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1. Introduction. In 1962, Y. Tao [4] proved the following theorem in
this Osaka Mathematical Journal:

Theorem. If h is a fixed point free involution of S1xS2, and if M is the
Z-manifold obtained by identifying x and hx in S1 X S2, then M is either homeomor-
phic to (1) SlxS2, or (2) the ^-dimensional Klein Bottle, or (3) SlxP\ or (4)
P3#P3.

In order to prove the theorem, Tao used a result of Livesay [2] and simple

cut and paste techniques. The question naturally arises as to whether or not Tao's
method can be applied to classify the orbit spaces of fixed point free involutions
on any manifold of the form SlxF, where F is a compact surface. We answer
this question affirmatively in the case when F is the 2-dimensional torus T2. In
particular, we shall show that if h is a fixed point free involution on the 3-
dimensional torus T3=SlxT2, then pasting the points equivalent under A,
we must obtain either T3, or Sl X K2, or K3

y or the torus bundle over Sl obtained
from [0,1] X T2 by identifying the boundaries with a homeomorphism h of period
two such that h(m)=m~1 and h(l)=ml, where (m, /) is a meridian-longitude
system for T2.

2. Preliminaries. The interior of a topological mainfold M will be denot-
ed by int M and the boundary by 9M. The w-dimensional sphere, torus and Klein
bottle will be denoted by S*9 Tn, and Kn, respectively.

Since we may assume [3] that T3 has a fixed triangulation and that // acts
piecewise linearly on this triangulation, the objects in this paper (maps, neighbor-
hoods, simple closed curves, etc.) should always be considered from the polyhedral
point of view.

We shall think of T3, K3 and S1 X K2 as obtained from [0,1] X T2 by identify-

ing 0 X T2 with 1 X T2. Thus, if (m, I) denotes a meridian-longitude pair for
T2 and m~ixm, l^ίxl (ι=0,l), then identifying Ox T2 with 1 x T2 so that
mQ, /o gets glued onto m^ 119 respectively, results in a manifold homeomorphic to
T3. For K3 we must identify m0ί /Owith mΐl and /Γ1, respectively, and for S1 X
K2, moy /o identifies with mϊl and 119 respectively.
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3. Classification of T*/h

Theorem 1. If h is a fixed point free involution on T3, then there is a torus
T in T* which does not separate T3 and T has the property that either T=hT or T

Proof. Let T= OxΓ 2 . If A Γ Φ Γ and Γ Π A Γ Φ 0 , then, by using small
isotopic deformations of T whenever necessary, we may suppose that TΓ\hT

consists of a finite number of disjoint simple closed curves. If / is a component

of TΓihTt then J satisfies one of the following three properties:

( i ) / i s homotopically trivial on both T and hT.
(ii) J is homotopically trivial on one of T or AT, but not both.
(iii) / is homotopically non-trivial on both T and hT.

If J is a simple closed curve in T Γ\hT such that J bounds a disc D on T
or hT with the property that int D Π (T Π hT)=φ, then D is called an innermost

disc with respect of T Γ\hT. Our next step is to eliminate all simple closed

curves in TfthT which bound innermost discs on hT and satisfy (i).

Suppose / is a component of TΓihT satisfying (i) and bounding an inner-

most disc DdhT. We denote by E the disc on T bounded by / and let /' be a

simple closed curve in T—E, sufficiently close to /, such that the annulus A on T

bounded by / U /' has the property that A Γϊ hT=J. We now choose a disc D'
so close to D that D' satisfies D'Ϊ\T=QD'=J' and D'Γ(hT=D' ΐ\hD'= φ.
This choice of D' is possible since D is innermost and h is fixed point free.

Since we only replaced the disc A U E by the disc Z)', the torus T'=[T—(E U A)}

U U does not separate T3. It follows that T' (Ί hTf contains fewer components
of type (i) which bound innermost discs on hT. We repeat this process until
we obtain a non-separating torus T" with the property that no component of T"
Γ\hT" which satisfies (i) bounds an innermost disc on hT" .

For the sake of convenience, we shall again denote our adjusted torus T"

by T. Suppose / is a component of TΓ\hT satisfying (ii) and bounding a
disc D on hT. If D is not innermost, then there is a compoent J' of Tΐ\hT
with /'C int D so that the disc Z)'c int D bounded by J' is innermost. By our

previous reduction argument, ]' cannot satisfy (i), and hence, ]' must be non-

trivial on T. But this is impossible since D/ Π T=J' and T is incompressible in
T3. Similarly, D cannot be innermost on hT.

