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Introduction

In [2] P.E. Conner and E.E. Floyd demonstrated the effectiveness of
bordism methods in the studies of group actions. Afterwards, using the bordism
methods, many topologists obtained various results in the area. The central
tools in these studies are the bordism modules of group actions.

Let G be a compact Lie group, and %, %' be families of subgroups of G
such that S^S 7 - We may define the oriented bordism module Ω*(G; §, W),
over the oriented cobordism ring Ω*, which consists of bordism classes of (§, £5')~
free oriented G-manifolds. In this paper we are concerned with the module
structure of Ω*(G; $, $')• ^ 8 ' is empty, then we denote this module by
Ω*(G; %). Let %A be the family of all subgroups of G. Then Ω*(G; %A) is
the bordism module of all closed oriented G-manifolds. Especially we are
interested in the module structure of Ω*(G; %A).

R.E.Stong [7] has shown that Ω*(G; %A) is a free Ω^-module on even
dimensional generators when G is a finite />-ρrimary abelian group for odd prime
p. Recently E.R.Wheeler [8] has shown that Ω*(G; %A)®R2 is a free Ω*®R2-
module on even dimensional generators when G is a certain finite cyclic group,

where R2=Z\ — I.

We study the cases in which G is the circle group S1 or (Z2)*=Z2© 0 Z 2

(A times). We obtain that both Ω^S1; %A)®R2 and Ω*((Z2)*; %A)®R2 are
free Ωίiί®i?2""mocmles on even dimensional generators. In fact we prove such
"freeness" theorems for more general families, as stated in Theorem 2-1-1 and
Theorem 3-1-1.

Our main tools are the Conner-Floyd exact sequences and the fact that
Ω^G; f5, §0 can be interpreted as (direct sum of) singular bordism modules of
adequate spaces when %—$' consists of a single element H. When G is S1 or
(Z2)

k, this interpretation involves a difficulty for the sake of non-orientability of
normal bundles of //-stationary point sets. We overcome this difficulty by a
modification of the methods due to E. Ossa [5; Lemma 1-2-5] [6; Lemma 4],
(see Lemmas 2-2-3, 3-2-4).
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CHAPTER 1. PRELIMINARIES

In this chapter we give common preliminaries for S1- and (Z2)*-actions.
Throughout this chapter, G denotes a compact abelian Lie group.

1-1. Bordism of G-manifolds

A family % in G is a collection of closed subgroups of G such that if H^%
and if K is a closed subgroup of H then K^%.
Being given families %, %' in G with §= )S /> a n (δ> %f)~free G-manίfold M is a
compact differentiable manifold M with differentiable G-action such that for all
x^M the isotropy groups I(x) belong to % and for all ΛIG3M I(X) belong to £$'.
An (%, WYfree oriented G-manίfold M is an (g, g')-free G-manifold M such that
M is an oriented manifold and the G-action preserves the orientation of M. If
g ' is empty, then necessarily dM=φ.

Being given an (g, g')-free oriented G-manifold M, we define — M to be
the (£5, g')-free oriented G-manifold whose underlying manifold and G-action
are same as M but orientation is reversed. We also define dM to be the (g', φ)-
free oriented G-manifold whose G-action is the restriction of the G-action on M
and orientation is given by inward normal vectors.

Two (§, g')-free oriented G-manifolds M, Mf are bordant, if there are an
(S/> 3')-free oriented G-manifold F and an (g, §)-free oriented G-manifold W
such that

(1-1-1) 9F is diffeomorphic, as oriented G-manifolds, to the disjoint
union of dM and — dM\ and

(1-1-2) dW is diffeomorphic, as oriented G-manifolds, to the manifold
M l j F Ί j —M' obtained by glueing the boundaries.

This relation ' 'bordant*' is an equivalence relation on the set of all (§, §')-
free oriented G-manifolds. An equivalence class by this relation is called an
{%> S ' ) - / ^ bordism class.

The set of all ($, gr)-free bordism classes of ($, g7)-free oriented G-mani-
folds forms an abelian group with the operation induced by disjoint union, and
this group will be denoted by Ω*(G; §> %'). ΩM(G; S> SO denotes the summand
consisting of (%, gQ-free bordism classes of ($, ^Q-free oriented G-manifolds
of dimension n.

When S' is empty, Ω#(G; g, g')> ^ W (G; g, §0 are denoted by Ω*(G; g),
ΩW(G; g) in brief.

For a representative N of any element in the oriented cobordism ring Ω*

we can see N to be an oriented G-manifold by giving the trivial G-action.

Therefore Ω*(G; §, g7) is a module over Ω# by the cartesian product.

Being given families g, g', g7/ in G with glDg'lDg", we have Ω^-module

homomorphisms
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**: Ω*(G; %', gΌ -> Ω*(G; g, g")
1* O ί'Γ^'• *-£ ^ ' Λ O //^ *-£ c>ς/\

obtained by considering (§', g'^-free (or ($, S")-free) bordism classes as

(3> S/7)"free ( o r (S> S')-free) bordism classes. We also have an Ω^-module

homomorphism

3*: Ω*(G;g,gO-»Ωl|l(G;g',gΌ

of degree —I obtained by sending the class of M to the class of dM.
Then

Theorem 1-1-3. The sequence

- - > Ω B ( G ; δ ' ,

Ω«(G; g,

is exact, where R2 is the subrίng of the rationals given by R2=Z\ — I.

