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Introduction

In [2] P.E. Conner and E.E. Floyd demonstrated the effectiveness of
bordism methods in the studies of group actions. Afterwards, using the bordism
methods, many topologists obtained various results in the area. The central
tools in these studies are the bordism modules of group actions.

Let G be a compact Lie group, and &, ¥’ be families of subgroups of G
such that DOF’. We may define the oriented bordism module Q. (G; F, F),
over the oriented cobordism ring Q,, which consists of bordism classes of (3, §')-
free oriented G-manifolds. In this paper we are concerned with the module
structure of Q. (G; B, §'). If F is empty, then we denote this module by
Q4(G; ). Let T, be the family of all subgroups of G. Then Qu(G; ) is
the bordism module of all closed oriented G-manifolds. Especially we are
interested in the module structure of Q(G; T ,)-

R.E.Stong [7] has shown that Q.(G;F,) is a free Qy-module on even
dimensional generators when G is a finite p-primary abelian group for odd prime
p. Recently E.R.Wheeler [8] has shown that Q. (G; F,)®R, is a free Q. QR,-
module on even dimensional generators when G is a certain finite cyclic group,

where R,=Z [%]

We study the cases in which G is the circle group S* or (Z,)f=Z,p---PZ,
(k times). We obtain that both Q,(S*; F4)QR, and Q.((Z,)*; F4)RR, are
free Q4,®R,-modules on even dimensional generators. In fact we prove such
“freeness” theorems for more general families, as stated in Theorem 2-1-1 and
Theorem 3-1-1.

Our main tools are the Conner-Floyd exact sequences and the fact that
Q4(G; B, §') can be interpreted as (direct sum of) singular bordism modules of
adequate spaces when F—F’ consists of a single element H. When G is S* or
(Z,)*, this interpretation involves a difficulty for the sake of non-orientability of
normal bundles of H-stationary point sets. We overcome this difficulty by a
modification of the methods due to E. Ossa [5; Lemma 1-2-5] [6; Lemma 4],
(see Lemmas 2-2-3, 3-2-4).



452 K. Komiva

CHAPTER 1. PRELIMINARIES

In this chapter we give common preliminaries for S*'- and (Z,)*-actions.
Throughout this chapter, G denotes a compact abelian Lie group.

1-1. Bordism of G-manifolds

A family F in G is a collection of closed subgroups of G such that if He

and if K is a closed subgroup of H then K €.
Being given families §, §’ in G with FOF, an (F, F')-free G-manifold M is a
compact differentiable manifold M with differentiable G-action such that for all
x€ M the isotropy groups I(x) belong to ¥ and for all x&dM I(x) belong to F'.
An (B, §')-free oriented G-manifold M is an (F, F')-free G-manifold M such that
M is an oriented manifold and the G-action preserves the orientation of M. If
&’ is empty, then necessarily 0M=¢.

Being given an (3, §')-free oriented G-manifold M, we define —M to be
the (§, §')-free oriented G-manifold whose underlying manifold and G-action
are same as M but orientation is reversed. We also define M to be the (%, ¢)-
free oriented G-manifold whose G-action is the restriction of the G-action on M
and orientation is given by inward normal vectors.

Two (F, §')-free oriented G-manifolds M, M’ are bordant, if there are an
(&, §')-free oriented G-manifold V" and an (g, &)-free oriented G-manifold W
such that

(1-1-1) 9V is diffeomorphic, as oriented G-manifolds, to the disjoint
union of 0M and —9oM’, and

(1-1-2) oW is diffeomorphic, as oriented G-manifolds, to the manifold
M UV U — M obtained by glueing the boundaries.

This relation “bordant” is an equivalence relation on the set of all (¥, §')-
free oriented G-manifolds. An equivalence class by this relation is called an
(B, B')-free bordism class.

The set of all (F, ¥’)-free bordism classes of (F, §')-free oriented G-mani-
folds forms an abelian group with the operation induced by disjoint union, and
this group will be denoted by Q4(G; B, T'). Qu(G; F, F') denotes the summand
consisting of (F, §’)-free bordism classes of (F, F’)-free oriented G-manifolds
of dimension 7.

When @ is empty, Qu(G; B, T), Qu(G; T, T') are denoted by Q.(G; F),
0,(G; B) in brief.

For a representative N of any element in the oriented cobordism ring Q.
we can see N to be an oriented G-manifold by giving the trivial G-action.
Therefore Q4(G; T, §’) is a module over Q, by the cartesian product.

Being given families §, ¥/, B in G with FOF’ OF’’, we have Q,-module
homomorphisms
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ix: Q(G; &, T") = Q4(G; B, )
Jxt QG B, F) = Qu(G5 B, F)

obtained by considering (&, §”)-free (or (&, F”)-free) bordism classes as

(&, T"’)-free (or (F, F')-free) bordism classes. We also have an Q,-module
homomorphism

0y Q*(G§%, %/) — O04(G; ¥, T

of degree —1 obtained by sending the class of M to the class of 0M.
Then

Theorem 1-1-3. The sequence

@1
= 0(G; F, TR, _zig.) Q.(G; B, )RR,
j*@l 8*®1

—> Qn(G) %’ %/)®R2 > 'Q'n—1(G; %/) %N)®R2 e
1

is exact, where R, is the subring of the rationals given by R,—Z [7]

Proof. The sequence obtained from the above sequence by taking away
@R, is a Conner-Floyd’s exact sequence [3; (5.3)]. Since R, is torsion free,
the above sequence is also exact. q.e.d.