If/ is trivial on T and non-trivial on AT, then hj is trivial on hT and non-

trivial on T which, by the above argument, is impossible. We may conclude

that TΓihT contains no curves satisfying (ii). Furthermore, since all curves
satisfying (i) and bounding innermost discs have been removed, either TΓlhT
==φ or the components of TΓihT must all satisfy (iii).

Since Γ does not separate Γ3, it is possible that TΓlhT contains exactly
one component. We shall consider this case first.
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A. TΓihT consists of exactly one simple closed curve J. Since hJ=J,

there is a sufficiently small regular neighborhood N of J such that hN=N, QN
separates T3 and (TljhT)ΓιQN consists of four disjoint simple closed curves

CD •••, £4. The set U £, divides dN into four annuli aly •••, α4 and we assume that
all subscripts have been arranged in order to satisfy a^ Π a2=cld T, az Π a3=c2d

hT, a3Γ\a4—c3c:T and a^a1 = c^dhT (figure 1; the diagram represents a

"meridian" cut). The curves ^ and c3 divide T into two annuli A and B, and

we let B denote the annulus containing /. Since tι2=l9 h(a2\Ja4)=a2\Ja^ It

follows that T/=A[jhA[ja2\Ja4ί remains invariant under h. Thus, if T1 does

not separate T3, then Tr satisfies the conclusion of Theorem 1.

Figure 1. Figure 2.

Suppose T' separates T3. Let U and V denote the components of T3— T'.

Let ]' be a simple closed curve on T, transverse to cl and c3, and let p and q

be the points q Π /' and c3 Π /', respectively. Let pr and 5' be two points in int

a2 and int a3y close to^> and q, respectively (figure 2). We may choose simple

arcs a and β on #2 and a3, respectively, with da=p(J p', 9/3=grU?/, aΓlJ'=p,
β n J'=q and (α U β) Π hA=φ. Since 03 Π T'=da3, either int «3C [/ or int 03C

F, and we suppose that int α3c U. Hence q* is a point in U and int NdU.

If γ denotes the arc α U /5 U (/x—int (fi Π /7))> Λen 7 Π hA=φ and we may push
γ slightly off a2 U ^3 U ^4, away from JV and missing hA. Thus, we can obtain an
arc missing T'', with one end point in U and the other in V. It follows that T7

cannot separate T3.

B. TΓ\hT contains more than one component. If n is the number of
components of Tf\hT, then TΓ\hT divides hT into n annuli, A^ •••, An, such

that TΓ\ int A£=φ. Each annulus ^4t can satisfy one and only one of the
following conditions:

( 1 ) Q

(2) Q

( 3 ) QA{ Π QhAf contains exactly one component of T Π hT.
We consider each of these possibilities separately.

1. Suppose AjdhT is an annulus satisfying (1). Then dA{ divides T into
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two annuli A and B. Since Γ(Ί int A~φ, we may suppose, without loss of
generality, that hA~A. Let T^A^A and T2=Aί[jB. Then at least one
of the tori 7^ or T2 does not separate Γ3. For suppose both J\ and T2 separate
Γ3. Let U» V, and C72, V2 denote the components of T-T^ and T3-Γ2, re-
spectively. Since B Π 7^95, either int Bd U19 or int Bd V19 and we suppose,
without loss of generality, that int BdU1. Similarly, we may suppose int Ad
U2. Let^> be a point in int B and^, p2 two points sufficiently close to p such
that pίd U1Π C/2 and />2e [̂  Π F"2. Let a be a simple arc in Γ3 going from p^ to
^>2, and such that αΠ jΓ=0. Since ̂  lies in U2 and ^>2 in V2J a must intersect
T2 and it can intersect Γ, only in int A£. We may assume that aΓ\Af consists
of a finite number of piercing points. Since p± and p2 both lie in Z7n and since
each time we pierce through A{ we pass from U^ into V1 or vice versa, the
number of piercing points in a Π int A{ must be even. Let ^Ί, •••, q2k denote the
components of a Π int Ai9 and let the subscripts be ordered such that q{ precedes
qi+l when traversing a from ̂  to^)2. Let α, denote the subarc of a from q2i^
to g22 . We now replace each α, by a simple arc α£c int A{ from .̂̂  to g2ί such
that αίnαfj=0, if ίφy. Let the new arc thus obtained be again denoted by
a. Then pushing each α/ slightly off int Ai and into Uly we may delete the
intersection aΓ\Aiy keeping aΓ\ T—φ. Thus, we may obtain an arc joining^
in U2 with p2 in V2 and missing T2. This contradicts the assumption that T2

