ON THE HYPOELLIPTICITY AND THE GLOBAL ANALYTIC-HYPOELLIPTICITY OF PSEUDO-DIFFERENTIAL OPERATORS

Kazuo TANIGUCHI

(Received September 14, 1973)

Introduction

In the recent paper [13] Kumano-go and Taniguchi have studied by using oscillatory integrals when pseudo-differential operators in R^n are Fredholm type and examined whether or not the operators $L_k(x, D_x, D_y) = D_x + ix^k D_y$ in Mizohata [15] and $L_{\pm}(x, D_x, D_y) = D_x \pm ix D_y^2$ in Kannai [6] are hypoelliptic by a unified method. In the present paper we shall give the detailed description for results obtained in [13] and study the hypoellipticity for the operator of the form $L = \sum_{|\alpha: m| + |\alpha': m'| \leq 1} a_{\alpha\alpha'\gamma\gamma\gamma'} \mathfrak{F}^{\gamma} D_x^{\alpha} D_y^{\alpha'}$ with semi-homogeneity in $(x, \mathfrak{F}, D_x, D_y)$

by deriving the similar inequality to that of Grushin [4] for the elliptic case. Then we can treat the semi-elliptic case as well as the elliptic case. We shall also give a theorem on the global analytic-hypoellipticity of a non-elliptic operator, and applying it give a necessary and sufficient condition for the operator $L(x, D_x, D_y)$ to be hypoelliptic, when the coefficients of L are independent of $\mathfrak{I}^{\gamma'}$ (see Theorem 3.1).

In Section 1 we shall describe pseudo-differential operators of class $S_{\lambda,\rho,\delta}^m$ which is defined by using a basic weight function $\lambda = \lambda(x, \xi)$ varying in x and ξ (cf. [13] and also [1]). In Section 2 we shall study the global analytic-hypoellipticity of a non-elliptic pseudo-differential operator and give an example which indicates that the condition (2.3) is necessary in general. In Section 3 we shall consider the local hypoellipticity for the operator L and give some examples.

The author wishes to thank Prof. H. Kumano-go for suggesting this problem and his helpful advice.

1. Algebras and L^2 -boundedness

Definition 1.1. For $-\infty < m < \infty$, $0 \le \delta < 1$ and a sequence $\tilde{\tau}$; $0 \le \tau_0 \le \tau_1 \le \cdots$ we define a Fréchet space $\mathcal{A}_{\delta,\tilde{\tau}}^m$ by the set of C^{∞} -functions $p(\xi, x)$ in $R_{\xi,x}^{2n}$ for which each semi-norm

$$|p|_{\alpha,\beta}^{(m)} = \sup_{x,\xi} \{|p_{(\beta)}^{(\alpha)}(\xi,x)| \langle x \rangle^{-\tau_{|\beta|}} \langle \xi \rangle^{-m-\delta_{|\beta|}} \}$$

is finite, where $p_{(\beta)}^{(\alpha)} = \partial_{\xi}^{\alpha} D_{x}^{\beta} p$, $D_{x_{i}} = -i\partial/\partial x_{i}$, $\partial_{\xi_{i}} = \partial/\partial \xi_{i}$, $j = 1, \dots, n$,

$$\langle x \rangle = \sqrt{1 + |x|^2}, \quad \langle \xi \rangle = \sqrt{1 + |\xi|^2}.$$

We define the oscillatory integral $O_s[p]$ for $p(\xi, x) \in \mathcal{A}_{\delta, \tilde{\tau}}^m$ by

$$O_s[p] \equiv O_s - \iint e^{-ix \cdot \xi} p(\xi, x) dx d\xi$$

$$= \lim_{\epsilon \to 0} \iint e^{-ix \cdot \xi} \chi_{\epsilon}(\xi, x) p(\xi, x) dx d\xi,$$

where $d\xi = (2\pi)^{-n}d\xi$, $x \cdot \xi = x_1\xi_1 + \dots + x_n\xi_n$ and $\chi_{\mathfrak{g}}(\xi, x) = \chi(\varepsilon\xi, \varepsilon x)$ $(0 < \varepsilon \le 1)$ for a $\chi(\xi, x) \in \mathcal{S}$ (the class of rapidly decreasing functions of Schwartz) in $R_{\xi, x}^{2n}$ such that $\chi(0, 0) = 1$ (cf. ([11], [13]).

REMARK. We can easily obtain the following statements (cf. [11]).

1°) For $p \in \mathcal{A}_{\delta,\tau}^m$ we have

$$O_s[p] = \iint e^{-ix \cdot \xi} \langle x \rangle^{-2l'} \langle D_{\xi} \rangle^{2l'} \{ \langle \xi \rangle^{-2l} \langle D_x \rangle^{2l} p(\xi, x) \} dx d\xi$$

by taking integers l, l' such that $-2l(1-\delta)+m<-n$ and $-2l'+\tau_{2l}<-n$. 2°) Let $\{p_{\epsilon}\}_{0<\epsilon<1}$ be a bounded set in $\mathcal{A}^m_{\delta,\tilde{\tau}}$ and converges to a $p_0(\xi,x)\in\mathcal{A}^m_{\delta,\tilde{\tau}}$ as $\varepsilon\to 0$ uniformly on any compact set of $R^{2n}_{\xi,x}$. Then we have

$$\lim_{\epsilon o 0} O_s[p_\epsilon] = O_s[p_0]$$
 .