1-2. Bordism of G-vector bundles

A differentiable vector bundle E— X is called a G-vector bundle, when the
total space E is an oriented manifold on which G acts as a group of bundle maps
preserving the orientation of the manifold E.

Let H be a closed subgroup of G. A G-vector bundle E— X is called to
be of type (r, s, H), if E—X is an r-dimensional G-vector bundle over an
s-dimensional compact manifold X such that for any vector e E the isotropy
group I(e) is a subgroup of H and I(e) is equal to H if and only if e is a zero
vector.

Being given a G-vector bundle E— X, we define —(E— X) to be the G-
vector bundle obtained from E—> X by reversing the orientation of the total
space E.

Two G-vector bundles E— X, E’— X’ over closed manifolds of type
(r, s, H) are bordant, if there is a G-vector bundle F —Y of type (7, s+1, H) such
that the restriction F |[0Y —0Y is isomorphic, as G-vector bundles, to the
disjoint union of E— X and —(E’— X").

This relation “bordant” is an equivalence relation on the set of G-vector
bundles over closed manifolds of type (r,s, H). The set of equivalence classes
of G-vector bundles over closed manifolds of type (7, s, H) forms an abelian group
with the operation induced by disjoint union, and this group is denoted by
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Br,s(G; H )'

We note that for G=S" B,,,, (G; H)=0 by orientation reason.

For a closed oriented manifold N of dimension # and a G-vector bundle
E— X of type (r, s, H) we obtain a G-vector bundle NX E—NXxX of type
(r, s+mn, H) by a natural way. This makes the direct sum @B, (G; H) a
module over Q.

Let ¥ be a family in G and H be a maximal element in §. Let M be an
(8, §—{H })-free oriented G-manifold and My be the set of all points x&M
whose isotropy groups are equal to H. Then the normal bundle vy(M)— My
of My in M is a G-vector bundle over a closed manifold M.

Lemma 1-2-1. The correspondence M —v z(M)— My induces an Q.-module
isomorphism

'Q'n(G; %1 %——{H})%@”___,+SB,’S(G; H) .

The inverse isomorphism may be obtained by corresponding a G-vector bundle E— X
to the associated disc bundle D(E).

The proof is easy.

1-3. Homology interpretation of the singular bordism groups

For later uses we present this interpretation in the following fashion.

Theorem 1-3-1. If X is a CW-complex such that for each n H,(X; Z) is
finitely generated and has no odd torsion, then there is an Q. Q R,-module isomor-
phism

Qu(X)QR, = Hy(X; R)Qr, (2 R,)
of degree 0.
Proof. Since H,(X; Z) has no odd torsion, the Thom homomorphism
p: QuX) — Hy(X; 2)
is epic by Conner-Floyd [2; Theorem 15. 2]. Hence
p@1: Q(X)RR, — Hy(X; Z)@R,

is epic. As in [2; Theorem 17. 1] we obtain the desired isomorphism. q.e.d.

CHAPTER 2. BORDISM OF S*-ACTIONS

In this chapter we consider the case in which G is the circle group S*. For
any positive integer ¢ we define a family $; in S to be the family of all closed
subgroups whose orders are at most 7. We also define a family .. to be the
family of all proper closed subgroups of S, i.e., Fo= U 2, T and a family F,
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to be the family of all closed subgroups of S, i.e., F,=5.. U {S'}.

2-1. The main theorem and the key lemma

Main Theorem 2-1-1. (1) Both Qu«(S*; §,)QR, (for any i=1) and
Q4(S*; F)QR, are free Q@ R,~modules on odd dimensional generators.
(2) Qu(S*; B4)RXR, is a free Qx @ R,-module on even dimensional generators.

Key Lemma 2-1-2. (1) Qu«(S"; B;, Ti-1)QR, is a free Q@ R,-module on
odd dimensional generators.

(2) Qu(S*; Ba» B)QR, s a free QxQR,-module on even dimensional
generators.

The key lemma will be proved in the following sections. We may prove
the main theorem by using the key lemma as follows.
First we obtain

Proposition 2-1-3. Q,(S"; )RR, is a free QxQR,-module on odd dimen-
sional generators.

Proof. Q4(S*; &) is the bordism group of all fixed point free closed
oriented S'-manifolds. By corresponding a fixed point free closed oriented
S'-manifold M to a classifying map of the principal S*-bundle M — M/S*, we
obtain an Q,-module isomorphism

Q(S*; B1)=Q«(BS")

of degree —1. Since Qu(BS') is a free Qi-module on even dimensional
generators, the proposition follows. q.e.d.

Proposition 2-1-4. Q_,..(S*; §,)RR,=0 for all i.

Proof. First Q,,..(S*; B)®R,=0 by Proposition 2-1-3.
By applying the exact sequence of Theorem 1-1-3 to the case in which

& B, B")=(B: B ¢) and using Lemma 2-1-2 (1), we see that the canonical
homomorphism

Q. (S Bi-)) R, — Q. (S'; T)OR,
is epic. Then the proposition follows by the induction for 7. q.e.d.

Lemma 2-1-5. We obtain a split short exact sequence
0= Q4(S"; Bi-)OR, — Qu(S*; )R, = Qu(S*; F» Ti-)OR, — 0
of Q@ R,-modules.

