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1. Introduction

A multitype Galton-Watson process with discrete time (abbreviated to
MGWP) is a mathematical description of a population growth involving several
types of individuals, where each individual produces offspring by a certain
stochastic law independently of others. Suppose that one /-type individual pro-
duces x1 individuals of 1-type, x2 ones of 2-type, •••, XN ones of N-type during a
unit time with probability Pf(x) (χ=(x\ • ••, χN)). Then an MGWP is defined
as a Markov chain on the space S of all Λf-tuples of nonnegative integers, with
the one step transition probability

(i.i)

P1* ••• *PX* ••• *P^* ... *PN(y),

if

if x =

where * means the convolution of distributions. Since the state Oe*S is a trap
for our process, invariant measures on the whole state space S are trivial in most
cases. But invariant measures of the MGWP restricted onto S— {0} are not
trivial in general, and it is important to study them. For the case of ΛΓ—1, many
authors have investigated this subject (cf. Harris [4] pp. 22-31, Athreya and Ney
[2] pp. 67-73, 87-93]. Especially, Kesten, Ney and Spitzer [7] gave the definitive
results on the existence and uniqueness of invariant measures of critical simple
GW processes.

In this paper, we shall prove the existence and uniqueness of invariant
measures on S— {0} of a critical, positively regular and nonsingular MGWP,
under the hypothesis of finite x2 log ̂ -moments (cf. (H. 1)~(H.4) in §2). The
statement of the theorem is given in section 2. In section 3 we shall prove a
basic lemma which was proved in [7] ((2.16), p. 517) in the case of critical simple
GW processes. It will be proved by elaborating those results in [5] since the
proof in [7] does not seem applicable to the case of multitype GW processes.
Finally, in section 4, we shall prove the theorem with the aid of the basic lemma.
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2. Definitions and the statement of Theorem

For s=(s\ > ,sN)(=RN and>=(/, ~.,yN)<=Sy we define ^=(j1)jrl-(ίΛr)jrJr,
||j||=max \s*\ and |;y|=/H ----- \-yN. Special vectors (0,0, ••-,()) and (1, 1, ••-, 1)

l^i^Jf

are abbreviated simply as 0 and 1 respectively.
We denote the MGWP defined in section 1 by X=(Z(ri),Px\ n=Q, 1,2, •••,

x^S. The probability generating function (p.g.f.) F'(s) of the distribution
{P'( y)} is given by

Then, by (1.1), we have

where F(s)=(F1(s)9 •••, FN(s)). Therefore it follows from the Markov property
that

(2.1) Σ PJ(x, y>y = F(n; *
y&s

where Pn(x, y)=Px(Z(n)=y) and F(n\ s) is the w-th iteration of F(s):

F(0; s) = s, F(n+l; s)=F(F(n; s)), n = 0, 1, 2, ... .

The mean matrix M==[w5]£j=1 is defined by

where Fί

j(s)=dFi(s)IQsJ\ It is well known that the (/, y)-comρonent ml

5(n) of the
w-fold product Mn of the matrix M is equal to

«Kn) = Ffti; \-)=^PJ,et,y\ l<i,j<N,

where ef is the unit vector with ι-th component equal to 1. Since every wj>0,
M has a nonnegative characteristic root p with the greatest absolute value. This
root is called Perron- Frobenius root (P~F root) of the matrix M.

In this paper, we shall deal with those MGWP's which satisfy the following
hypotheses :

(H.I) (Positive regularity). There exists a positive integer n such that
m](n) > 0 for all 1 < i, j<N.