Proof. The sequence obtained from the above sequence by taking away
®R2 is a Conner-Floyd's exact sequence [3; (5.3)]. Since R2 is torsion free,
the above sequence is also exact. q.e.d.

1-2. Bordism of G-vector bundles

A differentiate vector bundle E-+X is called a G-vector bundle, when the
total space E is an oriented manifold on which G acts as a group of bundle maps
preserving the orientation of the manifold E,

Let Hbt a closed subgroup of G. A G-vector bundle £*->Xis called to
be of type (r, s, H), if E^X is an ^-dimensional G-vector bundle over an
s-dimensional compact manifold X such that for any vector e^E the isotropy
group I(e) is a subgroup of H and I(e) is equal to H if and only if e is a zero
vector.

Being given a G-vector bundle E^X, we define — (E^>X) to be the G-
vector bundle obtained from E->X by reversing the orientation of the total
space E.

Two G-vector bundles E-+X, Ef-^>X' over closed manifolds of type
(r, s, H) are bordant, if there is a G-vector bundle F-> Y of type (r, s+l,H) such
that the restriction F |9Y->9Y is isomorphic, as G-vector bundles, to the
disjoint union of E->X and — (E'->X').

This relation ' 'bordant" is an equivalence relation on the set of G-vector
bundles over closed manifolds of type (r, s, H). The set of equivalence classes
of G-vector bundles over closed manifolds of type (r, s, H) forms an abelian group
with the operation induced by disjoint union, and this group is denoted by
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Br,s(G; H).
We note that for G=S1 B2r+ls(G; H)=0 by orientation reason.
For a closed oriented manifold N of dimension n and a G-vector bundle

E^X of type (r, s, H) we obtain a G-vector bundle NxE-^NxX of type
(r, ί + ^ j -ί̂ ) by a natural way. This makes the direct sum (Bs^0BrtS(G; H) a
module over Ω*.

Let % be a family in G and i/ be a maximal element in § . Let M be an
(S> % — {#})-free oriented G-manifold and MH be the set of all points x^M
whose isotropy groups are equal to H. Then the normal bundle vH{M) —> MH

of MH in M is a G-vector bundle over a closed manifold M^.

Lemma 1-2-1. The correspondence M\-^>vH(M)->MH induces an Ω*-module
isomorphism

0 M = r + s J B r , s (G; J ϊ ) .

inverse isomorphism may be obtained by corresponding a G-vector bundle E->X
to the associated disc bundle D(E).

The proof is easy.

1-3. Homology interpretation of the singular bordism groups

For later uses we present this interpretation in the following fashion.

Theorem 1-3-1. If X is a CW-complex such that for each n Hn(X; Z) is
finitely generated and has no odd torsion, then there is an Ω*®R2-module isomor-
phism

of degree 0.

Proof. Since H*(X; Z) has no odd torsion, the Thorn homomorphism

μ: Ω*(X)->H*(X;Z)

is epic by Conner-Floyd [2; Theorem 15. 2]. Hence

μ®l: Ω*(X)®R2 -* H*(X; Z)®R2

is epic. As in [2; Theorem 17. 1] we obtain the desired isomorphism. q.e.d.

CHAPTER 2. BORDISM OF ̂ -ACTIONS

In this chapter we consider the case in which G is the circle group S1. For
any positive integer i we define a family %i in S1 to be the family of all closed
subgroups whose orders are at most i. We also define a family g^ to be the
family of all proper closed subgroups of S\ i.e., $L= U ,-£!§,-, and a family %A
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to be the family of all closed subgroups of S1, i.e., 3U=3oo U {S1}.

2-1. The main theorem and the key lemma

Main Theorem 2-1-1. (1) Both Ω^S1; %i)®R2 (for any *;>1) and
Ω^S1; f$oo)®i?2 are free Ω*®R2-modules on odd dimensional generators.

(2) Ω*(SX $A) ®R2 is a free Ω* ®R2-module on even dimensional generators.

Key L e m m a 2-1-2. (1) Ω*(Slm, %iy %i-1)®R2 is a free Ω*®R2-module on

odd dimensional generators.

(2) Ω*(S1; %Ay Soo)®i?2 is a free Ω*®R2-module on even dimensional

generators.

The key lemma will be proved in the following sections. We may prove
the main theorem by using the key lemma as follows.

First we obtain

Proposition 2-1-3. Ω*(Sι %^)®R2 is a free Ω*®R2-module on odd dimen-

sional generators.

Proof. Ω^S 1 ; Si) is the bordism group of all fixed point free closed
oriented S^manifolds. By corresponding a fixed point free closed oriented
iS^manifold M to a classifying map of the principal S^-bundle M-+M/S1, we
obtain an Ω*-module isomorphism

of degree — 1. Since Ω^BS1) is a free Ω*-module on even dimensional
generators, the proposition follows. q.e.d.

Proposition 2-1-4. Ω^S1 fy)® 1^=0 for all i.

