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Introduction. Let A be a commutative ring with 1. For any ideal i of
Ay let r(i) denote the radical of ί, which is the set of all elements of A some

power of which lies in i or, equivalently, the intersection of all prime ideals of

A which contain i. lip is a prime ideal of A and X is a unital ^4-module, let Xp

denote the module of fractions of X with respect to the complement of p in A.

If q is a primary ideal of A] then p=r(q) is a prime ideal of A and the ideal-
length of q, denoted by λ(<?), is the length of a composition series for the
^4-module Ap/q Ap.

In the sequel, let B be a given commutative ring with 1, let G be a given

finite group of automorphisms of B, and let A be the subring of G-invariant

elements of B. For any prime ideal p in A, G is represented as a group of

automorphisms of Bp by the formula σ( — )——±-ί- for σ e G, i e 5, and ί e ̂ 4-ί>
\ s / s

and ^4/» is the subring of G-invariant elements of Bp by [4, Chap. V, §1, Prop.
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23]. Letting A' be an A-subalgebra of £, A'p is an A /,-subalgebra of Bp and

the following property will be considered.
(P) Ap is a separable A ̂ -algebra for every prime ideal p in A.
If A' satisfies property (P); then A'p is a finitely generated, projective ^-module
for every prime ideal p in A, according to the main theorem of [8]. In
particular, Ap is a flat A ̂ -module for every prime ideal p in A] and therefore

A' is a flat ^-module by [4, Chap. II, §3, Corollary to Prop. 15]. But let A'
be any ^4-subalgebra of B which is a flat ^4-module. Since B is integral over A
[4, Chap. V, §1, Prop. 22], A1 must also be integral over A. Consequently,
every prime ideal of A is the contraction of a prime ideal of A' [4, Chap. V,
§2, Thm. 1], and A' is a faithfully flat ^4-mdule by [4, Chap. I, §3, Prop. 9].
Then for any ideal i of A^ the inclusion map of i into A induces an isomorphism
of i®AA' onto i A' since A' is a flat ^4-module, and Af\(ί A'} = i by [4,

Chap. I, §3, Prop. 9]. Finally, if A' is an ^4-subalgebra of B which satisfies
property (P); then Ap/p Ap is a separable .̂ /p ^-algebra by [3, Prop. 1.4],

and so A' is an unramified ^4-algebra as defined in [1].

1. Ideal theory. Notice that for any ideal i of A, B ί is a G-stable ideal

ofB.

Theorem 1. Assume that B satisfies property (P), i.e. Bp is a separable

Ap-algebra for every prime ideal p in A. The mapping /ΛΛΛ-> A Π / is an
isomorphism of the lattice of G-stable ideals of B onto the lattice of ideals of A, and

the inverse of this isomorphism is the mapping i ΛAΛ-> i B.

Proof. It is evident that the mapping IW^AΓ\I is a homomorphism of
the lattice of G-stable ideals of B into the lattice of ideals of A\ and, to complete
the proof, it is only necessary to show that the mapping ί ΛΛMί J3 from the lattice
of ideals of A into the lattice of G-stable ideals of B is the inverse of this homomor-
phism. It was noted in the introduction that A (Ί i B=i for any ideal i of A, and
it remains to show that ( A Γ \ I ) B=I for every G-stable ideal /of B. Letting

/ be a G-stable ideal of B, however, (^n/) B^/; and (Aϊ\I) B= I if and
only if [ ( A Γ \ I ) B]P=IP for every prime ideal p in A [4, Chap. II, §3, Thm. 1].
Moreover, for any given prime ideal p of A, it is readily verified that Ip is a
G-stable ideal of Bp, it follows from [4, Chap. II, §2, Prop. 18] that

[(Anl) B]p = ( A Γ l I ) p Bp9 and (Anl)P = ApΓ(Ip by [4, Chap. II, §2,
Remark following Thm. 1], Consequently the proof may be restricted to the

case in which B is a separable ^4-algebra. Accordingly, assume B is a separable

^4-algebra and let Ω— HomA(B9 B). Since Ω is generated as a left JS-module

by G [8, Prop. 3], / is a submodule of the left Ω-module β; and it is readily

verified that the correspondence /W->/(l) is an ^4-module isomorphism of
HomΩ(S, /) onto AΓ\I. Also B is a finitely generated, projective A -module by
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the main theorem of [8], and it follows from [2, Prop. A.3] that the trace ideal

of B in A is all of A. Therefore the homomorphism of (AΓ\I)®AB int° Λ

which maps a®b onto ab for a&AΓ\I and b<^B, is an isomorphism by [2,
Prop. A.6]; and so ( A Γ i I ) B=I.

