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Let L*(k)=L"*(k; 1, -+, 1) be the (2n+1)-dimensional standard lens space
mod k where # and & are positive integers and k>2.

The structure of K-ring and KO-ring of L”(k) are determined by J.F.
Adams [1] for k=2 and by T. Kambe [5] for % an odd prime.

For the case k=p’, p a prime, there exist results by T. Kobayashi, M.
Sugawara, and T. Kawaguchi [6], [7].

Let p be a prime. By Adams [2], there is a cohomology theory G* which
decomposes K-cohomology localized at p.

In this note we determine the additive structure of G*(L*(r)) where r=p*,
2< k< o, which results to the determination of K(L*(p*)) for any prime p and
KO(L*(p¥)) for an odd prime p.

After manuscript, Professor M. Sugawara kindly communicated to the
author that recently N. Mahammed ([9]) has determined the additive struc-
ture of K(L"(p*)) and KO(L*(p*)) for 1<k<oco. But the method of author’s
is not same as his. Our basic tool is the formal group of G-cohomology esta-
blished by S. Araki [3].

In§1 we summarize the well known facts about G-cohomology of lens spaces.
In §2 the coefficients of the formal power series [p*]g(T’) are partially discussed,
and the order of the group G**(L*(p*)) is determined. In §3 we calculate the
order of ¢ in G**(L"(p*)). In §4 we construct the elements w; which are in the
form w;=e'+lower degree terms, and has a smaller order than ¢. In §5 it is
proven that a part of the above w,’s generate G**(L"(p¥)) for 1<B< p—1, and
in fact, they give a direct sum decomposition of G**(L"(p¥)). In §6, the additive
structure of K(L”(p*)) are determined by the preceding results.

The author owes to Professors S. Araki and Z. Yosimura their valuable
discussions and criticisms. He wishes to express his hearty thanks to them.

1. Summary on G-cohomology groups of lens spaces

Following Adams [2], there is a generalized cohomology theory G which
gives a decomposition of K-cohomology localized at a prime p, i.e., for a finite

CW-complex X
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KO(X)®Z(1,)§G2(X)@ "‘EBGZ"(X)@ ._,@G‘z(p-x)(x)
R(X)RZ =G (X)D - G20 7(X)

where Z,, is the ring of integers localized at p.
The coeflicient ring of G-cohomology is the following [3];

GH*(pt)y=Z py[u,, u, '], u, EG*279(pt) .

Moreover, G-cohomology is complex oriented [3]; so is there defined the Euler
class e(L) for a complex line bundle L over X such that

o(L)EGH(X) and G¥(CP")=G*(pt) [e(n)]/(e(n)"** = 0).

where 7 is the canonical line bundle over CP”.

The associated formal group F; was investigated by Araki [3].

The formal power series [k]o(T), k=Z is defined so that [k]s(e(%))=e(7*)
in G*(CP”) for all k, where »* is k-fold tensor power of 7.

Observing the Gysin sequence of the sphere bundle,

S = §YZ — LA(pk) > CP”
we have the following exact sequence [8], [10]:
(1.1) 0==G*+(CP™) — G*+(L"(p*)) — G*(CP*)
= G*3(CP") N GH¥(L(p*)) — G*+(CP™)=0

where ¥ is the Gysin homomorphism which is obtained by multiplying the
element [p*¥]s(e(7)). Using (1.1) we have

Lemma 1.1.  G**(L"*(p*))=G*(pt) [e]/(e"**, [p¥]c(e))

where e=n*(e(n)) and G*(pt) [e] means the subgroup of G*(pt) [e] generated by
G*(pt), ¢, 1>0.

The proof is straightfowards by (1.1).
Let ¢; L*7*(p*)— L"(p*) be the inclusion.
Lemma 1.2. Ifi—n=%=0 mod p—1,
k2 GH(LA(pH) = G(L"(pH);
if i—n=0 mod p—1, o* is epimorphic and Kernel ¢* is the cyclic subgroup generated
by uie”, a=(i—n)/(p—1).