(H.2) (Critical property). The P—F root p of the matrix M is equal to 1.
(H.3) (Nonsingularity). Every p.g.f. F*(s) is not of homogeneous linear

form.
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(H.4) (Moment assumption). For each l</,y<Λf, it holds that

In this paper a nonnegative measure {v(x)} on S— {0} is said to be an in-
variant measure of the MGWP X if

(2.2)

By hypothesis (H.I), the P— F root p of M is simple and there correspond
the unique right eigenvector u=(ul, •••,- UN)I:> and left eigenvector v=(vly ~,VN)
whose components are positive with the normalization

(2.3) | f f I = Σ «' = 1, ™ = Σ »<«' = 1 .
V ' ι=l ί=l

It also holds for some 0<px<p and K^Q that

(2.4) ||M"-M*||<l!:ιpΓ, n = 0, 1, 2, ... ,

where M*=[roΉf,βl=[ιΛ;Jί j=1 and ||M*-M*|| = max |ifij(n)-iii*'| (cf.
ι<ι,y<jr

Gantmacher [3], Joffe and Spitzer [5], and Harris [4]).
We set

B = ±fgmViFW-)u>ti* ,

where JFJΛ(ί)=82JPί(ί)/9jί9j*. Then it follows that B> 0 holds by the hypotheses
(H.1)~(H.3) (cf. [5] p. 429).

It will be seen in the sequel that

(2.5) G(x, y) = Σ PJ(x, y)< ~ , *, y e 5- {0} .

The purpose of this paper is to prove the following theorem.

Theorem. Under the hypotheses (H.1)~(H.4), there exists a unique invariant
measure {μ(x)} of the MGWP X up to a constant multiple. Further it is given by

(2.6) μ(y) = -2- lim n2Pn(x, y) = Hm G(z, y), x, y,ztΞS- {0} .

Throughout the following sections, we assume (H.1)~(H.4).

3. Basic lemma

Here we shall introduce some order relations between two vectors ^=(^1, •••• ,
if) and s2=(sl, •••, if): ^<ί2 means ίί<ί2 for all 1</<ΛΓ. Similarly sl<.s2

1) We shall not distinct row vectors and column vectors in this note.
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[resp. ίi<ί2] stands for ^<ί2 and ^Φί2 [resp. ί{<ίj for all 1</<Λ/]. These
notations are extended for matrices in a natural way.

The purpose of this section is to prove the following

Basic Lemma. There exists the finite limit

(3.1) U(ή = Inn B n2v{F(n; s)-F(n\ 0)},

Furthermore, U(s)3pQ and

(3.2) lim n2{F(n\ s)-F(n\ 0)} =^-u9

We start with some preliminary remarks. We set R(n\ $)=! — F(n\ s),
R*(n\ s)=\—Fi(n\ s) (i.e. i-th component of the vector R(n\ s)), rn(s)=vR(n\ s),
R(n; s)=R(n; s)/rn(s), T(n\ s) = F(n\ s)-F(n\ 0) = Λ(n; 0)-Λ(n; s), T<(n;s) =
R\n\ 0)-^(«; s) and tn(s)=vT(n\ s)=v{F(n\ s)-F(n\ 0)}. We often omit the
variable s like R(n\ s)—R(ri), etc.

The Taylor expansion of F'(s) from the left at s= 1 gives

(3.3) l-F(s) = (M-E(s))(l-s),

(3.4) Eft) = \\F](\-)-F](\-(\~s)θ)}dθ = Σ55

(3.5) B]k(s) = ΐ(\-θ)F]k(\-(\-s)θ)dθ
Jo

where S{ is the Kronecker's delta, (cf. Joffe and Spitzer [5] pp. 426-427 or
Ogura [8] (4.15)). Obviously, (3.4) and (3.5) imply that

(3.6)

(3-7)

Replacing ί in (3.3) by F(n— 1 ί), we obtain

(3.8) R(n; s) = (M-̂ («- 1 s))R(n- 1 ,) ,

where

(3.9) £$(/; *) = E%F(l't s)) = B^F(l; s))R*(l; s) .

Before the proof of Basic Lemma, we need to prepare several lemmas. We
note that Lemma 1~4 are valid under the hypothesis of finite second moments
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i.e. F]k(\ — ) < oo instead of (H.4).

Lemma 1. (Joffe and Spitzer [5])2) Ifn-*oo, then

£>

so that limnrn(s)=ί/B and lim R(n\ s)=u for 0<ί<l.
»-><» x ' n *~ x

Lemma 1 implies that R(n\ s)=rn(s)u-\-o(^ln).
The next lemma is a refinement of this fact.