If A' is an ^4-subalgebra of B which is G-stable, then G may be represented

as a group of automorphisms of A' for which A is the subring of invariant

elements by restricting the elements of G to mappings on A'. Therefore
theorem 1 may be applied to any G-stable, ^4-subalgebra of B which satisfies
property (P).

Lemma. Let i be an ideal of a commutative ring A such that r(ί) is the
intersection of finitely many prime ideals of A.

( i ) If p is a minimal element in the set of all prime ideals of A which
contain i, then the set q= {x^A\i:xA^p} is a primary ideal of A and r(q)=p.

(ii) If r(i) is the intersection of finitely many maximal ideals of A then i
has a unique irredundant representation as a finite intersection of prίmay ideals
of A, there are only finitely many maximal ideals of A which contain i, and they
are the associated prime ideals of i.

Proof. Let p be a prime ideal of A which contains /, and let
q= {x^A\i:xA^p}. Note that ip is an ideal of Ap> while q is the contraction

of ip and it is the kernel of the canonical homomorphism of A into (A\ϊ)^pjD by

[4, Chap. II, §2, Prop. 10 and Prop. 11]. If a and b are elements of A such

that ab^q, then there exists c^A such that abc^i but c&p. If #$#; then

i: aAcip, in particular bc^p, and so b^p. Since i^p, r(i)^p\ and, letting

Pι>'">Pn be distinct prime ideals of A such that r(i)= f}pk, there must exist an

integer k, l<k<n, such that pk<^p. Thus, if p is a minimal element in the
set of all prime ideals of A which contain /; then p=pk for some integer k,

l<k<n, say p=ply andpk^p for ΛΦ1. Therefore Γ(pk^py and there exists
k = 2

n

£G Π pk such that c&p. Now if b^p, then bc^r(i) and there exists a positive
fe = 2

integer m such that bmcm<=i. But since c^p, cm ^p and therefore bM<=q.

Thus q is a primary ideal of A and r(q)=p by [10, Chap. Ill, Thm. 13],

Now suppose that p^ -^pn are maximal ideals of A. In this case, if p is
any prime ideal of A which contains /, then p=pk for some integer &, 1 <k<n.
Therefore ply , pn are the only prime ideals of A which contain /, and each of
them is a minimal element in the set of all prime ideals of A which contain i.

n

Setting qk={x^A\i\ xA^pk} for l<i<n, i= f\qk since the canonical

homomorphism of A\i into the direct product Π(-4/ί)c^A/*) 1S injective by [4,
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Chap. II, §3, Cor. 2 to Thm. 1]. Thus a finite, irredundant primary represen-

tation for z, in which the primary components are isolated, is obtained; and

this representation is unique by [10, Chap. IV, Thm. 8].

Theorem 2. If A' is an unramified A-subalgebra of B and a flat A-module,

and q is a primary ideal of A then :

( i ) q A' has a unique irredundant representation as a finite intersection of

primary ideals of A '

( i i) The associated prime ideals of q A' are the prime ideals of A' which lie

over r(q)

(iii) The primary components of q A' lie over q\

(iv) For any primary component q' of q°A',

Proof. Let A' be an unramified ^4-subalgebra of B which is a flat

^4-module, let q be a primary ideal of A, and let p=r(q). Then q Ap is a
primary ideal of Ap, p Ap is its radical, and q and p are contracted ideals by

[10, Chap. IV, Thm. 16]. In particular, q is the kernel of the canonical
homomorphism of A into Ap/q Ap. Since A' is a flat ^4-module, q®AA' is

naturally isomorphic to the kernel of the canonical homomorphism of A' into
A'p\q Af

p\ and therefore q A' is the contraction of the ideal q A'p. Also, for

any prime (resp. primary) ideal q' of A', A Π q' is a prime (resp. primary) ideal
of A, (Af}q') Ap=Apn(q' Ap) by [4, Chap. II, §2, Remark following Thm.

1], and \(q')=\(q' Ap) while \(q)=\(q Ap) by [10, Chap. IV, Cor. to Thm.
26]. It now follows from [10, Chap. IV, Thm. 15, Thm. 16, and their corollaries]

that if the theorem is verified for the ideals q Ap and q Apy then it is true for
the ideals q and q A' . Thus it is sufficient to prove the theorem under the

additional assumptions that A is a local ring, p = r(q) is the unique maximal
ideal of A, and A'/p A' is a separable algebra over the field A /p. Then

A'lp A' is a finite dimensional algebra over A\p by [9, Prop. 1.1], it is a semi-

simple algebra by [5, Chap. IX, Prop. 7.3 and Prop. 7.7], and it follows readily
that p A' is an intersection of finitely many maximal ideals of A'. Conse-

quently p A' must be the radical of q A'] and by the preceding lemma, q A'
has a unique irredundant representation as a finite intersection of primary ideals

of A' and the associated prime ideals of q A' are the maximal ideals of A'

which contain q A' .