separates T3.
If 7\ does not separate Γ3, then since hTl=h(Ai\jA)=A\jAi=Tly T, is

invariant under h and, therefore, satisfies the conclusion of Theorem 1.
If 7\ separates Γ3, then T2 does not separate T3. Let / and K denote the

components of QA{. We may choose disjoint simple closed curves ]' and K'
on int B and sufficiently close/ and K, respectively, such that the annuli R^dB
and R2d B with aR^/U/', 9R2=K\jK' have the property that A Γ Π int R{

Figure 3.
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=φ. Let A^ be an annulus sufficiently close to A{ and B (figure 3) so that A't
satisfies the following conditions:

( i ) A'inT=A'iΓ}B=dA'ί=J'(jK' andA'tnhT^ψ.
( i i) T'=(B- U Ri) U A( does not separate Γ.
(iii) A'tnhA't = φ.

Since T2=B \JA{ does not separate Γ3, condition (ii) can be easily satisfied for
A't sufficiently close to A and /', Kr close to / and K, respectively. Condition
(iii) is obtainable since T Π int A~φ, hA't Π T=φ and /^ Π hT=hdAl

By our construction, the number of components of T'Π hTf is strictly less
than the number of components of TΓ(hT. Since the number of components
in T Π hT is finite, we can find - by proceeding with the above argument - a torus
T" which does not separate T3 and satisfying exactly one of the following: (a)
hT"^T", (b}hT"ΐ\T"=φJ (c) T'ΊΊλΓ" contains exactly one simple closed
curve, (d) T"f\hT" has r components, l<r<τz, dividing hT" into r annuli,
A", •••, A", such that no A" satisfies condition (1).

Both (a) and (b) satisfy the conclusion of Theorem 1. Case A applies if
(c) holds. Thus, in order to complete our proof, we have only to consider (d).
For convenience, we again denote T" by T and A' by Af.

2. Suppose no annulus Afc:hT satisfies (1) and suppose that for some /,
At satisfies (2). Then dAg divides T into two annuli A and B. Since T Π int
A~φ and dA f] dhA~φ, we may suppose, without loss of generality, that hAi

C int A. Let T1=Aί U A, T2=Af U B and /, K the boundary components of Ait

As before, at least one of the tori, ϊ\ or Γ2, does not separate T3.
If 7\ does not separate T3, let ]' and Kf be two simple closed curves on

int A9 close to/ and K, respectively, and A't an annulus sufficiently close to A;
such that the following conditions are satisfied:

( i ) A'tnT=A'tnA=dA'i=J'\jK'andA'iΓihT=φ.
(ii) If 7?! and R2 denote the annuli on A bounded by /, ]' and K, K',

respectively, then hT (Ί int Rf=φ.
(iii) T'=(A— U Rf) U A't does not separate Γ3.
(iv) A'tnhA't=φ
As in argument 1. above, all these conditions can be satisfied. By con-

struction, the number of components of Tr Π hT' is strictly less than the number
of components of TΓihT.

If T2 does not separate T3, then / and K are not components of T2ΓihT,2

and, hence, the number of components of T2Γ\hT2 is strictly less than the
number of components of T Π hT.

Since repeated application of the above algorithm reduces the number of
annuli satisfying (2), we may now assume that there is a non-separating torus T
in T3 such that either hT=T or hTΓ\T consists of a finite number of simple
closed curves dividing hT into a finite number of annuli, with each annuli satisfy-
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ing only condition (3).
3. Suppose each annulus AfdhT satisfies (3). Let / be a component of

Tf l hT which remains invariant under A, and let A£ and Aj denote the two
annuli on hT with the property A^A—]. Let ]i and Jj denote the other
boundary components of A{ and AJ9 respectively. The curves J and /, divide
T into two annuli A and 5, and we suppose, without loss of generality, that
hAfCiA and, therefore, hAjdB. The set/U7/divides T into two annuli, Bl

and B2, and we suppose that hAidB1 (figure 4). For the same reasons as given
in BΛ., at least one of the tori T2=AJ\JB1 or T2=Aj\jB2 does not separate T3.