Proof. First Ω^S1; ^x)®R2=0 by Proposition 2-1-3.
By applying the exact sequence of Theorem 1-1-3 to the case in which

(3> W> δ / / ) = ( δ > 3ί-i> Φ) a n d using Lemma 2-1-2 (1), we see that the canonical
homomorphism

is epic. Then the proposition follows by the induction for /. q.e.d.

Lemma 2-1-5. We obtain a split short exact sequence

0 — Ω^S1; %i-1)®R2 -* Ω*(SU, %i)®R2 -> Ω^S1; g,, %i-1)®R2 -> 0

of Ω*®R2-modules.

Proof. Lemma 2-1-2 (1) and Proposition 2-1-4 make the exact sequence
of Theorem 1-1-3 for the families §,.3^.^15^ to the above sequence, q.e.d,
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From this lemma

By Lemma 2-1-2, Proposition 2-1-3 and using the induction for i we may assert
that Ω^S 1 ; %^)®R2 is a free Ω*<g)jR2-module on odd dimensional generators.

Clearly

^ 1 ; %t)®R2.

Since the image of the canonical homomorphism

splits by Lemma 2-1-5, Ω ^ S 1 ; Soo)®i?2 is a free Ω*®i?2-module on odd
dimensional generators.

By Ossa [6; Satz 2], the canonical homomorphism

Λ*^ 1 ; &o)®#2 - Ω * ^ 1 ; 3U)®2?2

is the zero homomorphism. Then the exact sequence of Theorem 1-1-3 for the
families %A D^L Z) φ becomes a short exact sequence

0 -> Ω^S 1 ; %A)®R2 - Ω * ^ 1 ; g^, g . ) ® ^ 2 -> Ω^S 1 ; ^ ) ® ^ 2 - 0

of Ω*®i?2-modules. Since Ω5iί(*S'1; goo)®^2 is a free Ω*(g)i?2-module, this short
exact sequence is split. Therefore Ω ^ S 1 ; %$A)®R2 is a direct summand of
Ω * ^ 1 ; %A, %OO)®R2 which is a free Ω*®i?2-module on even dimensional gene-
rators by Lemma 2-1-2 (2). Hence Ωϊ{ί(*Sfl; %A)®R2 is a projective Ω*®ϋ 2-
module. Moreover it is a free Ω*(g)i?2-module by Conner-Smith [4; Proposition
3.2].

Thus Theorem 2-1-1 is obtained from Lemma 2-1-2.
The remaining sections in this chapter will be devoted to the proof of

Lemma 2-1-2.

2-2. Oriented S ̂ vector bundles

Let H be a closed subgroup of S1, and P(H) be the set of equivalence
classes of (real) representations of H which do not contain a direct summand of
trivial actions and on which H acts orientation preservingly. For an element
ρ^P(H) we denote a representative of p by the same letter p as long as it causes
no confusion.

For an element ρ^P(H), a differentiable vector bundle E^X is called to
be an oriented S1-vector bundle of type (r, s, H, p), if E^X is an oriented vector
bundle and an ^-vector bundle of type (r, s, H) and the //-action on any fibre
of E is equivalent to p.

Two oriented /^-vector bundles E^ X} E/->X/ over closed manifolds of
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type (r, s, Hy p) are bordant, if there is an oriented ^-vector bundle F->Y of

type (r, s+l,H, p) such that the restriction F\dY-+dY is isomorphic, as

oriented S^-vector bundles, to the disjoint union of E^X and — (E'^X'),

where — (E'-+X') is the oriented ^-vector bundle obtained from E'-+X' by

reversing only the orientation of the total space.

By this relation we may define a bordism group B°s(Slm, H, p) of all oriented

S^vector bundles over closed manifolds of type (r, s, H, p). We note that for odd

rBp^S1; H, p)=0 by orientation reason. The direct sum φ^B^S1; H> p)

is a module over Ω# by the usual way.

We also define B^S1; H) to be the direct sum ΘpePcH^?,*^1; Hy p).

Let (©, ©') denote one of (g, , gί-i) a n d &A> 3OO), and K be the subgroup
which belongs to ©—©r. Let M be a (©, (S^-free oriented ^-manifold and
M^ be the set of all points x^M whose isotropy groups are equal to K. When
the normal bundle vκ{M) -> Mκ of Mκ in M is oriented, M is called to be a
(@, %')-free oriented S1-manifold with oriented normal bundle.

Two (©, ©r)-free oriented ^-manifolds M, M' with oriented normal
bundles are bordant, if there are a (©^ ©7)-free oriented ^-manifold V and a
(©, ©)-free oriented AS^manifold W satisfying the conditions (1-1-1), (1-1-2),
and if the two oriented ^-vector bundles vκ{M), vκ{M') are bordant by the
oriented ^-vector bundle vκ(W). By this relation we then define a bordism
group Ω ^ S 1 ; ©, ©r) of all (©, ©^-free oriented AS^manifolds with oriented
normal bundles. By the cartesian product Ω^S 1 ; ©, ©7) becomes a module
over Ω*.

Then we obtain an analogue of Lemma 1-2-1.

L e m m a 2-2-1. The correspondence M\—>vκ(M)-+Mκ induces an Ω*-module

isomorphism

The inverse isomorphism may be obtained by corresponding an oriented S1-vector

bundle E->X to the associated disc bundle D(E).

The proof is as easy as the proof of Lemma 1-2-1.