Proof. By Lemma 1.1, we see immediately that .* is epimorphic.
Next, take a truncated polynomial f(e(7)) of G*(CP*) such that z*(f(e(n)))E
Kernel o*. Since z**(f(e(n)))=0, we have that
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f(e) = [p¥]s(e)-x(e) mod e” .
That is, if yEGNZ"(L"(p”)) belongs to Kernel *, then y=uxe”, x& G*“~™(pt).
Therefore the result is immediate.
2. The coefficients of [p*];(T) and the order of G**(L"(p*))
For simplicity we put
(2.1) Py = 1ptetpi 120, e, p, = (p'—1)/(p—1).

First we observe certain divisibilities of coefficients of [p¥]o(T) by powers

of p.
Proposition 2.1. Put [p*](T) = i a;_,T?, then

(1) a;=0¢i=0modp—1,

(2) a,=p*,

(3) prHay_y, PP Nayy, for 1<I<k,

(4) pF e, for pP—1<i<pt'—1, 1<I<k—-1,
(5) p e for p—1<i<ptt—1, 1<I<k—1.

Proof. (1) is trivial by the sparsness of G*(pt), and (2) is well-known.
Let logg(T) be the logarithm of Fg (see [3]), we have

(2.2) logo(T) = T-+(1/p)u, T*+(1/p*yu,?2T# -+
+(1/p*)u,?:T# 4+, and
(2.3) (logg)e[p*16(T) = p*-loga(T)

where o means the composition of formal power series.
We prove (3) and (4) by induction on 7. If i=p—1, by substituting (2.2)
into (2.3), we get

a, T?4(1/p)u(a,T)? = p*¥'u,T? mod T***.
As a,=p*, p*~*|a,_ , but p* Ya, .

Next assume that the proposition holds for any 7 such that p—1<i<r—1
< p*¥—1, and also assume that p/—1<r<p’*'—1<pF—1. Substituting (2.2)
into (2.3), we obtain

a, T+ (Uph(3 a; TP+ +-(Lpr Y, (3 @, T9)
= pt~u, 2T mod T7+° .

By the assumption of induction, we see
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pF i a;_ for 1<j<rand j—1=p‘—1, and p*/|a, _, .
The coefficient of T7** of (21 a;_,T7)? is the sum of monomials of a;_,, differ-
ing from (a,_,)*". :
Therefore, (:2_1 a;_,T7)? for s<1is divisible by

Plz‘1+1+<p‘—x)(k—1)>Pk—1+1+s

Therefore, if r=p'—1, p*~|a,, p*~ '+ Y a,
and if > p'—1, p*F7i+ a,.

The case r=p*—1 is also easily proven by the same s argument with a little
care to degrees.

Finally (5) follows from (3) and (4). q.e.d.
Proposition 2.2. In G*™(L"(p*)), order e*=p*.
Proof. By Proposition 2.1, (2), we see
pre"=[p¥lc(e)- "7 mod e"*?; e,
pre® = 0 in G*"(L*(p*)) .
On the other hand, assume that p’e”=0 for /<k.
Then, there exists an element x(e)zil ael of G*(L*(p¥)), x;€ G™%(pt), such
that |
[p*]c(e)-x(e)= p’e” mod €"**.
Comparing the coefficients of both sides, we sce that
X, =X, =+ = X,_, = 0and pkx,_, = p’, x,_,EG(pt)=Z, .

This is a contradiction.
Next, we calculate the order of the group G**(L*(p*)).

Proposition 2.3. | G?B(L*(p))| =pk+n=B/s=0D for 1< B< p—1.

Proof. The proof is by induction on z. In the case n=1,
The proof is straightfoward by Lemma 1.1.