Figure 4.

If Tj does not separate T3, let Jj and J' be two simple closed curves on int
B1 close to Jj and /, respectively, and A'3 an annulus with boundary /jU/',
and sufficiently close to A^ such that the following hold:

(ii) If J?! and R2 denote the annuli on Bl with boundary components /,
/' and/y, /J, respectively, then hT Π int R{=φ.

(iϋ) T/=(Bl— U Rg) U A', does not separate T3.
(iv) A'jnhA'j=φ.
Again, all these conditions can be satisfied, and the number of components

of T'Γ\ hT' is strictly less than the number of components of TΓihT.
If TΊ separates T3, then T2 cannot separate T3. Hence, at least one of B U

A{ or (B— int B 2 ) \ j A f \ j A j does not separate T3.
If B U Af does not separate, let ]' and /{ be two simple closed curves on int

Bt close to / and /t , respectively, and AΊ an annulus sufficiently close to A{ such
that the following conditions are satisfied :

( i ) A( Π T=A/

( Π B=QA'€=J' U /{ and A( Π hT=φ.
(ii) If 7?! and R2 denote the two annuli on B bounded by/, ]' and J^J'i,

respectively, then hT Π int jf?£=φ.
(iii) T'=(B— U Ri) U ̂ 4ί does not separate Γ3.
(iv) ̂ ίn^{-φ.
As in the previous cases, all these conditions are easily satisfied, and the
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number of components of T Π hTf is strictly less than the number of components
of TΠhT.

If (B — int B^UAidAj does not separate, we simply set T'=(B—int B2)
\ j A j \ j A j and note that since hJJΓ(T/=φy T'ΐ\hT' contains fewer components

than T DAT.
We have shown that there is always a torus Tf in T3 which does not

separate Γ3 and such that either hT'=T' or T'ΓihT' has fewer components
than TΓ\hT. Since the number of components of TΓ\hT is finite, a finite
number of repetition of the above argument will yield a torus T" which does
not separate Γ3 and such that either T"nhT"=φ or T"=hT".

This proves Theorem 1.
Let M,= T\ M2=K\Mz=SlxK2 and M4 the torus bundle over Sl

obtained from [0,1]X T2 by identifying Ox T2 with 1X T2 by a homeomorphism
h of T2 such that A2—1, h(m)=m~l and h(l)=ml, where (m, /) is a meridian-
longitude system for T2.

Theorem 2. If h is a fixed point free involution on T3, then Tz\h is
homeomorphic to Mffor some i=l, 2, 3 or 4.

Proof. By Theorem 1, there is a torus ΓcΓ3 which does not separate T3

and satisfies either TΓ(hT=φ or T=hT. We divide our proof according to
these two possibilities.

A. We suppose that hT=T. Since T does not separate T3 and the inclu-
sion of T into [0,1] X T induces an isomorphism on the fundamental groups, we
have by Theorem 3.4 of [1] that the space obtained from T3 by cutting T3 open
along T must be homeomorphic to [0,1] X T. Thus, we may suppose that h is a
fixed point free involution of the toroidal shell [0,1] X Γ2, leaving each boundary
invariant.

Let mf and /t denote the meridian and longitude, respectively, of ixT2,
7—0.1. Since h is of period two and h(m^) U A(//) is a pair of transverse simple
closed curves on z'x T2 intersecting in exactly one point, it follows that either
h(mi)=mi and Af/.)^.*1, or h(m^m^ and h(lt)=lcl or h^^m^ or *(!»,)=/,•
and h(lt)^=m^ or h(mί)=li~

l and h(li)=mi"
l

9 or h(mi)=milί and h(li)=li~
1

y up to
isotopy on ixT2. Using general positioning, we may assume that m, ΠA(τw t )
consists of at most a finite number of crossing points. Since h is of even period
and fixed point free, the number of crossing points in irij Π A(wt ) cannot be odd.
Hence, him^^m^ and, similarily, A(//.)=//