L e m m a 2-2-2. (1) Ω%(Slm, $ t , S j - O ® ^ is a free Ω*®R2-module on odd

dimensional generators.

(2) Ω%{S1\%A,%J)®R2 is a free Ω* ® R2-module on even dimensional

generators.

This lemma will be proved in the next section 2-3.

2-2-3, There are Ω^ ®R2-module homomorphisms f and § of degree Q
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g
satisfying f°g=identity.

This lemma will be proved in the section 2-4.
These lemmas assure Lemma 2-1-2 as follows. By Lemma 2-2-3

®,@0®#2isadirectsummandof ίl%(S1;®9®
/)®R2. Since ΩgOS1;®,

is a free Ω*®i?2-module by Lemma 2-2-2, Ω^S 1 ; ©, ®')®-R2

 ί s a f r e e
 Ω*®JR 2 -

module by Conner-Smith [4; Proposition 3.2]. The dimensions of generators
are obtained from Lemma 2-2-2 as desired.

Thus Lemma 2-1-2 is proved.
Now the remaining subjects to prove the main theorem are to prove Lemmas

2-2-2 and 2-2-3.

2-3. The proof of Lemma 2-2-2

Let H be a closed subgroup of S\ An element ρ<=P(H) gives a homomor-
phism

p: H-+SO(2r).

We denote the centralizer of the image of p in SO(2r) by C(ρ). And we set

This is a normal subgroup of S1xC(ρ).
Let E-+X be an oriented ^-vector bundle representing a class in

B&^S1; H, p), and E-+X be the principal SO(2r)-bundle associated to E-+X.
By the natural way E is given a left ^-action and a right 5O(2r)-action. We
set

F={eeΞE\h-e = e-p(h) for all Λeff} .

The left S'-action on E induces a left S'-action on F. The right SΌ(2r)-action
on Z?also induces a left C(p)-action defined by fγ e=e rγ~1 for γeC(p). So we
have a left S 1 X C(p)-action on JF, and all isotropy groups of points in F are
equal to Δ. Then we have a principal S1 X C(p)/Δ-bundle

F — ̂ /(S 1 x C(p)/Δ) = X/S 1 .

Then

Lemma 2-3-1 (Conner-Floyd [3], Ossa [5]). By corresponding E-^X to
F-+X/S1 we obtain an Ω*-module isomorphism

Bir^; H, p) « Ω.«im*-1(aθS ιxC(p)/Δ)).

For the proof of Lemma 2-2-2, it suffices to prove the following lemma.



ORIENTED BORDISM MODULES OF S1- AND (Z2)*-ACTIONS 459

L e m m a 2-3-2. For any closed subgroup H of S1 and any
1 X C(ρ)l A))®R2 is a free Ω*®R2-module on even dimensional generators.

Proof. Considering S1 to be the unit sphere in C1, we let

be the representation of S1 defined by

p,(*) = (*>),
Let

i .H-^S1, and c: U(l) -* O(2)

be the natural inclusions. Then

gives a complete set of non-trivial (real) irreducible representations of H if the
order o(H) of H is odd or H is equal to S1.

For H of even order we let

X: H-

be the representation of H defined by

\(h) = (h°w

Then

gives a complete set of non-trivial (real) irreducible representations of H of even
order.

From the above remarks and elementary computations we see that for any
ρ^P(H) C(ρ) is isomorphic to

Ϊ/WX-X U(ra^)xSO(ra)

for some sequence (riy •• ,rΛ_1, ra) with dim p=2^a

jzlrJ+ra. Moreover we
see that ra=0 if H is of odd order or S1.

For

pb: H - U(rb) (or 50(rΛ) if b = a)

be the composition

U(r >)(or SO(ro)).
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Thenpb is extendable to S1 such that if b^a the image of pb lies in the center
of U(rb), and we denote this extension by the same symbol pb. We set

Then there is an epimorphism from S1xC(ρ) to Ufa)x ••• X U(ra^) X
(^XiSOίO/ΔO which sends (*,*„ - , * β ) to (p^*)"1*!, -,ίβ-1(»)"1Λβ-i, [*, *J) ,
and the kernel of this homomorphism is Δ. So we obtain an isomorphism

(2-3-3) ^xqpJ/Δa t/ίrOx x^ί^-Oxί^xSOίO/ΔO.

(1) The case in which H is of odd order or S1: We obtain Ω*®R2-
module isomorphisms

where BX=B( Ufa) X X E/fo^) x (S'/H)). The first isomorphism is obtained
from (2-3-3), and the last one is obtained from Theorem 1-3-1. Since H*(BX;
R2) is a free i?2-module on even dimensional generators, Ω*(B(SL X C(p)jA))®R2

is a free Ω^®i?2-module on even dimensional generators.
(2) The case in which H is of even order (The following method is largely

due to Ossa [5], [6]): We set

A" = {(1, 1), ( - 1 , -l)}cSιxSO(rm).

Then we obtain an isomorphism

(2-3-4) S1 x SO(ra)lA' « S1 x SO(ra)/A" .

Let T' be a maximal torus in S1 X SO(ra) such that T' contains Δ". Then
T=T'/A" is a maximal torus in S 1 X SO(ra)/A".

