G2*(Ln(pk)) we have the equality

φ e

where

Proof. The proof is by induction on n. For n=p, we obtain that pk~1ep

=pk~l\e and p\\ by Proposition 3.1, (2) for n=i=p. Thus the case n=p is
valid.

Next assume that the statement holds in G2*(Ln~\pk))y i.e., for fixed / such
'^w— 1, !</<&— 1, and ̂ or /such that pl<pl+i<n—l,

— ^j=l

and /> /^/+'-^+1 1 \tt/ in &*(L*-l(p*)) .

Applying the homorhpism g: G2*(Ln-\pk))-*G2*(Ln(pk)) by defined g(x)=
e x (which is well-defined by Lemma 1.1), we have the following lemma.

Lemma 4.4. Fix an integer I such that pl<n—\. l<l<k—l and for i'
such thatp'+l<pl+i'<n, then in G2*(Ln(ρk)}
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2 %. yέ?/

w have put i/=i-{-\3j
ί—j-\-\) and \-/>y/=X t-/_1 > y/^1.

This Lemma stands close to the statement of Theorem 4.3., but the de-
finitive obstruction to go ahead is the existence of epl-term at the right hand
side. So we prepare the next Lemma which is a special case of Theorem 4.3.

Lemma 4.5. Fix an integer I such that pl<n, \<l<k—l. Then, in

fik-l+z.ίn-p^pp1 frk~l+z,(*-ph vi N pjp i ^ K — p i r / j ΛΛ *£

Proof. Multiplying [pk]G(
e] by pz^n p*\ we have that

The above second term is equal to ρ*~l+*{n~pj>bepj,
by Proposition 2.1, (3), where b is a unit.
Next,

p'-'+'r-^+^p'S*-*1^^ , for

by Proposition 2.1, (5).
On the other hand, we obtain trivially that

Therefore, the above first term is given in a form of

Thus we obtain the equation

A *-/+* <«-*7> *' *-/+*cκ-y/~1

iτ".«j i op i e — p i / i Λ< *e

and ^V*'-^11 λy .

Now we calculate the last term. In case «=/»'
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1> = 0, because p'+t(p-l)>n.

In case ρ'<n—l, we may apply Lemmas 4.1 and 4.4 to obtain

where />*/c^+ί^-1)->)+1|Xί(y, and

Then, applying Lemma 4.2 to each term of above sum and summing over
j, we have

where //c^-^+1|λy, p |Xy .

Finally, in either case, we know by (4.3), that,

* * y* and

Then, we obtain Lemma 4.5.
Next return to the proof of Theorem 4.3.

-/+arl(n-ί')> by (4.1).

Thus the coefficient of ep -term of the right hand side of the equation of Lemma
4.4 is divisible by pk~l+z{M~pl'>9 and we may apply Lemma 4.5 to this, so that we
obtain

^-/^ci-cy+ί^+v^+i'ξjx^ and p'i<*'-fl+l\\j .

By (4.1), the above sum can be written that,

ί*-/+*/c«-y+Λ/2lχyV, and pβι<J+''-
j = l

Therefore we obtain Theorem 4.3 in case pl<n — 1,
The statement of the theorem in another case has ever been proven by

Lemma 4.5. q.e.d.

Corollary 4.6. For i such that p<i<mίn(n, pk—l), there exist the element
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wί^G2β(Ln(pk))y 1 <β<p—l, which has the form e*-\-lower degree terms , precisely ,

^-'y-'̂ -1' where i = a(i) (p~l)+β, 1 <β<p-l ..

Moreover, \ίpl<i<pl+l, order

Proof. For i such ihatp<i<mm(nfp
k— 1) there exists unique / such that

l<k-\,pl<n, zndpl<i<pl+1.
Fix this /, then we obtain,

pk-i+vn-fij^pk-i+zp-iSίg^j^ by Theorem 4.3.
Pl-ι i = 1

Putting Wi^uf^φ—'Σ \jβj\ by the sparsness of G*(pt),

\j = 0 unless i=j mod (p— 1) .