Proof. Lemma 2-1-2 (1) and Proposition 2-1-4 make the exact sequence
of Theorem 1-1-3 for the families §; DF;_, D¢ to the above sequence,  q.e.d,
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From this lemma

‘Q‘*(Sl; %t)@Rzg‘Q*(SI; %i-l)@Rz@\Q*(Sl; %i: %i—l)@Rz .

By Lemma 2-1-2, Proposition 2-1-3 and using the induction for 7 we may assert
that Q4(S*; B,)QR, is a free Q@ R,-module on odd dimensional generators.
Clearly

Q4(S"; B)RR, = lim Q4(S"; F)QR, .
Since the image of the canonical homomorphism

Qx(S"; &) OR, > Qx(S*; F)QR,

splits by Lemma 2-1-5, Q4(S*; B.)QR, is a free QQR,-module on odd
dimensional generators.
By Ossa [6; Satz 2], the canonical homomorphism

Qx(S"; &»)@Rz - Q*(Sl§ %A)@Rz

is the zero homomorphism. Then the exact sequence of Theorem 1-1-3 for the
families ¥, DT Dp becomes a short exact sequence

0 = Qx(S"; Fa)QR, = Qu(S*; Ba, Fo) AR, = Qu(S"; Fo) R, —> 0

of O,®R,-modules. Since Q4(S*; F) R, is a free Q4@ R,-module, this short
exact sequence is split. Therefore Qu(S*; F4)XR, is a direct summand of
Q4(S*; Fa, B-)QR, which is a free Q4 R,-module on even dimensional gene-
rators by Lemma 2-1-2 (2). Hence Q(S*; §4)R®R, is a projective Q4 QR,-
module. Moreover it is a free Q4® R,-module by Conner-Smith [4; Proposition
3.2].

Thus Theorem 2-1-1 is obtained from Lemma 2-1-2.

The remaining sections in this chapter will be devoted to the proof of
Lemma 2-1-2.

2-2. Oriented S'-vector bundles

Let H be a closed subgroup of S*, and P(H) be the set of equivalence
classes of (real) representations of H which do not contain a direct summand of
trivial actions and on which H acts orientation preservingly. For an element
pEP(H) we denote a representative of p by the same letter p as long as it causes
no confusion.

For an element pe P(H), a differentiable vector bundle E—X is called to
be an oriented S*-vector bundle of type (r, s, H, p), if E—X is an oriented vector
bundle and an S'-vector bundle of type (7, s, H) and the H-action on any fibre
of E is equivalent to p.

Two oriented S*-vector bundles £— X, E’—X’ over closed manifolds of
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type (7, s, H, p) are bordant, if there is an oriented S'-vector bundle F—Y of
type (r,s-+1, H, p) such that the restriction F|0Y —0Y is isomorphic, as
oriented S*-vector bundles, to the disjoint union of E—X and —(E'— X),
where —(E’—X") is the oriented S*-vector bundle obtained from E’— X’ by
reversing only the orientation of the total space.

By this relation we may define a bordism group B2 ,(S*; H, p) of all oriented
S'-vector bundles over closed manifolds of type (r, s, H, p). We note that for odd
rB2,(S*; H, p)=0 by orientation reason. The direct sum @,,B2,(S*; H, p)
is a module over Q, by the usual way.

We also define B? ((S*; H) to be the direct sum @,cpinB2,(S*; H, p).

Let (8, &) denote one of (F;, F;-,) and (F4, B-), and K be the subgroup
which belongs to &—@&’. Let M be a (&, &)-free oriented S*-manifold and
M g be the set of all points ¥ M whose isotropy groups are equal to K. When
the normal bundle v (M)— My of My in M is oriented, M is called to be a
(®, &)-free oriented S*-manifold with oriented normal bundle.

Two (®, &)-free oriented S'-manifolds M, M’ with oriented normal
bundles are bordant, if there are a (&', &’)-free oriented S*-manifold ¥ and a
(®, ®)-free oriented S'-manifold W satisfying the conditions (1-1-1), (1-1-2),
and if the two oriented S'-vector bundles vg(M), vc(M’) are bordant by the
oriented S'-vector bundle v, (W). By this relation we then define a bordism
group Q%(S*; &, &) of all (8, &)-free oriented S’-manifolds with oriented
normal bundles. By the cartesian product Qg(S*; ®, &) becomes a module
over .

Then we obtain an analogue of Lemma 1-2-1.

Lemma 2-2-1. The correspondence Mi—v (M)—M x induces an Qy-module
isomorphism

‘Q'Q(Sl; (&) @,) = @n=2r+ngr,s(Sl; K) .

The inverse isomorphism may be obtained by corresponding an oriented S'-vector
bundle E—X to the associated disc bundle D(E).

The proof is as easy as the proof of Lemma 1-2-1.

Lemma 2-2-2. (1) Q2(S*; B:, Bi-1)QR, is a free Q@ R,-module on odd
dimensional generators.

(2) QUS*; Ba B-) PR, is a free Qy Q@ R,-module on even dimensional
generators.