H*(S1xSO(ra)lA";Z) and H*({S1xSO(ra)lA")IT; Z)

have no odd torsion. So the canonical homomorphism

)/Δ"); Z,) - H*(BT; Zp)

is injective for any odd prime p by Borel [1; Proposition 29.2]. Hence
H*{B(SιxSO(ra)jA"); Z) has no odd torsion and H^BiS1 X 5O(rβ)/Δ") Z)
is a 2-torsion group.

We obtain Ω,i-®i?2-module isomorphisms

1 X C(p)/A))®R2 «

* / / * ( £ F ; i? 2 )®^(ίi*®R 2 ),

where ,B y=β(U(r,) x x ^(r,.,) X (5 1 x 5O(rβ)/Δ")). The first isomorphism
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is obtained from (2-3-3) and (2-3-4), and the last one is obtained from the above

argument and Theorem 1-3-1.

Hodd(BY; R2)=0 since Hoάύ{B(SλxSO{ra)lΔ"\ Z) is a 2-torsion group.

Then Ωl^(B(S1xC(ρ)/A))®R2 is a free Ω^i^-module on even dimensional

generators. q.e.d.

Thus Lemma 2-2-2 is completely proved.

2-4. The proof of Lemma 2-2-3
First we obtain

Lemma 2-4-1 (Ossa [5] [6]). For an Sx-vector bundle E->X (X closed) of

type (r, s, H) there exists an oriented S1-vector bundle Eσ^->XCΌ of type (r, s> H)

such that

2[E^X] = [E<ί>-»X«>] in Br^S' H).

Proof. Let π: X^X/S1 be the natural projection. Let Y' be a minimal

1-codimensional submanifold of XjS1 which represents the first Stiefel-Whitney-

class of X\'S1, and set Y=τr~1(Y/). Then 7 is a minimal 1-codimensional

invariant closed submanifold of X such that X— Y is orientable.

Let U be an invariant closed tubular neighborhood of Y in X, and set

X1=X— int U. Considering U as a disc bundle over Y, (E\ Y)®U is equivari-

antly diffeomorphic to E\U. So the antipodal involution on U induces an

involution T on E\ U> which is equivariant with the ^-action and reverses the

orientation of E \ U.

U ing the involution T we may obtain an ^-vector bundle W->V of type

(r, s+ίy H) as follows. Wis formed from two copies {0}x Ex I and {1}XEXI

of Ex I by identifying (0, e, 0) with (1, T(e), 0) for all e<EΞE \ U, and V is formed

from two copies {0}xXxI and { l } x l χ / of Xxl by identifying (0, x9 0)

with (1, T(x), 0) for all XG U> where / is the interval [0, 1].

Let E^->XCΌ be the subbundle of W->V defined by

(2-4-2) E^={0}x(E\X1)x{0}\Jτ{l}χ(E\X1)χ{0}9 and
(2-4-3) r ^

Then E(Ό->XCΌ is an 5 ^vector bundle of type (r, sy H)> and is bordant to

2(E-*X) by the bordism W-+V.

X1 is an orientable manifold. We orient the two copies of Xx in (2-4-3) so

that those orientations are reverse each other, then X^ is oriented since Y is

minimal. So E(Ό-+XCΌ is an oriented 5x-vector bundle. q.e.d.

We may construct Ω^^Λg-module homomorphisms/and^
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tS(S1; H)®R2

g

satisfying /o^^identity. Then Lemma 2-2-3 follows from Lemma 1-2-1 and
Lemma 2-2-1.

First we define / by / = / ' ® l where

f':B°,a(S1;H)-»Br,s(S1;H)

is the canonical homomorphism forgetting orientation of bundles.
Next we define g as follows. Let £ - ^ Z be an S^-vector bundle over a

closed manifold X of type (r, s, H), and ECΌ-+Xcl:> be an oriented ^-vector
bundle constructed by Lemma 2-4-1. We must note that ECΌ-+X(Ό cannot
be canonically oriented.

We devide XCO into the connected components,

Each Aα(l^α^n) is invariant under the ̂ -action, and ECΌ\Aα-*AΛ is an
orientable ^-vector bundle of type (r, sy H). Since Aα is connected, ECΌ\Aα

->Aα is given exactly two orientations. Let σ(2?o) \AΛ->Aα) be the class in
B?ts(Slm

9 H) which is represented by the sum of the two kinds of oriented
^-vector bundles obtained from E™ \Aa->Aa. Then we define σ(E^-*X^)
to be the sum of σ(ECΌ\AΛ^Aα), α = l , •• ,w. We see that

X\ in B^S1; H).

So we define g by

g([E->X]®x) = σ(E^-*X^)®^ , ^ ^ ^ 2 .

This is a well-defined homomorphism and satisfies f°g=identity.

CHAPTER 3. BORDISM OF (Z2)
k-ACTIONS

In this chapter we consider (Z2)
fe-actions.

We remark that
(1) any subgroup of (Z2)

k is isomorphic to (Z2)
α for some α^ky and

(2) for any subgroup H of (Z2)
k, there exists a "complement" Hc such that

HQ)HC is equal to (Z2)
k. For each H we fix one complement Hc throughout

this chapter.