3°) For $p \in \mathcal{A}_{\delta,\tilde{\tau}}^m$ we have

$$O_s[x^ap] = O_s[D_s^ap]$$
 and $O_s[\xi^ap] = O_s[D_x^ap]$.

DEFINITION 1.2. We say that a C^{∞} -function $\lambda(x, \xi)$ in $R_{x,\xi}^{2n}$ is a basic weight function when $\lambda(x, \xi)$ satisfies conditions:

$$(1.1) A_0^{-1} \langle \xi \rangle^a \leq \lambda(x, \xi) \leq A_0 (1 + |x|^{\tau_0} + |\xi|) (\tau_0 \geq 0, a > 0),$$

$$(1.2) |\lambda_{(\beta)}^{(\alpha)}(x, \xi)| \leq A_{\alpha\beta} \lambda(x, \xi)^{1-|\alpha|+\delta|\beta|} (0 \leq \delta < 1),$$

(1.3)
$$\lambda(x+y,\,\xi) \leq A_i \langle y \rangle^{\tau_1} \lambda(x,\,\xi) \qquad (\tau_1 \geq 0)$$

for positive constants A_0 , $A_{\alpha\beta}$, A_1 .

DEFINITION 1.3. We say that a C^{∞} -function $p(x, \xi)$ in $R_{x,\xi}^{2n}$ belongs to $S_{\lambda,\rho,\delta}^{m}$, $-\infty < m < \infty$, $0 \le \delta \le \rho \le 1$, $\delta < 1$, when for any multi-index α , β

¹⁾ For a basic weight function $\lambda(x, \xi)$ satisfying (1.1)–(1.3) we can always find an equivalent basic weight function $\lambda'(x, \xi)$ with $\delta = 0$ in (1.2) to $\lambda(x, \xi)$, i.e., $C^{-1}\lambda(x, \xi) \leq \lambda'(x, \xi) \leq C\lambda(x, \xi)$.

$$(1.4) |p_{(\beta)}^{(\alpha)}(x,\xi)| \leq C_{\alpha\beta} \lambda(x,\xi)^{m-\rho|\alpha|+\delta|\beta|}.$$

For $p(x, \xi) \in S_{\lambda,\rho,\delta}^m$ we define pseudo-differential operator $P = p(X, D_x)$ with the symbol $\sigma(P)(x, \xi) = p(x, \xi)$ by

(1.5)
$$Pu(x) = \int e^{ix \cdot \xi} p(x, \xi) \hat{u}(\xi) d\xi \quad \text{for } u \in \mathcal{S},$$

where $\hat{u}(\xi) = \int e^{-ix \cdot \xi} u(x) dx$ is the Fourier transform of $u \in \mathcal{S}$.

For a $p \in S_{\lambda,\rho,\delta}^m$ we define semi-norms $|p|_{l_1,l_2}^{(m)}$, l_1 , $l_2=0$, 1, \cdots by

$$|p|_{l_1,l_2}^{(m)} = \max_{|\alpha| \le l_1, |\beta| \le l_2} \{ \sup_{x,\xi} |p_{(\beta)}^{(\alpha)}(x,\xi)| \lambda(x,\xi)^{-m+\rho|\alpha|-\delta|\beta|} \}.$$

Then $S_{\lambda,\rho,\delta}^m$ makes a Fréchet space.

In what follows we shall only treat the case: $\delta = \rho = 0$ or $0 = \delta < \rho = 1$ since it simplifies the statements below and is sufficient for our aim.

Theorem 1.4. Let $P_j = p_j(X, D_x) \in S_{\lambda, \rho, 0}^{m_j}$, j=1, 2. Then $P=P_1P_2$ belongs to $S_{\lambda, \rho, 0}^{m_1+m_2}$ and we have for any integer N > 0

(1.6)
$$\sigma(P)(x, \xi) \qquad (denoted also by \ p_1 \circ p_2(x, \xi))$$

$$= \sum_{|\alpha| \leq N} \frac{1}{\alpha!} p_{\alpha}(x, \xi) + N \sum_{|\gamma| = N} \int_0^1 \frac{(1-\theta)^{N-1}}{\gamma!} r_{\gamma, \theta}(x, \xi) d\theta$$

where

$$\begin{cases} p_{\alpha}(x,\,\xi) = p_1^{(\alpha)}(x,\,\xi)p_{2(\alpha)}(x,\,\xi) & (\in S_{\lambda,\rho,0}^{m_1+m_2-\rho|\alpha|}), \\ r_{\gamma,\theta}(x,\,\xi) = O_s - \int \int e^{-iy\cdot\eta}p_1^{(\gamma)}(x,\,\xi+\theta\eta)p_{2(\gamma)}(x+y,\,\xi)dyd\eta. \end{cases}$$

The set $\{r_{\gamma,\theta}(x,\xi)\}_{|\theta|\leq 1}$ is bounded in $S_{\lambda,\rho,0}^{m_1+m_2-\rho|\gamma|}$.