This lemma will be proved in the next section 2-3.

Lemma 2-2-3, There are Q4@ R,-module homomorphisms f and g of degree Q
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f
QS S, )RR, T Qx(S"; S, 8RR,
g
satisfying f o g=identity.

This lemma will be proved in the section 2-4.

These lemmas assure Lemma 2-1-2 as follows. By Lemma 2-2-3 Q4(S";
®, &)®R, is a direct summand of Q(S*; &, &)QR,. Since QYS*; S, &)RR,
is a free Q4@ R,-module by Lemma 2-2-2, Q,(S*; ®, &)QR, is a free QxQR,-
module by Conner-Smith [4; Proposition 3.2]. The dimensions of generators
are obtained from Lemma 2-2-2 as desired.

Thus Lemma 2-1-2 is proved.
Now the remaining subjects to prove the main theorem are to prove Lemmas

2-2-2 and 2-2-3.

2-3. The proof of Lemma 2-2-2
Let H be a closed subgroup of S*. An element p= P(H) gives 2 homomor-
phism
p: H— SO(2r).

We denote the centralizer of the image of p in SO(27) by C(p). And we set
A= {(h, p(h))|heH} .

This is a normal subgroup of S*x C(p).
Let E—X be an oriented S'-vector bundle representing a class in
B3, (S*; H, p), and E— X be the principal SO(2r)-bundle associated to E—X.
By the natural way E is given a left S*-action and a right SO(2r)-action. We
set
F= {ecE|h-e = e-p(h) forall heH}.

The left S'-action on E induces a left S*-action on F. The right SO(2r)-action
on E also induces a left C(p)-action defined by v-e=e-y~* for yEC(p). So we
have a left S*Xx C(p)-action on F, and all isotropy groups of points in F are
equal to A. Then we have a principal S*x C(p)/A-bundle

F — F[(S*X C(p)[A) = X|S*.
Then

Lemma 2-3-1 (Conner-Floyd [3], Ossa [5]). By corresponding E— X to
F— X|S" we obtain an Q-module isomorphism

Bgr,s(Sl; H’ P) == Qs+dimH—1(B(S1XC(P)/A)) .

For the proof of Lemma 2-2-2, it suffices to prove the following lemma,
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Lemma 2-3-2. For any closed subgroup H of S' and any pesP(H),
Q4(B(S*X C(p)/A))QR, is a free QxR R,-module on even dimensional generators.

Proof. Considering S* to be the unit sphere in C*, we let
p;: S*— U(1)
be the representation of S* defined by

() = (), =S
Let
i: H— S', and . U(1)— O(2)

be the natural inclusions. Then
fupsin= ==

gives a complete set of non-trivial (real) irreducible representations of H if the
order o(H) of H is odd or H is equal to S*.
For H of even order we let

A H— 0O(1)
be the representation of H defined by

Ah) = (B°H7) heH.
Then

{iji, A 1gjg‘i2@—1}

gives a complete set of non-trivial (real) irreducible representations of H of even
order.
From the above remarks and elementary computations we see that for any
pE P(H) C(p) is isomorphic to
U(r) X - X U(r,-,) X SO(r,)

for some sequence (7,, -+, 7,-,, 7,) With dim p=2 3Yjir;+r,. Moreover we
see that r,=0 if H is of odd order or S*.
For 1=<b=<a let

ps: H— U(ry) (or SO(r,) if b=a)

be the composition

H-L Clo) = Ur) x -+ x Ulr, ) x SO(r)) 2= U(ry) (or SO(,)) .
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Then p, is extendable to S* such that if b4-a the image of p, lies in the center
of U(r,), and we denote this extension by the same symbol p,. We set

A" = {(h, pu(h))|heH } .

Then there is an epimorphism from S'Xx C(p) to U(r,)X -+ X U(r,-,) X
(S*x SO(r,)/A") which sends (2,x,, -+, x,) to (p,(2) 7%y, -, Pa-1(2) %4y, [2, %,])s
and the kernel of this homomorphism is A. So we obtain an isomorphism

(2-3-3) S*XC(p)[A == U(r)X -+ X U(r,-,) X (S*X SO(r,)/A") .
(1) The case in which H is of odd order or S*: We obtain Q;QR,-

module isomorphisms
QUB(S'X C(p)/A) @R, = Qx(BX)®R,
=~ Hy(BX; R,)Qr,(QxQR,),

where BX=B(U(r,) X -+ X U(r,_,) X (S*/H)). The first isomorphism is obtained
from (2-3-3), and the last one is obtained from Theorem 1-3-1. Since Hy(BX;
R)) is a free R,-module on even dimensional generators, Q4(B(S' X C(p)/A))®R,
is a free Q4@ R,-module on even dimensional generators.

(2) The case in which H is of even order (The following method is largely
due to Ossa [5], [6]): We set

A= {1, 1), (—1, —1)}cS**xSO(r,) .
Then we obtain an isomorphism
(2-3-4) S*XSO(r,)/A" = §*x SO(r,)|A” .

Let T’ be a maximal torus in S* X SO(r,) such that 7’ contains A”’. Then
T=T'|A” is a maximal torus in S*X SO(r,)/A”.