3-1 The main theorem and the key lemma

Main Theorem 3-1-1. For any family % in (Z2)
k, Ω*((Z2)*; %)®R2 is a

free Vί%®R2-module on even dimensional generators.
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Let

Hi* H2, •••, Ha

be a sequence of all subgroups belonging to % such that the order of //, is larger
than or equal to the order of H^ for any /=2, •••, a. Then the collection

is a family in (Z2)
k for all / = 1 , 2, •••, α, and f$ β =g.

Key Lemma 3-1-2. Ω*((Z2)*; %i9 %i-1)®R2 w α/ra? Γί*®R2-module on
even dimensional generators.

This key lemma will be proved in the following sections. We may prove
the main theorem by using the key lemma as follows.

First we obtain

Proposition 3-1-3. Ω* ((Z2)
k gi) ® R2 is a free Γί*®R2-module on a

O-dimensional generator.

Proof. As the proof of Lemma 2-1-3 we obtain an Ω^-module isomor-
phism

of degree 0. Since Ω*(B((Z2)
k))®R2 is a free n*®i?2-module on a O-dimen-

sional generator, the proposition follows. q.e.d.

We also obtain the following proposition and lemma by the similar ways to
Proposition 2-1-4 and Lemma 2-1-5.

Proposition 3-1-4. Ωodd((Z2)* %i)®R2=0 for all i.

Lemma 3-1-5. We obtain a split short exact sequence

0 - Ω*((Z2)*; %i-x)®R2 -> Ω*((Z2)
k; %t)®R2

-*«*((Za)*;g,, 8 , - 0 ® ^ - 0
of Ω* ®R2-modules.

From this lemma we obtain an Ω*®i?2-module isomorphism

By Lemma 3-1-2, Proposition 3-1-3 and using the induction for / we may assert
that Ω*((Z2)

k; %i)®R2 is a free Ω^®i?2-module on even dimensional generators
for all z.

Thus Theorem 3-1-1 is obtained from Lemma 3-1-2. The following
sections will be devoted to the proof of Lemma 3-1-2.
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3-2. Special (Z2)
k-vector bundles

Let H be a subgroup of (Z2)
k

9 and {Vly •••, 1 }̂ be a complete set of
non-trivial (real) irreducible representation spaces of H. We note that any
Vj (l<*j^q) is a 1-dimensional vector space and q is equal to o(H)—1, o(AΓ)
the order of H.

Then we obtain

L e m m a 3-2-1. For any (Z2)
k-vector bundle E-^X of type (r, s. H) we have

a canonical equivarίant decomposition of E by (Z2)
k-vector bundles Ej ( 7 = 1 , •••, q)

such that the H-action on any fibre of Ej is equivalent to Vjforj=l, •••, q.

Proof. Let

be the product bundle over X. Giving the trivial i/c-action on VJy we may
regard V5 as a (Z2)

k-vector space. We define a (Z2)^-action on Vj by the diagonal
action.

Let HomH(Vj, E) be the bundle of ϋf-equivariant homomorphisms. For
any element f^HomH(VJy E) and g<=(Z2)

k we define £ f^HomH(Vj, E) to be
the composition

This defines a (Z2)*-action on HomH(Vj, E).
Let Ej be the (Z2)*-vector bundle Vj®HomH(Vj, E). Then the direct

sum of the canonical homomorphisms

Ej-^E, j= 1, . .-, ?

gives an equivariant isomorphism

@}lλEj^Ey

since all F"/s are 1-dimensional. q.e.d.

A (Z^-vector bundle E-^X of type (r, s, H) is called to be a special (Z2)
k-

vector bundle, if in the canonical decomposition

each Ej is an oriented vector bundle and the i/c-action on Ej preserves the
orientation of the bundle Ej.

Let F b e a representation space of H which has no direct summand of
trivial action, then V is isomorphic to F ϊ i φ φFq? for some r19 •• ,r g. For
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any x^H we set

J(x) = {j I x non-trivially acts on F ;

and we denote the number of the elements of the set

J(x)n{j\rj is odd (l^j^q

byax(V).
We define S(H) to be the set of equivalence classes of representation spaces

V of H which satisfy that ax{V) is even for all x^H. We denote an equivalence

class and its representative by a same letter V as long as it causes no confusion.

We note that the ϋf-action on V is orientation preserving for any V ^S(H).

For V<EΞS(H) a (Z2)*-vector bundle E^X is called to be of type (r, s, Hy V)>

if E->X is a (Z2)
k-vector bundle of type (r, s, i/) and the ϋΓ-action on any fibre

of E is equivalent to V.

Two special (Z2)
Ar-vector bundles E-+Xy E'-^X' over closed manifolds of

type (r, s, i/, V) are bordant, if there is a special (Z2)
Ar-vector bundle F-> Y of

type (r, s + 1 , H> V) such that the restriction F \ 3 Y-> 3 Y is isomorphic, as special

(Z^-vector bundles, to the disjoint union of E-+X and — (E'->X')y where

—(E'->X') is the special (Z2)
k-vector bundle obtained from E'->X' by reversing

only the orientation of the total space.

By this relation "bordant" we may define a bordism group Bf s((Z2)
k; H> V)

of all special (Z2)*-vector bundles over closed manifolds of type (r, s, H, V).

The direct sum Q)s^0Bfs((Z2)
k; H, V) is a module over Ω* by the usual way.