Any prime ideal of A' which lies over p contains q A', and therefore it
must coincide with one of the maximal ideals of A' which is an associated prime
of q A' [10, Chap. IV, Thm. 7]. Now let q' be a primary component of q A'

and let p'=r(q'). Then^Π^' must coincide with the maximal ideal p=r(q).
According to the proof of the preceding lemma or [10, Chap. IV, Thm. 8]
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q'= {x^A'lq A': xA'^p'}, while q= \x^A \q: xA^p} since q is a primary

ideal. Givenx^A, (q: xA) A'=(q A': xA')by [4, Chap. I, §2, remark following

Cor. 2 to Prop. 12], since A' is a flat ^4-module. If #$#; then q: xAς^p,

q A'\ xA'<^p A'^p', and x<ξq'. Thus A Π q' ̂ q, but clearly q=AΓ}q A'<^

AΓ\q', and so ^40?'=^. Since A is a local ring with unique maximal ideal

p, AP=A and \(q) is the length of a composition series for the .4-module A/q.

Let ί and j be ideals of A such that q^j^i^p and /'// is isomorphic as an

^4-module to A/p. Since A'p, is a flat ^4-module by [4, Chap. II, §3, Prop. 14];

q A'p,<^j A'p,^i.A'p,^p.A'p, and i°Ar

p>\j.A'p,— (i\j}®AA
r

pf—(A\p}®AA
r

p,~

Ap'Ίp A'p' as ^ϊ'-modules. But^ ^/^po^').^/ coincides with the maximal

ideal p'-A'? of A'p, by [10, Chap. IV, Thm. 17], and it then follows readily that

As indicated in the introduction, any ^4-subalgebra of B which satisfies

property (P) will satisfy the hypotheses of theorem 2.

2. Examples and an existence theorem. The purpose of this section

is to investigate further the property (P). The following example shows that

the ring B may satisfy property (P) but fail to be a separable ^4-algebra.

EXAMPLE 1. Consider a ring of infinite sequences of complex numbers

with the usual component- wise addition and multiplication of sequences, and

let B be the subring of those infinite sequences for which all but finitely many
terms of the sequence are real and equal. An automorphism σ of B is deter-
mined by assigning to each element b of B the infinite sequence whose terms

are complex conjugates of the terms of b, and σ2 is the identity map on B.
Letting G be the group consisting of σ and the identity automorphism of B,

the subring A of G-invariant elements of B consists of all infinite sequences of

real numbers for which all but finitely many terms of the sequence are equal.

For any prime ideal p in A, it is readily verified that either there exists a positive
integer k such that p consists of all elements of A with zero k-th term, in which

case Bp is isomorphic to the field of complex numbers and Ap is isomorphic to

the subfield of real numbers, or p consists of all elements of A with only finitely

many non-zero terms, in which case Bp and Ap are equal and isomorphic to the

field of real numbers. Therefore B satisfies property (P). But it is also easily

seen that B is not a finitely generated ^4-module. As a consequence of the

main theorem of [8], B is not a separable ^4-algebra.

The next example demonstrates that B may be an unramified yί-algebra

and a flat ^4-module, but fail to satisfy property (P). Thus property (P) is a

sufficient but not necessary condition for the conclusions of theorem 2 to be

obtained.
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EXAMPLE 2. Let Φ be a field of characteristic not equal to two, and let
{xi\i=l9 2, •••} be a countably infinite set of elements which are algebraically
independent over Φ. Letting B{ be the localization of Φ[X ] with respect to its
maxmimal ideal (xf), the Φ-algebra homomorphism of Φ[x{] into Φ[xi+1] which
maps xi onto #?+ι has a unique extension to a homomorphism of Bf into Bi+1.
Using these homomorphisms, the direct limit B of the rings B{ may be formed;
and letting ω, be the canonical homomorphism of B{ into B and yi=ωi(xi),
yi=yl+ιfor t=l, 2, •••. For each positive integer z, the Φ-algebra automorphism
of Φ[Λ?, ] which maps x{ onto —x{ has a unique extension to an automorphism
of Bi\ and these automorphisms determine a Φ-algebra automorphism σ of B
such that σ(yi)=—yi and σ2 is the identity map. Let G be the group consisting
of σ and the identity automorphism, and let A be the subring of G-invariant
elements of B. For a given positive integer i, consider the subring ^4[>v] of B.
Since yfeA, A[y^ is generated as an ^4-module by its elements 1 and yf. If
tfo+^ij'*—0 f°r ao> ΛI^A, then aQ—a1y~(r(aQ-\-a1yi) = 0. Adding the two
equations, 2β0=0; and hence a0=0 and ^=0. Thus 1 and j>z freely generate

the ^4-module -4[y, ]; and, in particular, A[y{] is a flat ^4-module. Also, since
yi=y3

i+ly A[yi]^A[yi+1]. Consequently, B is the union of its subrings
A[y{], ί=l, 2,.. ; and B is a flat ^f-module by [4, Chap. I, §2, Prop. 2].