Next, assume that the equality holds for n—1.
By Lemma 1.2 and Proposition 2.2 we get that if n—8=£0 mod p—1

IGZB(Ln(pk))I = PRIHLOTI=R/PmOD — pkAHI=B/H=DD |

and if n—B=0 mod p—1,
]Gzﬁ(Ln(pk))[ — pEAHIA=1=R/P=DD  pk — pEAHI=B/P=DD
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3. The order of ¢ in @“(L"( D%)

We assume 2>2 from now until last section, and #> p in this section and
the next section.

Proposition 3.1. In G**(L*(p¥)),
(1) order & = p*+t=0/2™0) for 1<i<n.
(2) bpk"l‘l—[(”-i)/(ﬂ‘l)]ei — Pk+[("‘i)/(b—1)]ei"(p‘1)
for p<i<n, where b is a unit element of G™*#2(pt).

Proof. The proof is by induction on decending order of i. For i=n,
(1) follows from Proposition 2.2.
Next, multiplying [p*]s(e) by €*~2, we have that

pre" P P4a, " =0.
If we put
b= —(a,)/p*",
then b is a unit element by Proposition 2.1, (3), and we obtain (2).

Next, assume (1) and (2) holds for 7 such that p<j+1<i<n.
We prove (2) for i=j. Multiply [p*](e) by p”~7/¢~»lei~2 then we obtain,

(31) 0= Pk*—[(”—j)/(p—l)]ei—(ﬁ"‘1)_b/pk—1+[(”—j)/(ll—1)]ej

_I_i] Ay oy PIPPIDDIgi+ =D~
by Proposition 2.1, (1).
If t>ps, then, k+[(n—{j+(t—1)(p—1}/(p—1]I<[(n—))/(p—1)] because

De=k.
Next, let p,<t<p,, for [>2, then, by Proposition 2.1, (5),

P DIPTIY | g L pl =PI and
k+-[(n—{j+(@—=1) (p—D}/(p—D]I<k—I+[(n—5)/(p—1)]

because t—1> p,—1>1—1 for I>2.
Finally, if p,4+1<t<p,,

Pk+[(""j)/(p—1):| ] at(p 1)Z)[(”'“j)/(p—l)]

by Propositon 2.1, (4), but
kt[(n—{j+(=1) (p—DN(p—D]<k+[(n—1)/(p—1)]

Therefore, by the assumption of induction, we obtain from (3.1) that
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pk+[("~j)/(p-1)]ej—(p~l) — blpk—u[(n—j)/(p—n]ej .

Then, we have (2) for i=j.
Next, apply (2) for i=j+(p—1),

E=1+[(8=D/(p-D1,57 k=14+[(B= = (p=1)/(p—D],j+(p—1)
P el = bp e .

Therefore, if we assume that order e/ < p&+i*=>«2~1 then,

Ordel' ej+(p"1) <pk+[(n—(j+(p'1)))/(p-l)]

This cotradicts to (1) for i=j+(p—1). Finally we have

PEHR= DDVl — ppktIA=Ci4p=/D=DIgi+D71 — ()
So we obtain (1) for 7=j. q.e.d.
4. The construction of the generators {w;}
Put 2,(k)=[k/(p**'—p’)] for I=0. As is easily seen
#.1) za)+2,(b)+1>z,(a+b) = =,(a)+=,(b) .
(4.2) zi(a—d)+2,(b+d)+1>2/(a)+2,(b) .

Lemma 4.1. Fix an integer | such that 1<I<k.
For each integer t such that t>1 and p'+t(p—1)<n, we have,

prIEE Aol m Y | pEmphg
Proof. (1) In case p’-+t(p—1)> p*:
Sin—p!) = 3,(n— {p'+H(p—1)})+2,(H(p—1))
by (4.1). On the other hand, #(p—1)> p¥—p’ by the assumption, thus
2 (t(p—1)=k—1.
Therefore, we get
2(n—pt)2h—L+3,n— {p'+H(p—1)})..
(2) In case p’+t(p—1)<p*: Fix an integer m such that
PRSP Hp—1)<p™ ", (s0, m=1).
Then, p*™™|a 44 p_1>-1, by Proposition 2.1, (5). So, we have only to see that
z(n—p")t+k—m>k—I14-z,(n—{p'+t(p—1)}) .
But, n—p”+(p* ' —p*) (m—1)<n—p’, because m>1. Therefore,



THE ADDITIVE STRUCTURE 529

2 (n—p")+m—I<z(n—p’),
and we obtain that
z(n—p")+k—m>k—I4+2/(n—p") > k—I4+2,(n— {p’+t(p—1)}). q.e.d.