H*(8*'xSO(r,)|A”; Z) and H*((S*xSO(r,)|A")|T; Z)
have no odd torsion. So the canonical homomorphism
H*(B(S*x SO(r,)|A"); Zy) - H¥(BT; Z,)

is injective for any odd prime p by Borel [1; Proposition 29.2]. Hence
Hy(B(S*xSO(r,)]A”); Z) has no odd torsion and H ., (B(S*x SO(r,)/A"); Z)
is a 2-torsion group.
We obtain QX R,-module isomorphisms
Qu(B(S*X C(p)/A))QR, = Q«(BY)RR,
= H*(BY; R2)®R2(‘Q'*®Rz) ’

where BY=B(U(r,)x -+ X U(r,-,) X (S*x SO(r,)/A”)). 'The first isomorphism
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is obtained from (2-3-3) and (2-3-4), and the last one is obtained from the above
argument and Theorem 1-3-1.

H.«(BY; R,)=0 since H,.(B(S*xSO(r,)/A"”; Z) is a 2-torsion group.
Then Qu(B(S*X C(p)/A))RR, is a free Qx@R,-module on even dimensional
generators. q.e.d.

Thus Lemma 2-2-2 is completely proved.
2-4. The proof of Lemma 2-2-3

First we obtain

Lemma 2-4-1 (Ossa [5] [6]). For an S*-vector bundle E—X (X closed) of
type (r, s, H) there exists an oriented S'-vector bundle E—X® of type (r, s, H)
such that

2[E—>X]=[E®—->X®] in B,(S; H).

Proof. Let z: X— X/S® be the natural projection. Let Y’ be a minimal
1-codimensional submanifold of X/S* which represents the first Stiefel-Whitney
class of X/S?, and set Y=z"(Y’). Then Y is a minimal 1-codimensional
invariant closed submanifold of X such that X— Y is orientable.

Let U be an invariant closed tubular neighborhood of Y in X, and set
X,=X—int U. Considering U as a disc bundle over Y, (E| Y)P U is equivari-
antly diffeomorphic to E{U. So the ahtipodal involution on U induces an
involution T on E| U, which is equivariant with the S’-action and reverses the
orientation of E| U.

U ing the involution T we may obtain an S*-vector bundle W—V of type
(r, s+1, H) as follows. W is formed from two copies {0} X EX I and {1} x Ex I
of E x I by identifying (0, e, 0) with (1, T'(e), 0) for all e E | U, and V is formed
from two copies {0} x XX I and {1} XXX I of XxI by identifying (0, x, 0)
with (1, T'(x), 0) for all x& U, where I is the interval [0, 1].

Let E®—X® be the subbundle of W —V defined by

(2-4-2) E® = {0}x(E|X)x{0}Ur{1}x(E|X,)x {0}, and

(2-4-3) X®@={0}xX,x{0}ur{1}x X, x{0}.
Then EP—X® is an S'-vector bundle of type (7, s, H), and is bordant to
2(E—X) by the bordism W—V.

X, is an orientable manifold. We orient the two copies of X, in (2-4-3) so

that those orientations are reverse each other, then X is oriented since Y is
minimal. So E®—X® is an oriented S*-vector bundle. q.e.d.

We may construct Q, & R,-module homomorphisms f and g
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f
B2.(S'; HY®R, == B, (S'; H)®R,
8
satisfying fo g:identity. Then Lemma 2-2-3 follows from Lemma 1-2-1 and
Lemma 2-2-1.
First we define f by f=f'®1 where

f: B2(S"; H)— B, (S*; H)

is the canonical homomorphism forgetting orientation of bundles.

Next we define g as follows. Let E— X be an S'-vector bundle over a
closed manifold X of type (7, s, H), and E®—X® be an oriented S'-vector
bundle constructed by Lemma 2-4-1. We must note that E®—X® can not

be canonically oriented.
We devide X into the connected components,

XD — A1U"' UA,.-

Each 4, (1=<a=mn) is invariant under the S'-action, and E®|4,— A4, is an
orientable S'-vector bundle of type (r, s, H). Since A, is connected, E® |4,
—A, is given exactly two orientations. Let o(E®|4,— A4,) be the class in
B2 (S*; H) which is represented by the sum of the two kinds of oriented
S'-vector bundles obtained from E®|A4,—A4,. Then we define o(E®—X®)
to be the sum of o(E®|4,— 4,), a=1, ---,n. We see that

f(c(EPX—>X®)=4[E—~X] in B, (S'; H).
So we define g by
g(E—~X]@%) = o(E®>X M)y » 3R

This is a well-defined homomorphism and satisfies fog=identity.

CHAPTER 3. BORDISM OF (Z,)*-ACTIONS

In this chapter we consider (Z,)*-actions.

We remark that

(1) any subgroup of (Z,)* is isomorphic to (Z,)* for some a<k, and

(2) for any subgroup H of (Z,)%, there exists a “complement” H* such that
H@H?® is equal to (Z,)*. For each H we fix one complement H° throughout

this chapter.
3-1 The main theorem and the key lemma

Main Theorem 3-1-1. For any family § in (Z,)%, Qx((Z,)*; F)XR, is a
free QyQ@R,-module on even dimensional generators.
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Let
Hv Hza B Ha

be a sequence of all subgroups belonging to § such that the order of H; is larger
than or equal to the order of H,_, for any i=2, ---,a. 'Then the collection

= {H;|j<i}
is a family in (Z,)* for all i=1, 2, --+, @, and §,=F.