Lemma 2. If n-+o°, then

R(n; s) = rn(s)u+0

so that R(n\ s)=u+O((log n)/n).

Proof. We fix an s in 0<s<l and abbreviate it in the descriptions. Using
(3.8) inductively, we have

R(n) = (M-E(n-\))(M-E(n-2))'-(M~E(n-m))R(n-m) .

Further, applying Lemma 1 to (3.9) and noting that m]=Q yields Et

j(l)=Q by
(3.6), we have

0<E(J)<yM, 7=1,2, -

for some constant K>0. Hence it follows that

Π (l-— }MmR(n-m)^R(n)^MntR(n-m) ,
l = n -m\ £ /

if n-m is large enough. But (l-Kj^M* <Mm^(l+K1pT)M* by (2.4), and
M*R(n—m)=rn_mιι by the definition. Hence we have

(3.10)

< T l - ( l - K l P ΐ

and simultaneously, by taking the inner product with the left eigenvector vy

2) In their paper there is an error : the inequality (4.42) should be read as

But their assertion is valid.
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(3.11)

Multiplying (3.11) by the right eigenvector «, and subtracting it from (3.10), we

obtain

j>ϊ+ "H f }rn_mu', !<*<#.
ι=n-m l J

Now we take a constant £> l/(— log p^ and set m~m(n)=[c log n]. Then it is
clear by Lemma 1 that

, AΊ fn-tnW^, , ... " ^> «•=» " ' — >
log w (w—m(n))log n

n2 g r,.̂ ^ g'Vfrlogn]
logΛ/-"-1"^ / (w—m(n))2 log w

Hence we have shown the boundedness of the sequence |Λ'(w)—rnu
i\n2llogny

which proves the first formula of the lemma. The second formula follows from
the first one and Lemma 1.

Lemma 3. If w->ooy then

/-(*) = rn(0)-rn(s) = θ((^^)\ 0<K<1 .

Proof. Taking the inner product of (3.8) and the left eigenvector v with
the aid of (3.9), we have

(3.12) rn(s) = r^-b^r^sy ,

where

(3.13) bg(s) = Σ v<BMF(l; s))fr(l; s)R*(l; s)

(note that r;(ί)>0 for all 0<*<1 and 7=-0, 1,2, •••). From (3.12) it follows
that l-ό/(ί)r/(ί)>0 and

1 1 _ fti

Hence

r0(s)
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= /„-//„ (say).

Since 0<ί<l and .F(w; 0)/*1 as w-»oo, one can find a positive integer /„ with

0; 0)<1. Then, since ό,(ί) and ό^O) are bounded in / and r/(ί)-»0,
0 as /->oo, we have

; 0)-ίχ/; 0)}

for some constant K>Q. Hence

(3.15)
V ^

To estimate /„, we use the equation

ί,y,*=ι
jf

-j- ^j VjBjjg(F(l) 0))v/v^(/j s)—RJ(ly (j]fR (I, s)

+ ΣJ ViB^Ffr 0))JS>(/; 0){^(/; s)—R*(l', 0)} .
I',/,* = 1

Then Lemma 1 and 2 yield the estimate

I/,

for some constant K>0. But since

CO

/<5 ι^7\ Π<** ^Γi /R* (Ή(Ί c^^ R' (ΉfΊ ΓΛM

Σ {BJ*(ίX/+4; 0))-β$*(F(/; 0))}

by (3.7), and since ΣOogO/^OίGogn)2) as w->oo, it follows that 7M=O((logw)2).