Lemma 4.2. Fix an integer | such that 1<1<k. For integers t,j, such that
t>1, p+t(p—1)<n, and 2< j< p*, we have that

E-1+2,(n—ph1z (pf = 41| 52,(plHECp—1D= H+1 42 (5= ph)
? ! ! | p PpT Apl+ecp-1-1+

Proof. In case p’+4-t(p—1)=> p*, we have to see that

2(p'+t(p—1)—j)==2,(p'—j)+k—I. And in case p’+#(p—1) < p*, let m be
an integer such that p”< p'4-#(p—1)<p™**, then p*"™|a,iiy,-1). Therefore
we have only to see that

2(p'+Hp—1)—j)+=2(n—p')+h—m=k—I4-2/(n—p")+2,(p'—)) -
But these results is easily obtained by similar argument in Lemma 4.1.  q.e.d.

Now, we prove the following important result which is a generalization
of Proposition 4 of [4].

Therem 4.3. Fix an integer | such that p'<n and 1<I<k—1.
For i such that p'< p*-+i<n, in G**(L"(p¥)) we have the equality

]
- ~Cplas Iy - -cphein _17\ /
BB — phTIESTWHDY BN, €7
p 1
o I, o s
and p* PPN, ; where N; ;€ GHPHITI(pt)

Proof. The proof is by induction on #. For n=p, we obtain that pk~'e?
=p*¥ "Ae and p|N by Proposition 3.1, (2) for n=i=p. Thus the case n=p is
valid.

Next assume that the statement holds in G**(L*~}(p*)), i.e., for fixed I such
that p’<m—1, 1<I<k—1, and for 7 such that p’< p’+i<n—1,

I_
pk—l+z,(”‘1_(1”+i))epl+i _ Pk—1+zl(n—1—(p1+i))p21 ),i,jej
=1
and p7 @'+, - in GPH(L Y (p)).

Applying the homorhpism g: G**(L*~*(p¥))—G**(L"(p*)) by defined g(x)=
e-x (which is well-defined by Lemma 1.1), we have the following lemma.

Lemma 4.4. Fix an integer | such that p'<n—1. 1<I<k—1 and for 7’
such that p'++1< pl-+i'<n, then in G**(L"(p*))

P 12 =+ g b+’
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k-1+2,(% <p’+">)"’21§' 7’
= - A 4 . e
.p = 2,7
- ~cpl /B ]
+Pk l+zl(n (pi+i )))\_i,,plep , and
z (plri’ - iH+11 % 2z ¢iH+11 %
PHEHETIN Ny iy PO N

where we have put i'=i+1, j'=j+1, and Xy jy=Nyr_, ;7 _,.

This Lemma stands close to the statement of Theorem 4.3., but the de-
finitive obstruction to go ahead is the existence of e?'-term at the right hand
side. So we prepare the next Lemma which is a special case of Theorem 4.3.

_ Lemma 4.5. Fix an integer | such that p'<n, 1<I<k—1. Then, in
G*(L"(p*)),
. pk_Hzl(”“i”’e’I = p"‘”’:("’i”)i;i No, j€7
and p* '~ P+ No, j+
Proof. Multiplying [p*]s(e) by p**~?", we have that
pilpz’(”_pl)as<p—1)eS(p—l)+l
S=O+le<n—p’>ap,_lep‘
+ gpzl(n—p’)aplﬂ(p_n_lep’+t(p—1) —-0.