We also define Bfs((Z2Y; H) to be the direct sum @γ^sw^Λz^ H> V)

Let M be an @t , Sf-^-free oriented (Z2)
Ar-manifold and MH. be the set

of all points x e t f whose isotropy groups are H{. When the normal bundle
vH(M)->MH. of MH. in M is a special (Z2)*-vector bundle, M is called to be an
(δ»> %i-i)~free oriented {Z2)

k-manifold with special normal bundle.

Two @, > Sί-O-fr66 oriented (Z^-manifolds M, M' with special normal
bundles are bordant, if there are an ( S ^ , S,--i)-free oriented (Z2)

fe-manifold F
and an (f$f , g^-free oriented (Z2)

Λ-manifold PF satisfying the conditions (1-1-1),
(1-1-2), and if the two special (Z2)*-vector bundles vH.{M), vH.(M') are bordant
by the special (Z2)

k-vector bundle vH.(W). By this relation we may define a
bordism group Cί%{{Z2)

k\ g t , g. -i) of all (g, , S^-O-free oriented (Z^^-manifolds
with special normal bundles. By the cartesian product Ω%([Z2)

k; %if S, -i)
becomes a module over Ω*.

Then we obtain an analogue of Lemma 1-2-1 (or Lemma 2-2-1).

Lemma 3-2-2. The correspondence M\->vH.(M)^MH. induces an Ω*-module
isomorphism



466 K. KOMIYA

; Ht) .

The inverse isomorphism may be obtained by corresponding a special (Z2)
k-vector

bundle E-^X to the associated disc bundle D(E).

Lemma 3-2-3. Ω%((Z2)
k; §, , S*-i)®^2 ά a free Ω*®R2-module.

This lemma will be proved in the next section 3-3.

Lemma 3-2-4. There are Ω* ®R2-module homomorphisms f and g of degree 0

satisfying
(1) fog=identityy and
(2) g g

This lemma will be proved in 3-4.
These lemmas assure Lemma 3-1-2 as follows. By Lemma 3-2-4

; S f , %i-λ)®R2 is a direct summand of Ω|((Z2)*; g, , g,-i)®^ 2. Since
fe; gί, gi-ό®!?, is a free Ω*®#2-module by Lemma 3-2-3, Ω*((Z2)*;

S O 8»-i)®^2 i s a free Ωϊfί®Λ2-module by Conner-Smith [4; Proposition 3.2].
The dimensions of generators are obtained from Lemma 3-2-4 (2) as desired.

Thus Lemma 3-1-2 is proved.
Now the remaining subjects to prove the main theorem are to prove

Lemmas 3-2-3 and 3-2-4.

3-3. The proof of Lemma 3-2-3

Let H be a subgroup of {Z2)
k and {Vly •••, Vq} be a complete set of

non-trivial irreducible representation spaces (q=o(H)~ 1). For any element

SO(V) = SOfa)x .- x SO(rg)

where ru « , rq are defined by

Lemma 3-3-1. There is an Ω*-module isomorphism

; H, V) ε* Ωs(B(HcxSO(V))).

By Theorem 1-3-1 Ω*(B(HCx SO(V)))®R2 is a free Ω*®Λ2-module iso-
morphic to H*(B(HcxSO(V)); R2)®R2(Ω*®R2). Hence we obtain Lemma
3-2-3 from Lemmas 3-2-2, 3-3-1.

Proof of Lemma 3-3-1. Let E-+X be a special (Z2)
fe-vector bundle of
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type (r, s, H, V). We obtain the canonical equivariant decomposition of E by
(Z2)

fe-vector bundles

from Lemma 3-2-1.
Hc freely acts on X, and each Ej is an oriented vector bundle on which

Hc acts orientation preservingly. Let

h: X/HC-*BHC and

be classifying maps of the principal bundle X->XjHc and the oriented vector
bundles E5\HCr->XjHc\ respectively. Then h and hj (/=1, •••,?) define a map

By corresponding E-+ X to hx Πhj we obtain a homomorphism

Bl,((Z2)*; H, V) - ns(B(Hcχ SO(V))).

The inverse homomorphism is obtained as follows. Let

h: M^B(HcxSO(V))

represent a class in ΩS(B(HCX SO(V))). Then h defines maps

h: M->BHC and

hf M->BSO(rj) ( / = 1 , . . . , 9 ) .

Let 7Γ: iίϊ-> M be the principal i/c-bundle induced by A, and Ej -> M be the
oriented vector bundle induced by hjoπ. We may define a (Z2)*-action on
©jliEy-^M so that the bundle is a special (Z2)

fe-vector bundle of type (r, s, H,
V) and the correspondence h to 0jii£^->i0" defines the desired inverse
homomorphism. q.e.d.

3-4. The proof of Lemma 3-2-4

For the proof we need the following lemma.

Lemma 3-4-1. For a (Z2)
k-vector bundle E-+X (X closed) of type (r, s, H)

there exists a special (Z2)
k-vector bundle 2?C*>->ATW) of type (r, s, H) such that

2«[E->X] = [E«»->X^] in Br,s((Z2)
k;H)f

where q= o(H) — 1.

Proof. We have the canonical decomposition
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by Lemma 3-2-1.