Now let P be a prime ideal of B and let _p=-4 HP. If P is the zero ideal
of B\ then Ap[p Ap~Ap is the field of fractions of A, and from [4, Chap. V,
§1, Prop. 23] it follows that Bpjp Bp^Bp is the field of fractions of B and Ap

is the subfield of G-invariant elements of Bp. In that case, Bpjp Bp is a
separable field extension of Ap/p Ap. Henceforth, assume that P is a proper
prime ideal of B. Then there must exist a positive integer k such that ω71(P)
is a proper prime ideal of Bk. The only proper prime ideals of Φ[#J are its
maximal ideals, however, and so, by [4, Chap. II, §2, Prop. 11] there can be
only one proper prime ideal of Bk and it is generated by xk. Therefore yk^P,
and from the equations yZ =jyf 4 1 it follows that y^P for every positive integer
/. But it is readily verified that the ideal of B generated by the yi9 ί=l, 2, •••,
is a maximal ideal with a residue class ring which is naturally isomorphic to Φ
and so P must be this ideal. Then p is a maximal ideal of A by [4, Chap. V,
§2, Prop. 1], and there exist natural isomorphisms of Aplp Ap onto Ajp and
Bplp Bp—(Aplρ Ap)®ΛB onto Blp>B^(Alp)®ΛB by [4, Chap. II, §3, Prop. 2].
Since y*+ι^p and y~y*+i€=B*p for every positive integer i, B p = P and
B/B p=BIP=Φ=Alp. Again in this instance, Bp/p Bp is a separable field
extension of Ap\p Ap\ and consequently B is an unramified ^4-algebra. Also
A and B are local rings with maximal ideals p and P respectively, and hence
the ^t-algebra B satisfies property (P) only if B is a separable ^4-algebra. Since
B has no non-trivial idempoetnt elements; were B a separable ,4-algebra, B
would be a Galois extension of A with Galois group G by [6, Thm. 1.3]. But
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then the canonical representation of G as a group of automorphisms of E\P

would be faithful by [7, Thm. 1.4], and yet σ induces the identity automorphism

on BjP. Therefore B is not a separable ^4-algebra.

The property (P), however, admits the following theorem.

Theorem 3. There exists an A-subalgebra of B which satisfies property

(P), is stable under G, and contains every other A-subalgebra of B satisfying

property (P).

Proof. Let p be any given prime ideal of A\ and notice that if A' is an

^4-subalgebra of B for which A'p is a separable A ̂ -algebra, for instance if A

satisfies property (P), then A'p is a free A ̂ -module whose rank does not exceed

the order of the group G by the main theorem of [8], Partially order the

^4-subalgebras of B which satisfy property (P) by inclusion, let F be a chain of

such subalgebras of B, and let Ά= U A'. For the given prime ideal p of A,

choose an element A' of P so that the rank of the A ̂ -module Ap is as large as
possible. If B' is an element of F such that A'<^Br\ then A'P<^B'P, and, as a
consequence of [8, Lemma 1], Bp/Ap is also a free .^-module and ra
rank(B'p/A'p)-=rank(B'p). But because of the choice of A'\ rank(A'p) =r
rank(#y^) = 0, and A'p^B'p. Consequently ΆP=A'P9 and Ap is a separable
A ̂ -algebra. Thus it is seen that the ^4-algebra A satisfies property (P), and

certainly it is an upper bound for F. By Zorn's Lemma, there exists a maximal
^4-subalgebras C of B satisfying property (P). Now let A' be any ^4-subalgebra
of B which satisfies property (P). Since (A' C)p is a homomorphic image of
the tensor product of the ^-algebras Ap and Cpy it is a separable A ̂ -algebra by
[3, Prop. 1.4 and Prop. 1.5]. Thus A' C satisfies property (P), and so A1- C== C
or^ί'c C. Letting σ^G, σ induces an A ̂ -algebra isomorphism of Cp onto
σ(C/,), and thus σ(Cp) is a separable ^-algebra. Therefore σ(C) satisfies
property (P), and so σ(C)eC.
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