The above second term is equal to p~ 7+, #"pe?’)
by Proposition 2.1, (3), where b is a unit.
Next,

- -l ~pl
Pk 1+2,(n p)+1lpzl(n p)as(p‘l) R for OSSSPI"'l

by Proposition 2.1, (5).
On the other hand, we obtain trivially that

2(p'—=(s(p—1)+1)) = 0.
Therefore, the above first term is given in a form of
E=1+2 <n—p’>"‘l PP CRC Y s
p 1 §jlxje , P R
=
Thus we obtain the equation
pl-1
(4.3) bphiEmmphep! — pRi+z, = ph 21 nje’
e
=2 —pl I -
+§le(n P )apl—kt(ﬁ—l)—lep +t(p—-1 s
and p=P DT,

Now we calculate the last term. In case n=p’
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tz_‘{p’x""?%pzﬂ(p_1)_1e1"+’“’"‘> =0, because p'+t(p—1)>n.
In case p’<m—1, we may apply Lemmas 4.1 and 4.4 to obtain
22 —pl l -
;le(n p)apl+t(p—1)—lep +t(p-1)

o pl-1

z (n-ph) 3 ;

= 2P0 po1y _22;‘1,]‘3]
iz

t=1

oyl - .
—I—‘lez: PTG 0t po1y-1 My, pl€?

! —-1)— 4 X
where pE@HHLTOmNH R, o and

le(t(p—l))—H ] Xt'p,

Then, applying Lemma 4.2 to each term of above sum and summing over
7, we have

gle(n-pbap,“u’_l)_lep’+t(p—1)
— Pk—H—Zl(ﬂ—pI)pg Xiej+Pk—z+zl<n—p’>xp,ep’
where pz:(P"f)+‘|Xj, PIXy.
Finally, in either case, we know by (4.3), that,
(b-+pA)pt =i phet! — Pk—Hz’("_pl)plz:-‘z Ajef, and
Pz,<p’~i)+1 ;. "

Then, we obtain Lemma 4.5.
Next return to the proof of Theorem 4.3.

k—I+2,(n—(p'+1'))+2,(i") + 1> k—I+2,(n—p"), by (4.1).

Thus the coefficient of e?'-term of the right hand side of the equation of Lemma
4.4 is divisible by p*~*+%*~# and we may apply Lemma 4.5 to this, so that we
obtain

!
- —eplait 3110y . I
pE 1+2 (= (p +iN+Z,GH+1 _217\,-8’, and PZ,CP Zand N
=
By (4.1), the above sum can be written that,
!
- I RVAR A2 : [
prorE -t .217”1‘/‘9” and pfpi+ =Dy, !
=

Therefore we obtain Theorem 4.3 in case p’<n—1, and p’'+1< p'+i<n.
The statement of the theorem in another case has ever been proven by
Lemma 4.5. q.e.d.

Corollary 4.6. For i such that p<i<min(n, p*—1), there exist the element
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w, EG*(L"(p¥)), 1 <B< p—1, which has the form e+ lower degree terms, precisely,
W; = Uy Vet L3V N; Uy P TIeTI P where i = a(i) (p—1)+B, 1<B<p—1.
=1
Moreover, if p*<i< p***, order w; < pr~1+5 9,

Proof. For 7 such that p</<min(n, p¥—1) there exists unique / such that
1<I<k—1, p’<m, and p'<i<p'+'.
Fix this /, then we obtain,

pE I+ (”—x)ez = pk~ 1+2 (=) z\' n; e/, by Theorem 4.3.
Putting w,=u,""(¢f — Z} nje’), by the sparsness of G*(pt),
A; =0 unless 7=jmod (p—1).

Therefore we obtain the desired elements w;.

5. The additive structure of G**(L"(p*))
Proposition 5.1. G*(L*(p*)) 1< B< p—1 is generated by

{u,iei>=>+8} | j =0, 1, -, min([(n—B)/(p—1)], p—1) -
(Ps is defined by (2.1).).