±1, up to isotopy on ix T2.
Let V~D2χS\ where z'=0, 1 and Z>2= {(#, j)e#2|*2+/<l}. Then the

space obtained by attaching V0 U V1 to [0, 1] X T2 by gluing QVf to ix T2 such
that the meridian and longitude of V{ gets identified with ra,- and /,-, respectively,
is homeomorphic to the lens-space L(0, I)=51x52. Extending h radially to
the core of V£ induces a piecewise linear extension hf of h to all of S1 X S2. By
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[5], h' is equivalent to a standard rotation of Sl X S2. Therefore, h is equivalent

to exk: [0, 1] X T2-^[0, 1] X Γ2, where e is the identity on [0, 1] and k is one of

the two standard fixed point free involutions of Γ2. Since T2\k is either

homeomorphic to T2 or K2, matching again the boundaries of [0, 1] X T2, we

observe that T3/h is either homeomorphic to Sl X T2 or Sl X K2.

B. We suppose that TΓ\hT=φ. Since T does not separate T3, we again
have by [1] that the set T(JhT divides T3 into two components V and Wy each

homeomorphic to [0, 1] X T2. We must consider two cases, namely hV= W and

hV=V.
If hV= W, then T*\h may be viewed as being obtained from [0, 1] X T2 by

identifying the boundaries with the homeomorphism h. If m{ and l{ are as in

case A, then either h(m0)=ml and h(lQ)=l1

+l, or h(m^m~^ and h(lQ)=l^ or
h(l0)=mJ1, or h(m0)=mlll and A^)^"1, or h(m^l^ and A(/0)=ιw1, or h(m^)=l^1

and h(l0)=ml~\ up to isotopy on T2. Thus, for all but the last two cases it is

clear that Γ3/A is homeomorphic to Mz for some ί=l, 2, 3, or 4. If ̂ m^^^ and

h(l0)=mly then T3/A must be homeomorphic to T3. In order to see this, let/ be
a (1, l)-curve, m0l0, on Ox T2 and let R be an annulus properly embedded in V

such that R Π dV=dR=J \Jhj. Then the torus Γ'—R U /*# does not separate

T3 and case ^4 applies. We use the exact same argument if h(m0)=ll~'1 and A(/0)
=m1~

1 in order to obtain the non-separating torus T'. In this case T3/h=SlX

K2 up to homeomorphism since h is orientation reversing.

If h V= V with h(m0)=m1l1 and h(l0)=l1~
1, then λ(/rc0) is a non-trivial multiple

in F=[0, 1] x T2 of /! and m^ Therefore, h(h(m0)) must be homologous in V to
a non-trivial multiple of A(4) and h(m^). But h(h(mQ))=m0 while h(l1)=l0~

l.
Hence, if hV=Vy we cannot have h(m^=mjλ and ^(/o^/Γ1. Similarity, λ(fl/0)

=m^ and λ(/0)—fl^ is impossible.

If A(ιιι0)=/1 and Λ(4)=m1, let S3 be obtained from F=[0, l]x Γ2 by filling
in 9 P7 with two solid tori FO and FΊ such that the meridian and longitude of F0

identify with ;w0 and 70, respectively, while the meridian and longitude of V1

identify with /j and mly respectively. Then h extends naturally to a fixed point

free involution of S3 which interchanges the core of F0 with a core of Vί.
However, by chapter 3 of [3], this situation is impossible. Similarity, we
cannot have h(m0)—l^1 and h(l0)=m1~

l.

If h(m0)=m1 and A(/0)=/1, then as in case A let S1xS2 be obtained from V

by filling in dV with the two solid tori F0 and V^ We now extend h to all of

S1xS2 by extending h radially to the core of F, . More precisely, if (x, y, z)

eFo, where (x, y)^D2 and z^S1, let R denote the radius of D2X {z} from
(0, 0, z) to QV0 passing through (#, y, z). Then, if (x', y', z) denotes the point

Rn 9Γ0, map (x, y, z) to the point (x, y, z") in V19 where (x, y, z") lies on the
radius from h(x'', y, ^)=(^r/, y7, ^x/) to (0, 0, z"). If we again let h denote this

extension, then h is a fixed point free involution on Sl X S2. It follows from [4]



FIXED POINT FREE INVOLUTIONS OF T3 373

that h is conjugate to one of the four standard fixed point free rotations of

SlxS2. Hence, there is a torus Tf in [0, 1] X T which is isotopic to Ox T and

invariant under h and case A applies. We argue analogously if h(m0)=m1~
1 and

A(ί,)=/1

±1. This proves Theorem 2.
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