Proof. By the same method of the Theorem 2.5 and 2.6 in [11] we can prove the formula (1.6) if we have only to prove $\{r_{\gamma,\theta}\}$ is a bounded set in $S_{\lambda,\rho,0}^{m_1+m_2-\rho|\gamma|}$. Since $\partial_{\xi}^{\alpha}D_{\pi}^{\beta}r_{\gamma,\theta}$ is represented as the linear combination of

(1.7)
$$\iint e^{-iy \cdot \eta} p_{1(\beta_1)}^{(\alpha_1 + \gamma)}(x, \xi + \theta \eta) p_{2(\beta_2 + \gamma)}^{(\alpha_2)}(x + y, \xi) dy d\eta,$$
$$(\alpha = \alpha_1 + \alpha_2, \beta = \beta_1 + \beta_2)$$

we have only to prove that each term of the form (1.7) is estimated by $C\lambda(x,\xi)^{m_1+m_2-\rho|\gamma|-\rho|\varpi|}$. Here and in what follows we omit the notation O_{s^-} . We have

$$\left| \iint e^{-iy \cdot \eta} p_{1(\beta_1)}^{(\alpha_1 + \gamma)}(x, \xi + \theta \eta) p_{2(\beta_2 + \gamma)}^{(\alpha_2)}(x + y, \xi) dy d\eta \right|$$

$$= \left| \iint e^{-iy \cdot \eta} \langle y \rangle^{-2l_1} \langle D_{\eta} \rangle^{2l_1} p_{1(\beta_1)}^{(\alpha_1 + \gamma)}(x, \xi + \theta \eta) p_{2(\beta_2 + \gamma)}^{(\alpha_2)}(x + y, \xi) dy d\eta \right|$$

$$\leq \left| \int_{|\eta| \leq C_0 \lambda} \langle \eta \rangle^{-n_0} d\eta \int e^{-iy \cdot \eta} \langle D_y \rangle^{n_0} \{ \langle y \rangle^{-2l_1} \langle D_\eta \rangle^{2l_1} p_{1(\beta_1)}^{(\alpha_1 + \gamma)}(x, \xi + \theta \eta) \right. \\ \left. \cdot p_{2(\beta_2 + \gamma)}^{(\alpha_2)}(x + y, \xi) \} dy \right|$$

$$+ \left| \int_{|\eta| \geq C_0 \lambda} |\eta|^{-2l_2} d\eta \int e^{-iy \cdot \eta} (-\Delta_y)^{l_2} \{ \langle y \rangle^{-2l_1} \langle D_\eta \rangle^{2l_1} p_{1(\beta_1)}^{(\alpha_1 + \gamma)}(x, \xi + \theta \eta) \right. \\ \left. \cdot p_{2(\beta_2 + \gamma)}^{(\alpha_2)}(x + y, \xi) \} dy \right|$$

$$\leq C \left\{ \int_{|\eta| \leq C_0 \lambda} \langle \eta \rangle^{-n_0} d\eta \int \langle y \rangle^{-2l_1} \lambda(x, \xi + \theta \eta)^{m_1 - \rho |\gamma| - \rho |\alpha_1|} \lambda(x + y, \xi)^{m_2 - \rho |\alpha_2|} dy \right.$$

$$+ \int_{|\eta| \geq C_0 \lambda} |\eta|^{-2l_2} d\eta \int \langle y \rangle^{-2l_1} \lambda(x, \xi + \theta \eta)^{m_1 - \rho |\gamma| - \rho |\alpha_1|} \lambda(x + y, \xi)^{m_2 - \rho |\alpha_2|} dy \right\}$$

$$\leq C \left\{ \lambda(x, \xi)^{m_1 + m_2 - \rho |\gamma| - \rho |\alpha|} \int \langle \eta \rangle^{-n_0} d\eta \int \langle y \rangle^{-2l_1 + \tau_1 |m_2 - \rho |\alpha_2|} dy \right.$$

$$+ \lambda(x, \xi)^{m_2 - \rho |\alpha_2|} \int_{|\eta| \geq C_0 \lambda} |\eta|^{-2l_2 + m_1 + d\eta} \int \langle y \rangle^{-2l_1 + \tau_1 |m_2 - \rho |\alpha_2|} dy \right\}$$

$$\leq C \lambda(x, \xi)^{m_1 + m_2 - \rho |\gamma| - \rho |\alpha|} ,$$

where $n_0=2([n/2]+1)$, $m_{1+}=\operatorname{Max}(m_1, 0)$, l_1 , l_2 are integers such that $-2l_1+\tau_1|m_2-\rho|\alpha_2| |<-n, -2l_2+m_{1+}+n+1 \leq \operatorname{Min}(0, m_1-\rho|\gamma|-\rho|\alpha_1|),$ and C_0 is a constant such that

(1.8)
$$\frac{1}{2}\lambda(x,\,\xi) \leq \lambda(x,\,\xi+\eta) \leq \frac{3}{2}\lambda(x,\,\xi) \quad \text{if } |\eta| \leq C_0\lambda(x,\,\xi).$$

We can prove the following two theorems by the same method.

Theorem 1.5. Let $S_{\lambda,\rho,0}^{m,m'}$ denote a set of double symbols $p(\xi, x', \xi')$, which satisfy

$$|p_{(\beta)}^{(\alpha,\alpha')}(\xi,x',\xi')| \leq C_{\alpha\alpha'\beta} \lambda(x',\xi)^{m-\rho|\alpha|} \lambda(x',\xi')^{m'-\rho|\alpha'|},$$

and define operators $P=p(D_x, X', D_{x'})$ by

$$\widehat{Pu}(\xi) = O_s - \iint e^{-ix' \cdot (\xi - \xi')} p(\xi, x', \xi') \widehat{u}(\xi') d\xi' dx' \qquad \text{for } u \in \mathcal{S} \,.$$

Then P belongs to $S_{\lambda,\rho,0}^{m+m'}$ and we can write $\sigma(P)(x,\xi)$ in the form (1.6) for any N>0, where

$$\begin{cases} p_{\omega}(x,\xi) = p_{(\omega)}^{(\alpha,0)}(\xi, x, \xi) & (\in S_{\lambda,\rho,0}^{m+m'-\rho|\alpha|}) \\ r_{\gamma,\theta}(x,\xi) = O_s - \iint e^{-iy\cdot\eta} p_{(\gamma)}^{(\gamma,0)}(\xi+\theta\eta, x+y, \xi) dy d\eta. \end{cases}$$

The set $\{r_{\gamma,\theta}(x,\xi)\}_{|\theta|\leq 1}$ is bounded in $S_{\lambda,\rho,0}^{m+m'-\rho|\gamma|}$.