Key Lemma 3-1-2. Q.((Z,)*; §;, B:- )RR, is a free Qyu @R,-module on
even dimensional generators.

This key lemma will be proved in the following sections. We may prove
the main theorem by using the key lemma as follows.
First we obtain

Proposition 3-1-3. Q,((Z)*; B)QR, is a free Q4 Q R,-module on a
0-dimensional generator.

Proof. As the proof of Lemma 2-1-3 we obtain an Q4 -module isomor-
phism
Q4((Z.)*; ) = Qu(B((Z,)"))
of degree 0. Since Q4«(B((Z.)*))RR, is a free Q4@ R,-module on a 0-dimen-

sional generator, the proposition follows. q.e.d.

We also obtain the following proposition and lemma by the similar ways to
Proposition 2-1-4 and Lemma 2-1-5.

Proposition 3-1-4. Q. .,((Z,)%; B,)RQR,=0 for all i.
Lemma 3-1-5. We obtain a split short exact sequence
0 — Q((Z,)%; %i—l)@Rz g Q*((Zz)k; %i)®R2

- Q*((Zz)k’ %i’ %i—x)@Rz - 0
of Q«QR,-modules.

From this lemma we obtain an Q,®R,-module isomorphism
Qi((Z)"5 B)QR, = Q:((Z,)*; Bi-) QR,DU((Z2)"5 B Bi-)OR, .

By Lemma 3-1-2, Proposition 3-1-3 and using the induction for ¢ we may assert
that Q.((Z,)*; B,)RR, is a free QxQ@R,-module on even dimensional generators
for all 7.

Thus Theorem 3-1-1 is obtained from Lemma 3-1-2. The following

sections will be devoted to the proof of Lemma 3-1-2.
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3-2. Special (Z,)*-vector bundles

Let H be a subgroup of (Z,)%, and {V,, ---, V,} be a complete set of
non-trivial (real) irreducible representation spaces of H. We note that any
V; (1=j=gq) is a 1-dimensional vector space and ¢ is equal to o(H)—1, o(H)
the order of H.

Then we obtain

Lemma 3-2-1. For any (Z,)*-vector bundle E—X of type (r, s. H) we have
a canonical equivariant decomposition of E by (Z,)*-vector bundles E; (j=1, ---, q)

E= @, E;
such that the H-action on any fibre of E; is equivalent to V; for j=1, ---, q.

Proof. Let
V,=V,xX—-X

be the product bundle over X. Giving the trivial H “-action on V’;, we may
regard V; as a (Z,)*-vector space. We define a (Z,)*-action on V; by the diagonal
action.

Let Homy(V ;, E) be the bundle of H—equiVariz:nt homomorphisms. For
any element f & Homy(V;, E) and g=(Z,)* we define g . f € Hom(V;, E) to be
the composition

E.

This defines a (Z,)*-action on Homy(V;, E).
Let E; be the (Z,)*-vector bundle V;QHomg(V;, E). Then the direct

sum of the canonical homomorphisms
E,—-FE, j=1,-¢
gives an equivariant isomorphism
D1 E i E,
since all V,’s are 1-dimensional. q.e.d.

A (Z,)*-vector bundle E—X of type (7, s, H) is called to be a special (Z,)*-
vector bundle, if in the canonical decomposition

E = @jilEj

each E; is an oriented vector bundle and the H ‘-action on E; preserves the

orientation of the bundle E;.
Let V be a representation space of H which has no direct summand of

trivial action, then V is isomorphic to Vii.-- Vi for some r,, ---,7,. For
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any ¥ H we set
J(®) = {j |x non-trivially acts on V; (1=j=<¢).},
and we denote the number of the elements of the set

J@)N{jlr;is odd (1=j=g).}

by a.(V).

’ V(Ve)deﬁne S(H) to be the set of equivalence classes of representation spaces
V of H which satisfy that (V) is even for all x& H. We denote an equivalence
class and its representative by a same letter V as long as it causes no confusion.
We note that the H-action on V is orientation preserving for any V & S(H).

For Ve S(H) a(Z,)*-vector bundle E— X is called to be of type (r,s, H, V),
if E— X is a (Z,)¥-vector bundle of type (7, s, H) and the H-action on any fibre
of E is equivalent to V.

Two special (Z,)*-vector bundles E— X, E’— X’ over closed manifolds of
type (7, s, H, V) are bordant, if there is a special (Z,)¥-vector bundle F—Y of
type (r,s+1, H, V) such that the restriction F |9Y—0Y is isomorphic, as special
(Z,)k-vector bundles, to the disjoint union of E— X and —(E’— X’), where
—(E'—X") is the special (Z,)-vector bundle obtained from E’— X"’ by reversing
only the orientation of the total space.

By this relation “bordant” we may define a bordism group B ((Z,)%; H, V)
of all special (Z,)*-vector bundles over closed manifolds of type (, s, H, V).
The direct sum Pz, B7 ;((£:)%; H, V) is a module over Q4 by the usual way.
We also define B; ,((Z,)*; H) to be the direct sum Pycsan B? ((Z,)%; H, V).

