# ON STABLE JAMES NUMBERS OF QUATERNIONIC PROJECTIVE SPACES 

Hideaki O$S H I M A$

(Received March 12, 1974)

In [4], we have defined the stable James numbers $k_{s}(X, A)$ for some finite CW-pairs $(X, A)$ and computed $d_{C}(n)=k_{s}\left(C P^{n}, C P^{1}\right)$. In this note we estimate $d_{H}(n)=k_{s}\left(H P^{n}, H P^{1}\right)$, where $H P^{n}$ denotes the quaternionic projective space of topological dimension $4 n$. We obtain

Theorem. For $n \geqq 2$
(0) $d_{H}(n)$ is a factor of $(2 n)!(2 n-2)!\cdots 4$ !, in particuler none of the prime factors of $d_{H}(n)$ is greater than $2 n$,
(i) $2 j+1 \leqq\left\{\begin{array}{lll}\nu_{2}\left(d_{H}(n)\right) \leqq 3 j+3 & \text { for } & n=2^{j}, \\ \nu_{2}\left(d_{H}(n)\right) \leqq 3 j+6 & \text { for } & 2^{j}+1 \leqq n<2^{j+1}\end{array}\right.$,
(ii) $2 j \leqq \nu_{3}\left(d_{H}(n)\right) \leqq 2 j+2$ for $3^{j} \leqq n<2 \cdot 3^{j}$,

$$
2 j+1 \leqq\left\{\begin{array}{lll}
\nu_{3}\left(d_{H}(n)\right) \leqq 2 j+2 & \text { for } & 2 \cdot 3^{j} \leqq n<\frac{3^{j+2}+1}{4} \\
\nu_{3}\left(d_{H}(n)\right) \leqq 2 j+4 & \text { for } & \frac{3^{j+2}+1}{4} \leqq n<3^{j+1}
\end{array}\right.
$$

(iii) for a prime $p \geqq 5$

$$
\begin{array}{ccc}
\nu_{p}\left(d_{H}(n)\right)=2 j & \text { for } & p^{j} \leqq n<\frac{p^{j+1}+1}{4}, \\
2 j \leqq \nu_{p}\left(d_{H}(n)\right) \leqq 2 j+2 & \text { for } & \frac{p^{j+1}+1}{4} \leqq n<\frac{p+1}{2} p^{j}, \\
2 j+1 \leqq \nu_{p}\left(d_{H}(n)\right) \leqq 2 j+2 & \text { for } & \frac{p+1}{2} p^{j} \leqq n<p^{j+1},
\end{array}
$$

where $\nu_{p}(m)$ denotes the exponent of $p$ in the prime factorization of $m$.
Recall that $d_{H}(n)=$ the index of the image of $i^{*}:\left\{H P^{n}, S^{4}\right\} \rightarrow\left\{S^{4}, S^{4}\right\}$, where $\{X, Y\}$ denotes the set of stable homotopy classes of stable maps $X \rightarrow Y$ and $i: S^{4}=H P^{1} \rightarrow H P^{n}$ the natural inclusion. Then obviously $d_{H}(1)=1$.

## 1. Lower bound of $\boldsymbol{d}_{\boldsymbol{H}}(\boldsymbol{n})$

In this section we use $K$-theories. We introduce the following notations: $\xi_{n}=$ the canonical quaternionic line bundle over $H P^{n} ; g_{H}=\xi_{1}-1 \in \widetilde{K S} p\left(S^{4}\right)$; $g_{R}=g_{H} \wedge g_{H} \in \widetilde{K O^{-4}}\left(S^{4}\right) ; \widetilde{\xi}_{n}=g_{H} \wedge\left(\xi_{n}-1\right) \in \widetilde{K O^{-4}}\left(H P^{n}\right) ; \eta=$ the canonical complex line bundle over $S^{2}=C P^{1} ; g_{c}=\eta-1 \in \tilde{K}\left(S^{2}\right) ; \varepsilon: K O^{*}() \rightarrow K^{*}()$, the complexification; $c: K S p() \rightarrow K()$, the scaler restriction; ch: $K^{*}() \rightarrow H^{*}(; Q)$, the Chern character; $y_{2 k}=g_{R}^{-k} \in K O^{8 k} ; y_{2 k+1} \in K O^{8 k+4}$, the generator such that $\varepsilon\left(y_{2 k+1}\right)=2 g_{C}^{-4 k-2} ; z_{n}=c\left(\xi_{n}-1\right) \in \widetilde{K}\left(H P^{n}\right) ; t \in H^{4}\left(H P^{n} ; Z\right)$, the first symplectic Pontrjagin class of $\xi_{n}$. Then we have

$$
\begin{aligned}
& \varepsilon\left(y_{2 k} \hat{\xi}_{n}^{2 k+1}\right)=g_{C}^{2} z_{n}^{2 k+1} \\
& \varepsilon\left(y_{2 k-1} \tilde{\xi}_{n}^{2 k}\right)=2 g_{C}^{2} z_{n}^{2 k} \\
& \operatorname{ch}\left(z_{n}\right)=\exp (\sqrt{t})+\exp (-\sqrt{ } \bar{t})-2
\end{aligned}
$$

and $\widetilde{K O^{-4}}\left(H P^{n}\right)$ is the free group with basis $\tilde{\xi}_{n}, y_{1} \tilde{\xi}_{n}^{2}, \cdots, y_{n-1} \tilde{\xi}_{n}^{n}$, and $K\left(H P^{n}\right)$ is the truncated polynomial ring over $Z$ with generator $z_{n}$ and the relation $z_{n}^{n+1}=0$.