Theorem 1.6. For $P=p(X, D_x) \in S_{\lambda, \rho, 0}^m$, the operator $P^{(*)}$ defined by

$$(Pu, v) = (u, P^{(*)}v)$$
 for $u, v \in \mathcal{S}$

belongs to $S_{\lambda,\rho,0}^m$ and we have for any N>0

$$\sigma(P^{(*)})(x,\,\xi) = \sum_{|\alpha| < N} \frac{1}{\alpha!} p_{\alpha}^{(*)}(x,\,\xi) + N \sum_{|\gamma| = N} \int_{0}^{1} \frac{(1-\theta)^{N-1}}{\gamma!} r_{\gamma,\theta}^{(*)}(x,\,\xi) d\theta \,,$$

where

$$\begin{cases} p_{\alpha}^{(*)}(x,\,\xi) = (-1)^{|\alpha|} \overline{p_{(\alpha)}^{(\alpha)}(x,\,\xi)} & (\in S_{\lambda,\,\rho,\,0}^{m-\rho|\alpha|}) \\ r_{\gamma,\,\theta}^{(*)}(x,\,\xi) = O_s - \iint e^{-iy\cdot\eta} (-1)^{|\gamma|} \overline{p_{(\gamma)}^{(\gamma)}(x+y,\,\xi+\theta\eta)} dy d\eta \ . \end{cases}$$

The set $\{r_{\gamma,\theta}^{(*)}(x,\xi)\}_{|\theta|\leq 1}$ is bounded in $S_{\lambda,\rho,0}^{m-\rho|\gamma|}$.

REMARK. The maps

$$S_{\lambda,\rho,0}^{m_1} \times S_{\lambda,\rho,0}^{m_2} \supseteq (p_1, p_2) \rightarrow p_1 \circ p_2 \in S_{\lambda,\rho,0}^{m_1+m_2}$$

and

$$S_{\lambda,\rho,0}^m \ni p \to p^{(*)} \in S_{\lambda,\rho,0}^m$$

are continuous.

Let $q(\sigma)$ be a C^{∞} - and even-function such that $q(\sigma) \ge 0$, $q(\sigma)^2 d\sigma = 1$ and $\operatorname{supp} q \subset \{\sigma \in \mathbb{R}^n; |\sigma| \leq 1\}, \text{ and set}$

$$F(x, \xi; \zeta) = \lambda(x, \xi)^{-n/4} q((\zeta - \xi)/\lambda(x, \xi)^{1/2}).$$

Theorem 1.7. For $P = p(X, D_x) \in S_{\lambda, 1, 0}^m$, we define the Friedrichs part $P_F = p_F(D_x, X', D_{x'})$ by

$$p_F(\xi, x', \xi') = \int F(x', \xi; \zeta) p(x', \zeta) F(x', \xi'; \zeta) d\zeta.$$

Then we have

- (i) $p_F(\xi, x', \xi')$ belongs to $S^{2m,0}_{\sqrt{\lambda},1,0}$, (ii) The operator P_F belongs to $S^m_{\lambda,1,0}$ and $P-P_F \in S^{m-1}_{\lambda,1,0}$, and $\sigma(P_F)$ has the

$$\sigma(P_F)(x, \xi) \sim p(x, \xi) + \sum_{|\alpha+\beta+\gamma| \geq 2} \psi_{\alpha\beta\gamma}(x, \xi) p_{(\beta)}^{(\alpha)}(x, \xi)$$

where $\psi_{\alpha\beta\gamma} \in S_{\lambda,1,0}^{(|\alpha|-|\beta|-|\gamma|)/2}$,

(iii) If $p(x, \xi)$ is real-valued and non-negative, we have

$$(p_F(D_x, X', D_{x'})u, v) = (u, p_F(D_x, X', D_{x'})v) \quad \text{for} \quad u, v \in \mathcal{S},$$

$$(p_F(D_x, X', D_{x'})u, u) \ge 0 \quad \text{for} \quad u \in \mathcal{S}.$$

Proof is carried out by the similar way to that in [9].

Theorem 1.8. We can extend $P=p(X, D_x) \in S^0_{\lambda,0,0}$ to a bounded operator on L^2 and we get

$$(1.9) ||Pu||_{L^2} \leq C |p|_{l_0, l_0}^{(0)} ||u||_{L^2},$$

where C and l_0 are independent of P and u.

Since $S^0_{\lambda,0,0} \subset S^0_{<\xi>,0,0}$, this theorem is a corollary of Calderón-Vaillancourt's theorem in [2].

2. Global analytic-hypoellipticity

DEFINITION 2.1. We say that $L \in S_{\lambda,1,0}^m$ is globally analytic-hypoelliptic if the following statement holds for L:

If $u \in L^2(\mathbb{R}^n)$ is a solution of the equation

$$L(X, D_x)u = f$$
 for $f \in C^{\infty}(\mathbb{R}^n)$

and f satisfies for some M>0

$$(2.1) ||D_x^{\omega}f||_{L^2} \leq M^{1+|\omega|}\alpha!,$$

then u is analytic and we have

$$(2.2) ||D_x^{\omega}u||_{L^2} \leq M_1^{1+|\omega|} \alpha!$$

for another constant $M_1 > 0$.