For O^mtίq let D(m) be the following statement:
There exists a (Z2)

k-vector bundle E^^X™ of type (r, s, H) such that
(1) in the canonical decomposition

the direct summands E^\ •••, £'^ ι ) are oriented vector bundles on which Hc acts

orientation preservingly, and

(2) 2m[E->X]=[E™->X™] in BrtS((Z2)
k; H).

We may prove Lemma 3-4-1 by the induction for m. The statement Z)(0)
is trivially valid. In the following we show that the statement D(m) implies
the statement Z)(m-fl).

Since Hc freely acts on X«"\ E£ϊ1IHe->X«*>IHe is also a vector bundle.
Let Y' be a minimal 1-codimensional submanifold of Xc w )/i/c which represents
the first Stiefel-Whitney class of the vector bundle E%%1IHc-»X(-m)IHe, and set
Y=π-\Y/) where π: Xcmy-^Xcm^Hc is the natural projection. Then Y is a
minimal 1-codimensional invariant closed submanifold of Xcm:> satisfying that
the restricted vector bundle of 2?JKi on Xcm:>— Y is orientable so that Hc acts
orientation preservingly.

Let U be an invariant closed tubular neighborhood of Y in Xcm\ and set
χi=χw-'mt U. Considering U as a disc bundle over Y, (Ecm'\ Y)®U is
equivariantly diίFeomorphic to Ecm^\U. So the antipodal involution on U
induces an involution T on 2?cm)| U. As in the proof of Lemma 2-4-1, pasting
two copies of Ecm:>\X1 each other by Γ, we may construct a new (Z2)

k-vector
bundle Ecm+Ό->Xcm+1> of type (r, ί, i/) such that

- I ( W ) ] = [ £ W ) - I ( W + 1 ) ] in Br>s((Z2)
k;H)

Then

by the statement D(m).
In the canonical decomposition

each jB^m+1) is equivariantly isomorphic to the bundle

(3-4-2) (tf

For l^ jg/Kwe give a same orientation to the two copies of the vector bundle
E^\XX in (3-4-2), then E(

j

wι+1) is an oriented vector bundle on which Hc acts
orientation preservingly. Fory=w+1 we orient the two copies of EiJn:>\X1 in
(3-4-2) such that those orientations are reverse each other, then £l(

j

TO+1) is an
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oriented vector bundle since Y is minimal, and Hc acts orientation preservingly
on Ef+1).

Thus the statement D(m) implies the statement D(m-\-l). q.e.d.

We may construct Ωίiί®/?2-module homomorphisms / and g

LB ; H)®R2

g
satisfying that

(3-4-3) f°g=identity, and

(3-4-4) if r-\-s is odd, / is the zero homomorphism.

Then Lemma 3-2-4 follows from Lemma 1-2-1 and Lemma 3-2-2.
First we define/by f=f'®\ where

/ ' : Bl,((Z2)*; H) - ^..((Z,)*; H)

is the canonical homomorphism forgetting the "speciality" of bundles. Then
we obtain

Lemma 3-4-5. If r-\-s is odd, every element in f'(Bfs((Z2)
k;H)) is of

order 2. So the statement (3-4-4) follows.

Proof. Let V be any element in S(H), and

λ: Bj?,,((Z2)*; H,V)cx Cls(B(HcxSO(V)))

be the isomorphism obtained by Lemma 3-3-1. And let x be any element in
BftS{(Z2)

k; H, V). If s is odd, then \(x) is of order 2, and/'(A?) is so.
If r-{-s is odd and s is even, we may construct an element %^Bf s((Z2)

k;
Hy V) such that

(3-4-6) x+%=0, and

(3-4-7) /'(*)=/'(*)•

Then/'(A?) is of order 2.

X is constructed as follows. Let E-+X be a representative of x, and

be the canonical decomposition. We define an oriented vector bundle Ej such
that if dim Ej is even Ej is EJy and if dim Ej is odd Ej is the oriented vector
bundle obtained from Ej by reversing the orientation. Let X be the class
represented by φjliEj-^X which is given the same orientation of the total
space as E,
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The number of j's with dim E~odd is odd since r is odd. From this
fact the condition (3-4-6) follows. The condition (3-4-7) follows easily, q.e.d.

Next we define g as follows. Let E-+X be a (Z2)
fe-vector bundle over a

closed manifold X of type (r, s, H), and E^-^X^ be a special (Z2)*-vector
bundle constructed by Lemma 3-4-1. Let

be the canonical decomposition. We must note that Ecg:>->Xcq:> can not be
canonically "specialized", i.e., each Eψ can not be canonically oriented. We
devide X™ into the form

such that each AΛ (ί^a^n) is invariant under the (Z2)
fe-action and each

AJ(Z2)
k is connected. Then each E^\AΛ-^AΛ is a (Z2)*-vector bundle, and

specialized to exactly 2q kinds of special (Z2)
fe-vector bundles. We sum up the

2g special (Z2)
fe-vector bundles obtained from Ecg:>\AΛ-+AΛ, and denote the

class of the sum in Bf,s((Z2)
k; H) by

And we set

Then we see that

f'(σ(E«>->X™)) = 22q[E-+ X] .

So we define g by

g([E-*X\®x) = σ{E^->X^)®xβ2q,

This is a well-defined homomorphism and satisfies (3-4-3).
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