Proof. (1) If n<ph as [(n—R@)/(p—1)]<ps—1, min([(n—B)/(p—1)],
pe—1)=[(n—B)/(p—1)].
By Lemma 1.1, if we prove that

(I+[(==B)(p—=1]) (p—1)+B>n

then we obtain the result. But this statement is easily seen.
(2) Assume the statement is true for n—1 and we prove it for n>p*. (It

means that min([(n—B)/(p—1)], pa—1)=pr—1).

By Lemma 1.2, we obtain,

*
(5.1) 0 — Kernel * — Gzﬂ(L”(pk)) i G~2‘5(L”"(pk)) -0
w(n)
Kernel * = { ¢ it f—n=an) (p—
0 otherwise.

Thus, we have only to see that #,*™e” is the linear conbination of {u,7e/‘?~V*F}
j=0,1, -y pp—1. N
Multiplying [p*]s(e) by u,*™ 2k ™" pk, in G**(L*(p*)),
®(n)-1

(5.2) UPPe" = p SV p el . Z . by Proposition 2.1, (3).
i=0

On the other hand, by the assumption of the induction and by
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(5.1), we know,
(5.3) uljej(p'l)+5 _____“2_1 ll‘tultet(P-l)+p+uula(”)en .
t=0
Substituting (5.3) into the right side of (5.2), we obtain,

Pp-1
(1+Pl/4)u1a(")en = kE ety PTOYE
t=0
q.e.d.
Corollary 5.2. Fix integersn and 3 such thatn>B and 1<B<p—1. Then
G*P(L*(p¥)) is generated by {e?} and {w;,_.,+s} where j=1,2,---, min([(n—B)/
(p—0)], ps—1).
REMARK. In case [(n—B)/(p—1)]=0, we observe that the only generater
is €P.
Proof. In case [(n—B)/(p—1)]=0, the proof is straightfowards by Lemma

1.1.
Thus we may assume that #>p. Then we have only to see that, there is

W;cp_1+p Of Corollary 4.6. for 1<j<min([(n—pB)/(p—1)], pr—1). But we see
easily that, for such j

J(p—1+B<min(n, pt—1) .

Therefore we obtain the result.
Next we put

Vo= k= B)(p—DIHS {(k—Dbsi(n—jo—1)—B)}
3 =D+ mn—i(p— 1)~ )} +--
3] (k=D-+5(n—j(p—1)—B)} +--

+ S {k—m(n)+ 2 —i(p—1)— B)}

where M(n) = min([(n—B)/(p—1)], ps—1),
o) — {i(n) if [(—B)(p—DI<p—1,
k=1 i [(n—B)(p—D]=ps—1,

and 7(n) is a number such that

bimZ[(n—=B)[(P—1D)] < picwr+1s b1 = (P'—D/(p—1) ,

and we put p,=0.
We note that M(n)>M(n—1), m(n)>m(n—1). And it is convenient to put
V,=0if n<g.
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Theorem 5.3. Fix integers n, k, 3 such that n>1, k>2, and 1<B<p—1,
then

GH(L7(p4)=2<e?>D 23 Wjp-vepy J=1,2,
-+ min([(z—B)/(p—1)], e—1)
where {x) is the cyclic subgroup generated by x, and
order f = pri*B/B DI
order wjcyiyep = PEIHIETIOTIR,if pr<(p—1)+B< pH.
Proof. The order of the group of right hand side is less or equal than
p¥n by Proposition 3.1 and Corollary 4.6. If we prove pVn=prt+I=p/2-0D

=|G**(L*(p*))| then observing Corollary 5.2, we get the proof of all statements
of Theorem 5.3 Therefore we prove the next lemma.

Lemma 54. For n>1,k>2, 1<B< p—1° we have
V= k(14+[(n—B)/(p—1)]) .

Proof. We put Y,=k(14[(n—B)/(p—1)])-

(1) In case n< @, the proof is easy.

(2) Ifn—BE0mod p—1,as [(n—B)/(p—D]=[(n—1—B)/(p—1)], M(n—1)
=M(n) and m(n—1)=m(n).