Theorem 2.2. Let $L \in S_{\lambda,1,0}^m(m>0)$ satisfy the following conditions:

$$(2.3) |L(x,\xi)| \ge C\lambda(x,\xi)^m for |\xi| \ge R$$

for some C>0 and $R\geq 0$, and for any multi-index α there exists M_{α} such that

$$(2.4) |L_{(\beta)}^{(\alpha)}(x,\xi)| \leq M_{\alpha}^{1+|\beta|}\beta! \lambda(x,\xi)^{m-|\alpha|}.$$

Then the operator $L(X, D_x)$ is globally analytic-hypoelliptic.

EXAMPLE 2.3. Let $L(x_1, x_2, D_{x_1}, D_{x_2}) = D_{x_1}^2 + D_{x_2}^6 + x_1^2 + x_2^6 - 15x_2^4 + 45x_2^2 - 16$. Then we can prove that L satisfies the conditions (2.3) and (2.4) by taking $\lambda(x_1, x_2, \xi_1, \xi_2) = (1 + |L(x_1, x_2, \xi_1, \xi_2)|^2)^{1/12}$ as a basic weight function. The equation $L(X_1, X_2, D_{x_1}, D_{x_2})u = 0$ has a non-trivial solution $e^{-(x_1^2 + x_2^2)/2}$.

As a generalization of the above example we have

Example 2.4 (cf. [5]). Let $L(x, D_x) = \sum_{|\alpha| \le m_1} a_{\alpha}(x) D_x^{\alpha}$ be a hypoelliptic differential operator of order m_1 with analytic coefficients. Suppose that L satisfies following conditions for constants $\tau_0 \ge 0$, $0 < \rho \le 1$, $C_1 > 0$, $C_2 > 0$, M > 0,

- (0) $|\partial_x^{\beta} a_{\alpha}(x)| \leq M^{1+|\beta|} \beta!$ if $|\beta| \geq m_1 \tau_0$ and $|\alpha| \leq m_1$,
- (i) $C_1^{-1}(\xi)^{\rho m_1} \le |L(0, \xi)| \le C_1 |L(x, \xi)|$ for large $|\xi|$,
- (ii) $|L_{(\beta)}^{(\alpha)}(x,\xi)|/L(x,\xi)| \leq M^{1+|\beta|}\beta!(|\xi|+|x|^{\tau_0})^{-\rho|\alpha|}$ for large $|\xi|+|x|^{\tau_0}$,
- (iii) $|L_{(\beta)}(x,\xi)| \leq C_2(1+|L(0,\xi)|)$ if $|\beta| \geq m_1 \tau_0$.

Then we can see that L satisfies the conditions of Theorem 2.2 by taking $\lambda(x, \xi) = (1 + |L(x, \xi)|^2)^{1/2m}$ for a large m as a basic weight function.

Proof. From (0) we can choose a positive constant m' such that

$$|L(x, \xi)| \leq C(|\xi| + |x|^{\tau_0})^{m'}$$
 for $|\xi| + |x|^{\tau_0} \geq 1$.

We put $m=m'/\rho$ and $\lambda(x, \xi)=(1+|L(x, \xi)|^2)^{1/2m}$. Then we have (2.4) from (0) and (ii). By usual calculus we have (1.2) for $\delta=0$. From (i) we have (1.1) for $a=\rho m_1/m$ and (2.3). Finally we can get (1.3) by (i) and (iii).

EXAMPLE 2.5. Let $L(x_1, x_2, D_{x_1}, D_{x_2})=iD_{x_1}+D_{x_2}^2-2ix_2^3D_{x_2}+x_1-x_2^6-3x_2^2$. Then L is a semi-elliptic operator and Lu=0 has a non-analytic solution $u=e^{-(x_1^2/2+x_2^4/4)}\sum_{m=0}^{\infty}\frac{f^{(m)}(x_1)}{(2m)!}x_2^{2m}(\in S)$ where $f(x_1)\in C_0^{\infty}(R^1)$ and belongs to the Gevrey class $\rho(<(3/2))$. This fact means the conditions are necessary in general. In fact let L satisfy (2.3) and (2.4). Then we have the following contrary:

$$1 = |\partial_{x_1} L(-t^2, 0, 0, t)| \le C \lambda (-t^2, 0, 0, t)^m \le |L(-t^2, 0, 0, t)| = 0$$
 for large t .

Proof of Theorem 2.2. Define $\{E_j(x, \xi)\}_{j=0,1,...}$ for $|\xi| \ge R$ inductively by

(2.5)
$$E_{0}(x, \xi) = L(x, \xi)^{-1},$$

$$E_{j}(x, \xi) = -\sum_{l=0}^{j-1} \sum_{|\gamma|=j-l} \frac{1}{\gamma!} E_{l}^{(\gamma)}(x, \xi) L_{(\gamma)}(x, \xi) E_{0}(x, \xi) \qquad (j \ge 1),$$

then we have $|E_{j\langle\beta\rangle}| \leq C_{j\alpha\beta} \lambda(x,\xi)^{-m-j-|\alpha|}$ if $|\xi| \geq R$. Taking $\varphi_R(\xi) \in C^{\infty}$ such that $\varphi_R = 1$ if $|\xi| \geq 2R$ and $\varphi_R = 0$ if $|\xi| \leq R$, and an integer N such that $aN \geq 1$, we define