Now combining this fact with (3.14) and (3.15), we obtain
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Hence by virtue of Lemma 1 we have

rn(0)-rn(s) = 0((log «)%(,) ,„(()))

Lemma 4. If n-+ooy then

T(n; ί) = tn(s)u

Proof. Noting that Bt

}k=Bt

k}, we have from (3.8) that

(3.18) T(n) = (M-G(n-l))T(n-l)+D(tt-l) ,

where G](l) = Σ B^F(l; 0)) {**(/; 0)+R\l; *)} ,
A = 1

and /)<•(/) = H^TO *))-BMF(l; 0))} JZ>(/; .)̂ (

Since ^5=0 implies ^5(^)^0 and hence B'jk(s)= 0, l<Λ<A/ Γ by (3.5), it follows
from Lemma 1 that

(3.19)

Further it holds that

(3.20) 0<Z>(/)<^, dl = θ as /

Indeed, by (3.5), Lemma 1 and 3, we have

(3.21) 0<Bl

]k(F(l; s))-B^F(l', 0))

I

for some constant K>0, where we have used the relation

Π a*- Π A - Σ «ι - ct<-l(ai-βi)βi+1 - ^Λ
ί=l ι=l ί=l

in the second inequality. We obtain (3.20) from the definition of D(l) and

Lemma 1. Now using (3.18) repeatedly, we have

T(n) = (M-G(n-\)) - (M-G(n-m))T(n-m)

+ Σ (M-G(n-l)) ̂  (M
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Hence, by the similar arguments as in the proof of Lemma 2, we can use (3.19)

and (3.20) to obtain

if n— m is large enough. Take the same m=m(ri)=[c log n] as in the proof of
Lemma 2. Then by virtue of Lemma 3 and (3.20), we have

- - n-mω— — - -
\log nl (n—m(n))2 log n

, as

, / - Λ - f » Λ -j , ; , v v o / , r; >og n/ /=»-mC») / (w— m(w))3(log w)3

— Y Σ ^^^MM^-M^Ί^og^]
log w/ /-«-»c«3 («— m(n))3(log w)3

Hence the sequence | T\n)— tnu*\(nllog nf is bounded in n, which completes

the proof of Lemma 4.

Lemma 5. If n-+o°, then

(3.22) r

Moreover

(3.23)

Proof. First we note that (3.12) yields

(3.24) ± =
f*

, bl-B+Bblrlwhere c/ = — — - — - — LJ— .

We shall show that ΣΓ-i k/ 1 // < °° by proving 2Γ-ι I bl—B \ // < oo . Using a
decomposition of B — bt similar to (3.16), we have an estimate

On the other hand
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\}dβ

where a /\ ό=min{fl, b} . Hence it follows from the hypothesis (H.4) that

(3.25)

I / = ι / /-[WJ

which proves that ΣΓ-J*/—B\/l<oo and therefore ΣΓ-ιk/l//<°°. Since
0^0 as /-»oo, (3.24) yields

1 , 1 ts1

(3.26)
J_

nB

1 nB /=<>

nB 1 1 "-1

ι+-^+Λ Σ*/

7Γ fΓ / = o

for some constants ίΓ2, ̂ 3>0. But

eβ 1 Λ — 1 co oβ
V~1 A SΓΊ I I V~1 I 1 V~

/=o /=o

which proves (3.23). The first relation (3.22) is a direct consequence of (3.26).

2«»01 £« I < °°

_ 2 _

w

e limit

Lemma 6. Suppose that Sn=o( —) (as n->oo)
\ n /

we set

(3.27)

then for each 1=1,2, •••,

(3 28)

Moreover there exists a constant K>0 such that

(3.29) τ*2Π(l-/3m)<JΏ2 for every n and

Proof. We take an mQ satisfying 0</3JW<1 for all Since
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l — β)= —βm—ηm,ηm = θ(—\ W-»oo ,/ m/ i m imt *m \wiz/

it follows from (3.27) that

iog{«' Π;(i-/3m)} = 2(iog n- Σ ̂ )+2 Σ ~- Σ (εm+vm)

for 7>m0. The right side converges as n-+oo and hence the /?*(/) exists for
I^m0. For /<m0, we have only to note that /3*(/)=/3*(w0) ΠSllXl—^mi-
Inequality (3.29) is clear since

log {n2 U(l-βm)} = 2 log n- gA_ g (̂ m+ )̂

< 2 log w- JΛ— rfΛJ+log K
JI OC

Now we are ready to prove Basic Lemma.