Let M be an (B, §.-,)-free oriented (Z,)*-manifold and M u, be the set
of all points x=M whose isotropy groups are H;. When the normal bundle
vy (M)—My, of My, in M is a special (Z,)*-vector bundle, M is called to be an
(Biy Bi-1)-free oriented (Z,)k-manifold with special normal bundle.

Two (B, Ti-.)-free oriented (Z,)*-manifolds M, M’ with special normal
bundles are bordant, if there are an (3;_,, §,-,)-free oriented (Z,)*-manifold V'
and an (g, :)-free oriented (Z,)*-manifold W satisfying the conditions (1-1-1),
(1-1-2), and if the two special (Z,)*-vector bundles vy (M), vy (M’) are bordant
by the special (Z,)*-vector bundle v5(W). By this relation we may define a
bordism group Qg((Z,)%; F:, ;-,) of all (F;, §,_,)-free oriented (Z,)*-manifolds
with special normal bundles. By the cartesian product Q$((Z,)*; B: Bi-1)
becomes a module over Q.

Then we obtain an analogue of Lemma 1-2-1 (or Lemma 2-2-1).

Lemma 3-2-2. The correspondence M—v gy (M)— M g, induces an Qy-module
isomorphism
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QR((ZoYr5 Bir Bim) = Burse B ((Z2)*; H.) -

The inverse isomorphism may be obtained by corresponding a special (Z,)*-vector
bundle E — X to the associated disc bundle D(E).

Lemma 3-2-3. Q3((Z.)*; B:, Bi-) R, is a free Q4 Q@ R,-module.
This lemma will be proved in the next section 3-3.

Lemma 3-2-4.  There are Q@ R,-module homomorphisms f and g of degree 0

f
‘Q'i((Zz)k’ %i; %i-1)®R2 : Q*((Zz)k; %i’ %i—l)@RZ
g
satisfying
(1) fog=identity, and
(2) f(Q5a((Zo)%; Bir i) OR,)=0.

This lemma will be proved in 3-4.

These lemmas assure Lemma 3-1-2 as follows. By Lemma 3-2-4
Q((Z)%; Bir Bi-1)QR, is a direct summand of QF((Z,)*; T, Fi-))QR,. Since
QS((Z)%; Bir Bi-) DR, is a free Q4QR,-module by Lemma 3-2-3, Q4((Z,)%;
B Bio)OR, is a free QxQR,-module by Conner-Smith [4; Proposition 3.2].
The dimensions of generators are obtained from Lemma 3-2-4 (2) as desired.

Thus Lemma 3-1-2 is proved.

Now the remaining subjects to prove the main theorem are to prove
Lemmas 3-2-3 and 3-2-4.

3-3. The proof of Lemma 3-2-3

Let H be a subgroup of (Z,)* and {V,, ---, V,} be a complete set of
non-trivial irreducible representation spaces (g=o(H)—1). For any element
VeS(H) we set

SO(V) = SO(r,) X -+- X SO(r,)
where 7,, --+, 74 are defined by
V=Vid-dVy.
Lemma 3-3-1. There is an Qy-module isomorphism
B? ((Z.)*; H, V) = Q(B(H**x SO(V))) .

By Theorem 1-3-1 Qu(B(H*X SO(V)))®R, is a free Q4@ R,-module iso-
morphic to Hy(B(H°XSO(V)); R,)Rr,(Q2+®R,). Hence we obtain Lemma
3-2-3 from Lemmas 3-2-2, 3-3-1.

Proof of Lemma 3-3-1. Let E— X be a special (Z,)*-vector bundle of
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type (7, s, H, V). We obtain the canonical equivariant decomposition of E by
(Z,)¥-vector bundles

E=®,%LE;

from Lemma 3-2-1.
H* freely acts on X, and each E; is an oriented vector bundle on which
H acts orientation preservingly. Let

h: X/H°—> BH* and
h;: X/H® — BSO(r;)

be classifying maps of the principal bundle X — X/H° and the oriented vector
bundles E;/H®— X/H*, respectively. Then & and &; (j=1, --+, ) define a map

hx 11,4 h;: X/H® — BH®X I1,21BSO(r;)~B(H °x SO(V)) .
By corresponding E— X to £ X [] k; we obtain a homomorphism
B2 ((2.)*; H, V) = Q(B(H* X SO(V))) .
The inverse homomorphism is obtained as follows. Let
h: M — B(H°x SO(V))
represent a class in Q(B(H X SO(V))). Then £k defines maps
h: M — BH° and
hy M—BSO(r)  (j=1,49).

Let =: M—> M be the principal H °-bundle induced by %, and E;— M be the
oriented vector bundle induced by k;or. We may define a (Z,)*-action on
@, E; — M so that the bundle is a special (Z,)*-vector bundle of type (7, 5, H,
V) and the correspondence % to ;% E;— M defines the desired inverse
homomorphism. q.e.d.

3-4. The proof of Lemma 3-2-4

For the proof we need the following lemma.