(2.6)
$$E(x, \xi) = \varphi_R(\xi) \sum_{j=0}^{N-1} E_j(x, \xi) \in S_{\lambda,0,0}^{-m}.$$

Then we have

(2.7)
$$EL = I - K, \quad K \in S^{-1}_{<\xi>,0,0}.$$

In fact by the same method of Theorem 1.4 we have

(2.8)
$$\sigma(EL)(x, \xi) - 1$$

$$= \sum_{j=0}^{N-1} \sum_{|\gamma| \le N-j} \frac{1}{\gamma!} \varphi_R(\xi) E_j^{(\gamma)}(x, \xi) L_{(\gamma)}(x, \xi) - 1$$

$$\begin{split} &+\sum_{j=0}^{N-1}\sum_{|\gamma_{1}+\gamma_{2}|< N-j, \gamma_{1}\neq 0}\frac{1}{\gamma_{1}!\,\gamma_{2}!}\partial_{\xi}^{\gamma_{1}}\varphi_{R}(\xi)E_{j}^{(\gamma_{2})}(x,\,\xi)L_{(\gamma_{1}+\gamma_{2})}(x,\,\xi)\\ &+\sum_{j=0}^{N-1}\sum_{|\gamma_{1}+\gamma_{2}|=N-j}(N-j)\int_{0}^{1}\frac{(1-\theta)^{N-j-1}}{\gamma_{1}!\,\gamma_{2}!}r_{j\gamma_{1}\gamma_{2}\theta}(x,\,\xi)d\theta\\ &\equiv I_{1}+I_{2}+I_{3}\,, \end{split}$$

where

$$r_{j\gamma_1\gamma_2\theta}(x,\,\xi) = \iint e^{-i\,y\cdot\eta} \partial_{\xi}^{\gamma_1} \varphi_R(\xi+\theta\eta) E_j^{(\gamma_2)}(x,\,\xi+\theta\eta) L_{(\gamma_1+\gamma_2)}(x+y,\,\xi) dy d\eta \,.$$

From (2.5) we have

$$(2.9) I_1 = \varphi_R(\xi) - 1 \in S^{-1}_{<\xi>,0,0}.$$

From the fact that $\partial_{\xi}^{\gamma_1} \varphi_R(\xi)$ has compact support if $\gamma_1 \neq 0$, we get

$$(2.10) I_2 \in S_{\langle \xi \rangle,0,0}^{-1}.$$

Next we prove that $\{r_{j\gamma_1\gamma_2\theta}\}_{|\theta|\leq 1}$ is bounded in $S_{<\xi>,0,0}^{-1}$. Since $\partial_{\xi}^{\alpha}D_{x}^{\beta}r_{j\gamma_1\gamma_2\theta}$ is a linear combination of

$$\mathbf{r}'_{\theta}(x,\,\xi) = \iint e^{-i\,y\cdot\eta} \partial_{\xi}^{\alpha_{1}+\gamma_{1}} \varphi_{R}(\xi+\theta\eta) E_{i(\beta_{1})}^{(\alpha_{2}+\gamma_{2})}(x,\,\xi+\theta\eta) L_{(\beta_{2}+\gamma_{1}+\gamma_{2})}^{(\alpha_{3})}(x+y,\,\xi) dy d\eta$$

such that $\alpha_1+\alpha_2+\alpha_3=\alpha$, $\beta_1+\beta_2=\beta$. Hence we have only to prove for a constant C

$$|r'_{\theta}| \leq C \langle \xi \rangle^{-1}$$
.

We take a constant C_0 such that (1.8) is satisfied and integers l_1 , l_2 , l_3 such that $-2l_1+m\tau_1<-n$, $-2l_2+1<-n$, $-2l_3+n+1\leq -m-1/a$. Then we have

$$\begin{split} |r'_{\theta}(x,\xi)| &= \left| \iint e^{-i\mathbf{y}\cdot\boldsymbol{\eta}} \langle y \rangle^{-2l_{1}} \langle D_{\eta} \rangle^{2l_{1}} \{ \partial_{\xi}^{\alpha_{1}+\gamma_{1}} \varphi_{R}(\xi+\theta\eta) E_{j(\beta_{1})}^{(\alpha_{2}+\gamma_{2})}(x,\xi+\theta\eta) \\ & \cdot L_{(\beta_{2}+\gamma_{1}+\gamma_{2})}^{(\alpha_{3})}(x+y,\xi) \} dy d\eta \right| \\ &\leq \int_{|\eta| \leq C_{0}\lambda} \langle \eta \rangle^{-2l_{2}} d\eta \int |\langle D_{y} \rangle^{2l_{2}} [\langle y \rangle^{-2l_{1}} \langle D_{\eta} \rangle^{2l_{1}} \{ \partial_{\xi}^{\alpha_{1}+\gamma_{1}} \varphi_{R}(\xi+\theta\eta) \\ & \cdot E_{j(\beta_{1})}^{(\alpha_{2}+\gamma_{2})}(x,\xi+\theta\eta) L_{(\beta_{2}+\gamma_{1}+\gamma_{2})}^{(\alpha_{3})}(x+y,\xi) \}] |dy \\ &+ \int_{|\eta| \geq C_{0}\lambda} |\eta|^{-2l_{3}} d\eta \int |(-\Delta_{y})^{l_{3}} [\langle y \rangle^{-2l_{1}} \langle D_{\eta} \rangle^{2l_{1}} \{ \partial_{\xi}^{\alpha_{1}+\gamma_{1}} \varphi_{R}(\xi+\theta\eta) \\ & \cdot E_{j(\beta_{1})}^{(\alpha_{2}+\gamma_{2})}(x,\xi+\theta\eta) L_{(\beta_{2}+\gamma_{1}+\gamma_{2})}^{(\alpha_{3})}(x+y,\xi) \}] |dy \\ &\equiv I_{1} + I_{2} \,. \end{split}$$

To estimate J_1 we devide into two cases.