Proof of Basic Lemma. Multiplying the left eigenvector v to the both
sides of (3.18), we have

tn+1 = tn-vG(ri)T(ri)+vD(n) ,

which is rewritten as

(3.30) ίβ+1 = (l-βn)tn+7n

where

βn = vG(n)u

and

γΛ = vG(n)(tnu-T(n))+vD(n) .

Since

β« = Σ
ί tΛ*"i

= -+ Σ
w ί,/.*=ι

(n 0))-- FWI

^

it follows from Lemma 2 and 5 that {βn} satisfies (3.27). Next we observe that
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(3.31) ΣXI y.Koo.
«=o

Indeed, Lemma 4 and (3.19) imply that

The finiteness of Σw=0ttVD(«) is a direct consequence of Lemma 1 and (3.17).
Now using (3.30) repeatedly, we have

n2tn+1 = n2ί (1-&.K+ Σ>2 Π (l-βw)
« = 0 / = 0 « = / + !

= In+Πn+ΠIn (say).

It is obvious that lim In=β*(Q) and lim n2fγn=0. Each term of Πn converges
Λ-^oβ X ' n^ oo

as ft^oo and it is dominated by Kl2\rγl \ . But since (3.31) is valid, the conver-
gence of IIn follows from the Lebesgue dominated convergence theorem. Since
tn= v{F(n\ s)—F(n\ 0)} we have proved (3.1).

To show the nontriviality of the function U(s), we note that

by (3.12), (3.13) and Lemma 1. Then it holds from (3.1) that

(3.32) U(F(Q)) = lim Bn2(rn(0)-rn+1(0)) - 1

Finally, it is clear that (3.2) follows from (3.1) and Lemma 4.

4. Proof of Theorem

In this section, we shall prove the theorem stated in §2. The next lemma
is a direct consequence of Basic Lemma by the standard argument on a convergent

sequence of analytic functions with nonnegative coefficients (eg. [7] p. 518 for a
complete proof).

Lemma 7. The function U(s) in (3.1) is analytic in \ \s\ \ < 1 and it is expressed

by the power series with nonnegative coefficients μ(x)y x^S— {0} :

(4.1) U(s)=χΣ(μ(x)*x>M<l,

and

(4.2) μ(x) = lim Bn2 Σ vfPj(ei9 x) .

Now we shall restate the "existence" part of the theorem and prove it.

Proposition 1. The measure {μ(x)} on S— {0} is an invariant measure of

the MGWP X. Further it holds that
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(4.3) lim n2Pn(x, y) = —μ(y)y x,y(ΞS— {0} ,

and

(4.4) lim G(x, y) = μ(y

Proof. From (3.1) and (3.32), we have

Hence, comparing those coefficients of s* of the above equation, we see that
{μ(x)} is an invariant measure of X.

For (4.3), it is enough to show that

lim n2{F(n; s)*-F(n; 0)*} = —U(s
»->«> JJ

But this is clear from (3.2) since

(4.5) F(n; s)*-F(n; 0)* = Σ Σ F\n; x)χl - F'~
ί=l /=!

'̂(n; ί)*'"1 {F'(n; *)-F'(n; 0)}F'(fi; Oy-^'

We note that (4.3) yields G(Λ?, j>)<oo.
To show (4.4), we fix an 0<$<€l and take any £>0. Then, by means of

Lemma 1 and (3.2), there exists a positive integer nQ such that

'(«; ,)<eχp -

exp

and exp { — }<!+£ for any
IWjD J

Hence it follows from (4.5) that

,Σ ̂  exp {

But since

lim gJ
ι*ι * ~ Ή «2β I nB I Jo ί
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Km Σ P,(x,y)s> = lim{F(n;S)
x-F(n

\* |->~ yGS-(o] 1*1-*°°

we have

ιf Σ G(x,y)s>

< lim sup 2 G(x,y)sy< (1+€?U(s).
r V '•"

Because £>0 is arbitrary, it follows that

lim Σ G

so that we have (4.4) by the standard arguments.