Lemma 3-4-1. For a (Z,)*-vector bundle E— X (X closed) of type (r, s, H)
there exists a special (Z,)¥-vector bundle E“© — X of type (r, s, H) such that

2[E—X] = [E~X?] in B, (Z); H),
where q=o(H)—1.
Proof. We have the canonical decomposition

E=D,LE;
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by Lemma 3-2-1.
For 0=m=gq let D(m) be the following statement:
There exists a (Z,)-vector bundle E™ — X ™ of type (r, s, H) such that
(1) in the canonical decomposition

”m) ~ (m)
E( D ~ @jglEJm

the direct summands E{™, --- EG® are oriented vector bundles on which H° acts
orientation preservingly, and

(2) 2"[E—X]=[E™ —X"™]in B, ((Z,)*; H).

We may prove Lemma 3-4-1 by the induction for m. The statement D(0)
is trivially valid. In the following we show that the statement D(m) implies
the statement D(m-1).

Since H ¢ freely acts on X, EGR [H®— X ™ |H* is also a vector bundle.
Let Y’ be a minimal 1-codimensional submanifold of X“/H* which represents
the first Stiefel-Whitney class of the vector bundle E3%,/H°— X [H*®, and set
Y=="'(Y’) where n: X™—-X|[H° is the natural projection. Then YV is a
minimal 1-codimensional invariant closed submanifold of X satisfying that
the restricted vector bundle of E{™, on X —Y is orientable so that H* acts
orientation preservingly.

Let U be an invariant closed tubular neighborhood of Y in X, and set
X,=X™—int U. Considering U as a disc bundle over Y, (E™|Y)PU is
equivariantly diffeomorphic to E®|U. So the antipodal involution on U
induces an involution 7°on E® | U. As in the proof of Lemma 2-4-1, pasting
two copies of E™|X, each other by T, we may construct a new (Z,)*-vector
bundle E ™+ — X ™+ of type (r, s, H) such that

2[E™ > X = [E™ > X™0] in B, (Zy H).
Then
2m+1 [E_>X] — [E(m+l)__>X(m+1)]

by the statement D(m).
In the canonical decomposition

E @D ~ @;i1E§m+l)
each E{**V is equivariantly isomorphic to the bundle
(3-4-2) (Ef”|X)Ur(EFV|X).

For 1< j<m we give a same orientation to the two copies of the vector bundle
E§{™| X, in (3-4-2), then E{"*" is an oriented vector bundle on which H* acts
orientation preservingly. For j=m--1 we orient the two copies of E{™ | X, in
(3-4-2) such that those orientations are reverse each other, then E{"*? is an
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oriented vector bundle since Y is minimal, and H ° acts orientation preservingly
on E{™*1,
Thus the statement D(m) implies the statement D(m--1). q.e.d.

We may construct Q4® R,-module homomorphisms f and g

f
B2(Z.)"; H)QR, — B, ((Z,)"; H)®R,
8
satisfying that
(3-4-3) fog=identity, and
(3-4-4) if r+sis odd, f is the zero homomorphism.

Then Lemma 3-2-4 follows from Lemma 1-2-1 and Lemma 3-2-2.
First we define f by f=f'®1 where

f's B2((Z)*; H) — B, ((Z.)*; H)

is the canonical homomorphism forgetting the “speciality”’ of bundles. Then
we obtain

Lemma 3-4-5. If r-+s is odd, every element in f'(BS ((Z,)¥; H)) is of
order 2. So the statement (3-4-4) follows.

Proof. Let V be any element in S(H), and
A BS((Z,)%; H, V) = Q(B(H*x SO(V)))

be the isomorphism obtained by Lemma 3-3-1. And let x be any element in
B? ((Z,)*; H, V). 1If sis odd, then A(x) is of order 2, and f’(x) is so.

If r+s is odd and s is even, we may construct an element X< B7 ,((Z,)*;
H, V) such that

(3-4-6) x+x=0, and
(3-4-7) f'(x)=f"(%)-
Then f’(x) is of order 2.
% is constructed as follows. Let E—X be a representative of x, and

be the canonical decomposition. We define an oriented vector bundle E; such
that if dim E; is even E; is E;, and if dim E; is odd E; is the oriented vector
bundle obtained from E; by reversing the orientation. Let & be the class
represented by @,%, E;— X which is given the same orientation of the total
space as E,
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The number of j’s with dim E;=odd is odd since 7 is odd. From this
fact the condition (3-4-6) follows. The condition (3-4-7) follows easily. q.e.d.

Next we define g as follows. "Let E— X be a (Z,)*-vector bundle over a
closed manifold X of type (r, s, H), and E”— X be a special (Z,)*-vector
bundle constructed by Lemma 3-4-1. Let

E® =@, EP

be the canonical decomposition. We must note that £ — X can not be
canonically “specialized”, i.e., each E{® can not be canonically oriented. We
devide X into the form

X(q) —_ Al U vee UAn

such that each A, (1< «a =) is invariant under the (Z,)*-action and each
A,/(Z,) is connected. Then each E°|4,— A, is a (Z,)*-vector bundle, and
specialized to exactly 22 kinds of special (Z,)*-vector bundles. We sum up the
27 special (Z,)¥-vector bundles obtained from E“|A4,— A,, and denote the
class of the sum in B; ,((Z,)*; H) by

g(E@|4,— 4,).
And we set
c(E® — XP)=3WL1a(EP|4,—~4,).
Then we see that
f(e(E®@—X@)) =2%[E—X].
So we define g by
([E— X]@x) = o(E@—>X)@x[2",  xER,.

This is a well-defined homomorphism and satisfies (3-4-3).
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