Therefore we obtain the desired elements wf.

5. The additive structure of G2*(Ln(pk))

Proposition 5.1. G2β(Ln(pk)) \<β<ρ—\ίs generated by

teV"-"^}, j = 0, 1, -.., mm([(n-β)/(p-l)l Λ-l) .

(pk is defined by (2.1).).

Proof. (1) If n<p*, as [(n-β)l(p-l)]<pk-l, min([(n~β)/(p-l)],

By Lemma 1.1, if we prove that

then we obtain the result. But this statement is easily seen.
(2) Assume the statement is true for n— 1 and we prove it for n>ρk. (It

means that mϊn([(n-β)/(p-l)], pk-\)=pk-\).
By Lemma 1.2, we obtain,

(5.1) 0 ̂  Kernel ί* -» G2β(L"(pk)) ^ G^(Ln'1(p")) -* 0

ίu^e" if β-n = a(n) (p-l)
Kernel ι* =

[0 otherwise.

Thus, we have only to see that ul

awen is the linear conbination of {#/

. W),!, -,̂ -1.
Multiplying [p*}G(e) by u «*>-**•<?"*>, in &t(L\p*)\

(5.2) ii^10^ = Σ/^V^-1^ μyeZw, by Proposition 2.1, (3).
y=o

On the other hand, by the assumption of the induction and by
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(5.1), we know,

(5.3) MlV*-W =*£μt
t = 0

Substituting (5.3) into the right side of (5.2), we obtain,

q.e.d.

Corollary 5.2. Fix integers n and β such that n>β and l<β<p—l. Then
G2β(L"(pk)) is generated by {eβ} and {^y(/,_1)+β} where /=!, 2, •••, min([(w— /?)/

(/>-!)]> />*-!)•

REMARK. In case [(w — β)/(p— 1)]— 0, we observe that the only generater
is eβ.

Proof. In case [(n— β)l(p— 1)]— 0, the proof is straightfowards by Lemma

1.1.
Thus we may assume that n>p. Then we have only to see that, there is

«Vcj_D+β °f Corollary 4.6. for l<j<min([(n— β)/(p— 1)], pk— 1). But we see
easily that, for such j

Therefore we obtain the result.

Next we put

VH =

lί\(k-l)+z(n-j(p- l)-
J=PI

where M(n) = min([(n-/3)/(/>-1)], pk-1),

ft (n) if [(»•

and Z M is a number such that

and we putp0=Q.

We note that M(n)>M(n— 1), m(ri)>m(n—l). And it is convenient to put
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Theorem 5.3. Fix integers n, k, β such that n>\ίk>2) and l<β<p—l,

then

j= i, 2, ...

where <#> is the cyclic subgroup generated by x, and

order eβ = pk+^-β^P-^ ?

order w,,p_Ό+β = ί*-/+γ-/<,-ι>-» if p

Proof. The order of the group of right hand side is less or equal than
pvn by Proposition 3.1 and Corollary 4.6. If we prove _prn=£*ι+κf -β>/c*-ι>]>
— I G2β(Ln(pk)) I then observing Corollary 5.2, we get the proof of all statements
of Theorem 5.3 Therefore we prove the next lemma.

Lemma 5.4. For n>l, k>2, l<β<ρ—V we have

Proof. We put Yn=k(l + [(n-β)/(p-l)]).
(1) In case n<β, the proof is easy.

(2) ϊfn-β^Qmodp-1, as [(»-/8)/(p-l)]=[(n-l-/8)/(/»-l)],Λf(n-l)
=M(n) and m(n— \)=m(ri).

Moreover zl(n—j(p—\)~β)=zl(n—\—j(p—\)—β).
Therefore Vn= Vn.,= Yn_1= Yn.
(3) l{n-β=d(p-l), £/>l,then,

Yn = Y«-ι+k .

On the other hand, for j such that pι<j<pι+1—l, therre exists only one/ such
that

z,(n-j(p-\)-β) = Xl(n-l

and for other/,

z,(n-j(p-\)-β) = gfr-\-j(j>-\)-β) .