Choose $f \in\left\{H P^{n}, S^{4}\right\}$ such that the composition $S^{4} \xrightarrow{i} H P^{n} \xrightarrow{f} S^{4}$ is of degree $d_{H}(n)$. Put

$$
f^{*}\left(g_{R}\right)=\sum_{j=1}^{n} a_{j} y_{j-1} \widehat{\xi}_{n}^{j}, \quad a_{j} \in Z
$$

And put $2 a_{2 j}=b_{2 j}$ and $a_{2 j+1}=b_{2 j+1}$. Then, by the above equations, we have

$$
d_{H}(n) t=f^{*} \cdot c h \cdot \varepsilon\left(g_{R}\right)=c h \cdot \varepsilon \cdot f^{*}\left(g_{R}\right)=\sum_{j=1}^{n} b_{j}(\exp (\sqrt{t})+\exp (-\sqrt{t})-2)^{j}
$$

in $H^{*}\left(H P^{n} ; Q\right)$ and hence $b_{1}=d_{H}(n)$. Put $t=x^{2}$, then we have

$$
b_{1} x^{2} \equiv \sum_{j=1}^{n} b_{j}(\exp (x)+\exp (-x)-2)^{j} \bmod x^{2 n+2}
$$

Differentiating this equation twice, we have

$$
2 b_{1} \equiv 2 b_{1}+\sum_{j=1}^{n-1}\left(j^{2} b_{j}+2(2 j+1)(j+1) b_{j+1}\right)(\exp (x)+\exp (-x)-2)^{j} \bmod x^{2 n}
$$

Hence

$$
j^{2} b_{j}+2(2 j+1)(j+1) b_{j+1}=0 \quad \text { for } \quad j \leqq n-1
$$

and therefore

$$
j!b_{1}=(-1)^{j} 2^{j} \cdot 3 \cdot 5 \cdots(2 j+1)(j+1) b_{j+1} \quad \text { for } \quad j \leqq n-1
$$

That is, we have

$$
(2 j)!d_{H}(n)=2^{2 j} \cdot 3 \cdot 5 \cdots(4 j+1)(2 j+1) a_{2 j+1} \quad \text { for } \quad j \leqq\left[\frac{n-1}{2}\right]
$$

$$
(2 j-1)!d_{H}(n)=-2^{2 j-1} \cdot 3 \cdot 5 \cdots(4 j-1)(2 j) 2 a_{2 j} \quad \text { for } \quad j \leqq\left[\frac{n}{\widetilde{2}}\right]
$$

Put

$$
\begin{aligned}
\tau_{p}(n)=\max _{j \leq\left[\frac{n-1}{2}\right]}^{k \leq\left[\frac{n}{2}\right]}\{ & \left\{\nu_{p}\left(2^{2 j} \cdot 3 \cdot 5 \cdots(4 j+1)(2 j+1)\right)-\nu_{p}((2 j)!),\right. \\
& \left.\nu_{p}\left(2^{2 k-1} \cdot 3 \cdots(4 k-1)(2 k) 2\right)-\nu_{p}((2 k-1)!)\right\} .
\end{aligned}
$$

Then obviously $\tau_{p}(n) \leqq \nu_{p}\left(d_{H}(n)\right)$. Elementary calculation shows that

$$
\tau_{2}(n)=2 j+1 \quad \text { for } \quad 2^{j} \leqq n<2^{j+1} \quad \text { and } \quad j \geqq 1
$$

and for an odd prime $p$

$$
\tau_{p}(n)=\left\{\begin{array}{lll}
2 j & \text { for } & p^{j} \leqq n<\frac{p+1}{2} p^{j} \\
2 j+1 & \text { for } & \frac{p+1}{2} p^{j} \leqq n<p^{j+1}
\end{array}\right.
$$

Thus we obtain the lower estimates of Theorem.

## 2. Upper bound of $\boldsymbol{d}_{H}(n)$

The canonical fibration $S^{4 n-1} \xrightarrow{\tilde{p}_{n-1}} H P^{n-1}$ factorizes as the composition of the canonical fibrations $S^{4 n-1} \xrightarrow{p_{2 n-1}} C P^{2 n-1} \longrightarrow H P^{n-1}$. The order of $p_{2 n-1}$ as a stable map is $(2 n)![2],[5]$. Hence the stable order of $\tilde{p}_{n-1}$ is a factor of $(2 n)!$. Therefore $d_{H}(n)$ is a factor of $(2 n)!d_{H}(n-1)$. This implies Theorem (0).