To prove the uniqueness of invariant measures, we define the positive in-
teger n^ and the distributions {f**(y)} on S by

n, = min {n^ 1; F(n\ 0)>0} ,

(4.6) F(s) = Σ PW** = F'fa s),

We denote the MGWP corresponding to {P*(y)} by X=(Z(n\ Px). It is easily
seen that the MGWP Z also satisfies the hypotheses (H.1)~(H.4) as well as

(4.7) PΛ(x, 0)>0 for n>l,x^S,

where Pn(x, y)=Px(Z(n)=y) (especially for (H.4) cf. Athreya [1] or Sevastyanov
[9] Chapter III, §3). Let U(s) be the function associated with % in Basic
Lemma, and μ(y) the coefficient of sy of U(s). By Proposition 1, {fi(y)} is an
invariant measure of % and

(4.8) lim G(x, y) = μ(y), y^S~ {0} ,
l*l->°"

where G(x, y)=*ΣPn(x, y). By the branching property (2.1), it also holds that

(4.9) Pn(x, y) = fife, )* *Pn(e» )* *Pn(eN, )* *Pn(eN, )(y)
'

As in [7], we set

T(x) = {y^S- {0} G(x, j)>0}, Λ;e5- {0} ,

Lemma 8. T= T(x) for all x^S- {0} .

Proof. Since (4.9) implies Pn(y9 z)>Pn(y—x, 0)P*(#, z) for all x, y,z<=S,
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with ^>ΛJΦO, it follows from (4.7) that

(4.10) 2X*)c

Next we shall show

(4.11) T(ei)=T(e.\

By the hypothesis (H.I), there is a positive integer nQ such that

(4.12) J».,(2'(

Hence there exists an y{j > ej(yfj e *S) such that PΛo(£, , J>, y) > 0. It follows from
this and the Markov property that Γ(^)=)Γ(y/y). But Γ(y,v) => Γ(*y) by (4.10),
so that Γ(e, )Z)Γ(^y), which proves (4.11).

Finally, take an Λre*Sf— {0} and fix it. Because B>0 (cf. section 2), it is
clear that PeiQ( \Z(l) | >2)>0 for some 1 </0<ΛΓ. Hence, from the property of
iteration of p.g.f.s', it holds that PeiQ( \ Z(n2) \ > \x\)>0 for some integer nz\ i.e.

Pnz(eitf #)> 0 for some | # | > | # | . We partition the set

/= __
zl ZN

such that Iir\I..=φ, iΦj, and #/,->#'". (4.12) assures that for each e^I, there
exists ye e S such that yβ > e and P*0(£, 3> *) > 0 if e e /y. Then, setting jy=]>

we havey^tx and jP«0(#, jy)>0 by (4.9).

Hence by the Markov property it follows that Pn0+n2(ei0, y)>® and
Since T(y)^T(x) by (4.10), it holds that T(e^T(x).
Combining this fact with (4.10) and (4.11), we obtain the conclusion.

Corollary. Every non-trivial invariant measure for the MGWP X is positive

on T and zero off T.

The proof is not difficult and will be omitted (cf. [7] p. 521).
Applying the Martin entrance boundary theory to the MGWP % restricted

on Tw {0}, we have the following proposition from (4.8) and Lemma 8 (cf. [7]

pp. 521-522 or [6] pp. 366-368 for complete proofs).

Proposition 2. Each invariant measure of the MGWP X on S— {0} is a
constant multiple of the measure {fi(x)}.

Now the "uniqueness" part of the theorem is proved since every invariant
measure of the MGWP X is also an invariant measure of the MGWP X.

SAGA UNIVERSITY
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Added in proof.

After this paper was submitted, we received a preprint from Dr. Fred Hope,

entitled "The critical Bienayme-Galton-Watson process." (to appear in "Sto-

chastic Processes and their Applications"), where the same problem is treated

without moment assumptions.