Morcover #,(n—j(p—1)—B)—sy(n—1—j(p—1)—B).

Therefore V,=V, =Y, ,=Y,.

(3) If n—pB=d(p—1), d>1, then,

Yn = Yn—1+k .

On the other hand, for j such that p,<j< p,,,—1, therre exists only one j such
that

z(n—j(p—1)—B) = 2(n—1—j(p—1)—B)+1,
and for other j,

#(n—j(p—1)—B) = z(n—1—j(p—1)—8).

Therefore
i+1-1 pr+1-1
S =L an—jp—1)—B)} = 51 {k—l+zn—1=jp—1)—B)}+1.
1=2; =2y

Therefore,

VeV = mn—1) 3 hmm(r—1) -+ Zpen s(n—i(p—1)—B)}

I=bpn-1)
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_ :C”E_b {k—m(n—1)+2,cu_(n—1—j(p—1)—B)}

/ m(n—1)

+ S ()t Zem(n—i(p—1)—B)}

Thus we J;ave—only to see that
Vn—Vn—l =k= Yn_' Yn-1 .

If [(n—1—B)/(p—1)]=pu—1, Mn—1)=M(n)—ps—1, m(n—1)=m(n)=F
—1. 'Therefore V,—V,_,=k.

It [(n—1—B)/(p— D] < pu—1, then, M(n—1)—[(n—1—B)/(p—1)], M(n)—
[(n—B)[(p—1)]=M(n—1)+1, m(n—1)=i(n—1), m(n)=i(n).

In this case

ST hmln) sl —i(p—1)— )} = k—ilr) .

Therefore, if we put

W= E {k—i(n—1)+2icn(n—j(p—1)—B)}
—,-:[:in_‘” {k—i(n—1)42;n-(n—1—j(p—1)—PB)} ,

we have only to see that W=i(n)—i(n—1).
(3,a) If d<picn_1y+1, then i(n)=i(n—1).
For j such that p;,_,, <j < M(n—1), we have,

n—j(P—l)—ﬂ<(P,-(,,_1)+1~j) (p—I)S(Pi("—l)‘*'l_?i(”-—l)) (P—'l)

= pIATDHL_ D

Therefore,
Zian-n(m—j(p—1)—B)=0, and also

Zim-n(n—1—j(p—1)—B8) = 0.

Hence , W=0=i(n)—i(n—1).
(3’b) If d=picn-1>+15 then Z(n)=z(n—1)+1
As same as above,
Mn-1 .
j=p zi(n—l)(n—l—](P_l)_B) =0.
i(n-1)
But, n—pim_1(p—1)—B=p* P+ —pi”" and for j such that j> p;,_,,, we
have that, n—j(p—1)— B < pin~ D+ —pi®=D,

Therefore, 33 {zscn_(n—j(p—1)—B)} = 1.
i=Piy_1>

Consequently W=1=i(n)—i(n—1). Thus we have completed the proof of this
lemma. q.e.d.
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6. The additive structure of K(L"(p*)) and ;r?)’(L”(p"))

By Theorem 5.3 we obtain,

Theorem 6.1. K°(L*(p*))= é<w,’> where M=min(n, p*—1), and order
w/=pF HATTE g pt <t ptt. -

Proof. If 1<t<p—1, put w,/=¢’, and if p<¢, put w,/=w,.
As is well-known, for a finite CW-complex X and for any odd prime p,

o~ (-2 "
KO(X)QZ = gl G4%(X).
Observing this facts and Proposition 2.11 of [7], we obtain the next theorem.

Theorem 6.2. For any odd prime, p, and for any integer k>2,

[a£/2]
SY Lw,> for n=0 mod 4

t=1
[x/2]

DV Lw,/>BZ,  for n=0 mod 4

t=1

KO(L(p*) =

where M=min(n, p¥—1) and order w,,'=p*~ 51" 70 if pi <2t < p'+t.
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