Lemma 1. Let $X$ be a simply connected finite $C W$-complex with a base point. Then the natural inclusion $S P^{m}(X) \xrightarrow{\iota_{m}} S P^{\infty}(X)$ induces isomorphisms $\pi_{k}\left(S P^{m}(X)\right) \rightarrow \pi_{k}\left(S P^{\infty}(X)\right)$ for $k \leqq m$, where $S P^{m}(X)$ and $S P^{\infty}(X)$ denote the $m$-fold symmetric product of $X$ and the infinite symmetric product of $X$ respectively [1].

Proof. There is a commutative diagram [3] for $j \geqq 1$

where the bottom map is the natural inclusion. Then, it follows from $H_{j}\left(S P^{k}(X), S P^{k-1}(X)\right)=0$ for $1 \leqq j<k$ that $\iota_{m^{*}}: H_{j}\left(S P^{m}(X)\right) \rightarrow H_{j}\left(S P^{\infty}(X)\right)$ are isomorphic for $j \leqq m$. Since $S P^{m}(X)$ is simply connected, the result follows
from the theorem of J.H.C. Whitehead.
The obstructions to extending the natural inclusion $S^{4} \rightarrow S P^{4 n-1}\left(S^{4}\right)$ over $H P^{n}$ lie in $H^{4 j}\left(H P^{n}, S^{4}\right) \otimes \pi_{4 j-1}\left(S P^{4 n-1}\left(S^{4}\right)\right)$ for $2 \leqq j \leqq n$. Lemma 1 shows that $S P^{4 n-1}\left(S^{4}\right)$ and $S P^{\infty}\left(S^{4}\right)=K(Z, 4)$, the Eilenberg-MacLane complex, have the same $4 n$-type. Hence, in particuler, we have $\pi_{4 j-1}\left(S P^{4 n-1}\left(S^{4}\right)\right)=0$ for $j \leqq n$. Therefore we have a map $f: H P^{n} \rightarrow S P^{4 n-1}\left(S^{4}\right)$ which factorizes $S^{i} \xrightarrow{i} S P^{4 n-1}\left(S^{4}\right)$ as $S^{4} \subset H P^{n} \xrightarrow{f} S P^{4 n-1}\left(S^{4}\right)$. This implies that $d_{H}(n)$ is a factor of $k_{s}^{4 n-1,4}=$ $k_{s}\left(S P^{4 n-1}\left(S^{4}\right), S^{4}\right) . \quad k_{s}^{4 n-1,4}$ and $k_{s}^{4 n-1,5}$ are factors of $k_{s}^{4 n-1,5}$ and $k^{4 n-1,5}$ respectively [4]. Hence $d_{H}(n)$ is a factor of $k^{4 n-1,5}$.

We require the following theorem of Ucci [6]:

$$
\begin{aligned}
& \nu_{2}\left(k^{m, 2 t+1}\right) \leqq \phi(2 t) \beta_{2}(m), \\
& \nu_{p}\left(k^{m, 2 t+1}\right)=t \beta_{p}(m) \quad \text { for an odd prime } p
\end{aligned}
$$

where $\beta_{p}(m)$ is defined by $p^{\beta_{p}(m)} \leqq m<p^{\beta_{p}(m)+1}$ and $\phi(s)$ is the number of integers $u$ such that $0<u \leqq s$ and $u \equiv 0,1,2$, or $4 \bmod 8$.

By this theorem, we have

$$
\begin{aligned}
& \nu_{2}\left(d_{H}(n)\right) \leqq 3 \beta_{2}(4 n-1) \\
& \nu_{p}\left(d_{H}(n)\right) \leqq 2 \beta_{p}(4 n-1) \quad \text { for an odd prime } p .
\end{aligned}
$$

Then the following lemma completes the proof of Theorem.

## Lemma 2.

(i) $\quad \beta_{2}(4 n-1)=\left\{\begin{array}{ll}j+1 & \text { for } n=2^{j}, \\ j+2 & \text { for } 2^{j}+1 \leqq n<2^{j+1}\end{array}\right.$,
(ii) $\quad \beta_{3}(4 n-1)=\left\{\begin{array}{lll}j+1 & \text { for } & 3^{j} \leqq n<\frac{3^{j+2}+1}{4}, \\ j+2 & \text { for } & \frac{3^{j+2}+1}{4} \leqq n<3^{j+1}\end{array}\right.$
(iii) for a prime $p \geqq 5$

The proof of this lemma is easy, and we omit it.
Osaka City University

## References

[1] A. Dold and R. Thom: Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. 67 (1958), 239-281.
[2] E. Dyer: Chern characters of certain complexes, Math. Z. 80 (1963), 363-373.
[3] M. Nakaoka: Cohomology of symmetric products, J. Inst. Polytech. Osaka City Univ. 8 (1957), 121-145.
[4] H. Ōshima: On the stable James numbers of complex projective spaces, Osaka J. Math. 11 (1974), 361-366.
[5] H. Toda: On unstable homotopy of spheres and classical groups, Proc. Nat. Acad. Sci. USA 46 (1960), 1102-1105.
[6] J. Ucci: Symmetric maps of spheres of least positive James number, Indiana Univ. Math. J. 21 (1972), 709-714.