Therefore

Therefore,



THE ADDITIVE STRUCTURE 535

{k-m(n)+zmίH,(n-j(p- !)-

Thus we have only to see that

If [(n-l-β)l(p-l)]>pk-l, M(n-\)=M(n)=ph-\, m(n-l)=m(n)=k
-I. Therefore Vn—V._,.=k.

If {(n-\-β}l(p-\}}<pk-l, then, M(n-ί)=[(n-l-β)l(p-l)], M(«)=
[(«-/3)/(/>-l)]=M(«-l)+l, w(w-l)=Z («-l), m(n)=i(n).

In this case

{k-m(n)+zm<a,(n-j(p- ί)-β)} = k-i(n) .
/ = JCC»-1) + 1

Therefore, if we put

W= *' k-in-l+ziίa_n--l

we have only to see that W=i(n)—i(n—l).
(3,a) If d<pχn_Ό+ly then i(n)=i(n—l).
For y such that^ c^.D^y^M^— 1), we have,

Therefore,
*« c«-i)(rc— ;(p— 1)— ̂ )=0, and also

z«n-»(n-l-j(p-l)-β) = 0 .

Hence , PF=0=ί(n)-ί(fi-l).
(3,b) If d=pκn.»+l, then i(n)=ί(n-l)+l.
As same as above,

But, n—p£(in_Ό(p—l)—β=pί<in"Ό+1—p^n~1\ and for j such that j>pi(.n-ι» we
have that, n—j(p—l)—t

Therefore, Σ*

Consequently W=\=i(n)—i(n—\). Thus we have completed the proof of this
lemma. q.e.d.
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6. The additive structure of K(L"(pk)) and KO(L"(pk}}

By Theorem 5.3 we obtain,
M

Theorem 6.1. K\Ln(pk))^ξ$<wt'y where M=mm(n, pk— 1), and order

«;/=£*-'+V*-», ifpl<t<pl+\

Proof. If 1 <t<p—1, put wt'=e*9 and if p<t, put io/=wt.
As is well-known, for a finite CW-complex X and for any odd prime p,

Observing this facts and Proposition 2.11 of [7], we obtain the next theorem.

Theorem 6.2. For any odd prime, p, and for any integer k>2,

CJC/2]

Σ <X/> f°r w*° mod 4

ΣJ <X/>ΘZ2 /or n=G mod 4
/ = !

M=min(Λ, />*—!) and orrf^r w2t'=pk-ί+zι(n-2t\ ifρi<2t<pl+1 .

OSAKA CITY UNIVERSITY

Bibliography

[1] J.F. Adams: Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.

[2] J.F. Adams: Lectures on generalized cohomology,, Lecture Notes in Math.

99, Springer-Verlag, 1969.

[3] S. Araki: Typical formal groups in complex cobordίsm and K-theory, Lectures

in Math. Kyoto Univ. 6, Kinokuniya Book Store, (1973).

[4] B.T. Flynn: The complex bordism of cyclic groups, Osaka J. Math. 11 (1974),

503-516.

[5] T. Kambe: The structure of K/\-rings of the lens space and their applications, J.

Math. Soc. Japan. 18 (1966), 135-146.

[6] T. Kobayashi and M. Sugawara: K-rings of lens space Ln(4), Hiroshima Math.

J. 1 (1974), 253-271.

[7] T. Kawaguchi and M. Sugawara: K and KO-rings of the lens space Ln(p2) for

odd prime p, Hiroshima Math. J. 1 (1971), 273-286.

[8] P.S. Landweber: Cobordism and classifying spaces, Proc. symposia in pure math.

vol. 22, A.M.S., (1971), 125-131.

[9] N. Mahammed: K-thέrie des espaces lenticulaires, C.R. Acad Sci. Paris. 272

(1971), Serie A, 1363-1365.

[10] R.E. Stong: Complex and oriented equivariant bordism, Topology of Manifolds,

Proceedings of the University of Georgia, Topology of Manifolds Institute, 1969.

291-316.