(i) When $\alpha_1 + \gamma_1 = 0$ we have, noting that $|\gamma_2| = N - j$

$$J_{1} \leq C \int_{|\eta| \leq C_{0}\lambda} \langle \eta \rangle^{-2l_{2}} d\eta \int \langle y \rangle^{-2l_{1}} \lambda(x, \xi + \theta \eta)^{-m-N} \lambda(x+y, \xi)^{m} dy$$

$$\leq C \lambda(x, \xi)^{-N} \int \langle \eta \rangle^{-2l_{2}} d\eta \int \langle y \rangle^{-2l_{1}+m\tau_{1}} dy \leq C \langle \xi \rangle^{-1}.$$

(ii) When $\alpha_1 + \gamma_1 \neq 0$ we have, noting that $\partial_{\xi}^{\alpha_1 + \gamma_1} \varphi_R$ has compact support

$$J_1 \leq C \int_{|\eta| \leq C_0 \lambda} \langle \eta \rangle^{-2l_2} d\eta \int \langle y \rangle^{-2l_1} \langle \xi + \theta \eta \rangle^{-1} \lambda(x, \xi + \theta \eta)^{-m} \lambda(x + y, \xi)^m dy$$

$$\leq C \langle \xi \rangle^{-1} \int \langle \eta \rangle^{-2l_2 + 1} d\eta \int \langle y \rangle^{-2l_1 + m\tau_1} dy \leq C \langle \xi \rangle^{-1}.$$

Next for J_2 we have

$$\begin{split} J_2 &\leq C \int_{|\eta| \geq C_0 \lambda} |\eta|^{-2l_3} d\eta \int \langle y \rangle^{-2l_1} \lambda(x+y, \, \xi)^m dy \\ &\leq C \lambda(x, \, \xi)^{-2l_3+m+n} \int \langle y \rangle^{-2l_1+m\tau_1} dy \leq C \lambda(x, \, \xi)^{-1/a} \leq C \langle \xi \rangle^{-1} \, . \end{split}$$

Hence we get $I_3 \in S_{\xi>,0,0}^{-1}$ and combining (2.8)–(2.10) we get (2.7). From (2.4) and (2.6) we see also that there exists M_2 independent of γ such that

(2.11)
$$|\sigma(EL_{(\gamma)})|_{l_0, l_0}^{(0)} \leq M_2^{1+|\gamma|} \gamma!$$
 for l_0 in Theorem 1.8.

Moreover from (2.7) there exists constant C_1 such that

(2.12)
$$|K(x,\xi)\xi_j|_{l_0,l_0}^{(0)} \leq C_1$$
 for any $j=1,\dots,n$.

Suppose that for $u \in L^2$ Lu = f satisfies (2.1). We have u = ELu + Ku = Ef + Ku from (2.7) and so it is clear that u is a C^{∞} -function. Therefore we have only to prove that u satisfies (2.2), since (2.2) implies the analyticity of u by Sobolev's lemma. Take M_1 sufficiently large such that

$$(2.13) 3C_2C_1 \leq M_1,$$

$$(2.14) 3C_2 M |E|_{i_0,i_0}^{(0)} \leq M_1, M \leq M_1,$$

$$(2.15) 3 \cdot 2^n C_2 M_2^2 \leq M_1, 2M_2 \leq M_1,$$

$$(2.16) ||u||_{L^2} \leq M_1,$$

where C_2 is a constant satisfying (1.9).

From (2.16), (2.2) is trivial when $\alpha=0$, so we show (2.2) by induction on $|\alpha|$. From (2.7), $D_x^{\alpha}u=ELD_x^{\alpha}u+KD_x^{\alpha}u$ ($\alpha\neq 0$). Then we have

$$(2.17) ||D_x^{\sigma}u|| \leq ||ELD_x^{\sigma}u|| + ||KD_x^{\sigma}u||.$$

Since $\alpha \neq 0$ there exists multi-index α_2 such that $|\alpha_2| = 1$, $\alpha = \alpha_1 + \alpha_2$. By (2.12), (2.13) and Theorem 1.8 we get

$$(2.18) \quad ||KD_x^{\boldsymbol{\sigma}}u|| = ||(KD_x^{\boldsymbol{\sigma}_2})D_x^{\boldsymbol{\sigma}_1}u|| \leq C_2C_1||D_x^{\boldsymbol{\sigma}_1}u|| \leq C_2C_1M_1^{1+|\boldsymbol{\sigma}_1|}\alpha_1! \leq M_1^{1+|\boldsymbol{\sigma}_1|}\alpha!/3.$$

By Leibniz' formula, we have

$$LD_x^{\omega} = D_x^{\omega}L - \sum_{\alpha_1 < \alpha} \frac{\alpha!}{\alpha!(\alpha - \alpha_1)!} L_{(\omega - \alpha_1)}D_x^{\alpha_1}.$$

Then

$$(2.19) ||ELD_x^{\alpha}u|| \leq ||ED_x^{\alpha}f|| + \sum_{\alpha_1 \leq \alpha} \frac{\alpha!}{\alpha!(\alpha-\alpha_1!)} ||EL_{(\alpha-\alpha_1)}D_x^{\alpha_1}u||.$$

From (2.1), (2.6) and (2.14) we have

$$(2.20) \qquad ||ED_x^{\omega}f|| \leq C_2 |E|_{l_0, l_0}^{(0)} ||D_x^{\omega}f|| \leq C_2 |E|_{l_0, l_0}^{(0)} M^{1+|\omega|} \alpha! \leq M_1^{1+|\omega|} \alpha!/3.$$

Finally we have from (2.11), (2.15) and the assumption of induction

(2.21)
$$\sum_{\alpha_{1}<\alpha} \frac{\alpha!}{\alpha_{1}!(\alpha-\alpha_{1})!} ||EL_{(\alpha-\alpha_{1})}D_{x}^{\alpha_{1}}u||$$

$$\leq \sum_{\alpha_{1}<\alpha} C_{2} \frac{\alpha!}{\alpha_{1}!(\alpha-\alpha_{1})!} M_{2}^{1+|\alpha-\alpha_{1}|}(\alpha-\alpha_{1})! M_{1}^{1+|\alpha_{1}|}\alpha_{1}!$$

$$= M_{1}^{1+|\alpha|}\alpha! (C_{2}M_{2}^{2}/M_{1}) \sum_{\alpha_{1}<\alpha} (M_{2}/M_{1})^{|\alpha-\alpha_{1}|-1} \leq M_{1}^{1+|\alpha|}\alpha!/3.$$

Therefore from (2.17)–(2.21) we get (2.2).

Corollary 2.6. Let L satisfy the same conditions as Theorem 2.2. If a bounded and continuous function u is a solution of Lu=f and $f \in C^{\infty}(\mathbb{R}^n)$ satisfies for some M_3

$$(2.22) |D_x^{\alpha} f| \leq M_3^{1+|\alpha|} \alpha!,$$

then we have for another constant M.

$$(2.23) |D_x^{\alpha}u| \leq M_4^{1+|\alpha|} \alpha! \langle x \rangle^{n_0} for an even number n_0 > n.$$

Proof. We write Lu=f in the form

$$\langle X
angle^{-n_0} L(X,\, D_x) \langle X'
angle^{n_0} u_{\scriptscriptstyle 1} = f_{\scriptscriptstyle 1}$$
 ,

where $u_1(x) = \langle x \rangle^{-n_0} u(x)$, $f_1(x) = \langle x \rangle^{-n_0} f(x)$.

We write simplified symbol of $\langle X \rangle^{-n_0} L(X, D_x) \langle X' \rangle^{n_0}$ by $L_1(X, D_x)$. Then the pair (L_1, u_1, f_1) satisfies the conditions of the theorem and we get $||D_x^{\omega} u_1|| \le M_5^{1+|\omega|} \alpha!$ for some $M_5 > 0$. Hence from Sobolev's lemma we can get (2.23).

REMARK. In Theorem 2.2 we may assume (2.4) only for $|\alpha| \le l_0$ with l_0 in Theorem 1.8, and in Corollary 2.6 for $|\alpha| \le 2l_0$.

3. Local hypoellipticity

In this section we shall study a differential operator $L(x, \mathfrak{F}, D_x, D_y)$ in $R_x^n \times R_y^k$ with polynomial coefficients of the form

(3.1)
$$L(x, \tilde{y}, \xi, \eta) = \sum_{|\alpha: \mathfrak{m}| + |\alpha': \mathfrak{m}'| \leq 1} a_{\alpha\alpha'\gamma\gamma'} x^{\gamma} \tilde{y}^{\gamma'} \xi^{\alpha} \eta^{\alpha'},$$

where $y=(\tilde{y}, \tilde{\tilde{y}})$, $\tilde{y}=(y_1, \dots, y_s)$, $\tilde{\tilde{y}}=(y_{s+1}, \dots, y_k)$ for $s \leq k$, $\alpha=(\alpha_1, \dots, \alpha_n)$, $\alpha'=(\alpha'_1, \dots, \alpha'_k)$, $\gamma=(\gamma_1, \dots, \gamma_n)$, $\gamma'=(\gamma'_1, \dots, \gamma'_s, 0, \dots, 0)$ and $|\alpha: \mathfrak{m}|=\alpha_1/m_1+\dots+\alpha_n/m_n$, $|\alpha': \mathfrak{m}'|=\alpha'_1/m'_1+\dots+\alpha'_k/m'_k$ for multi-indices $\mathfrak{m}=(m_1, \dots, m_n)$, $\mathfrak{m}'=(m'_1, \dots, m'_k)$ of positive integers m_j and m'_i . We say that L is hypoelliptic if $u\in \mathcal{D}'(R^{n+k}_{x,y})$ belongs to $C^{\infty}(\Omega)$ when Lu belongs to $C^{\infty}(\Omega)$ for any open set Ω of $R^{n+k}_{x,y}$. Now setting $m=\operatorname{Max}\{m_j, m'_l\}$, we assume that there exist four real vectors $\rho, \rho', \sigma, \sigma'$ of the form $\rho=(\rho_1, \dots, \rho_n)$, $\rho'=(\rho'_1, \dots, \rho'_k)$, $\sigma=(\sigma_1, \dots, \sigma_n)$, $\sigma'=(\sigma'_1, \dots, \sigma'_s, 0, \dots, 0)$ such that

(3.2)
$$\begin{cases} (i) & \rho_j = \sigma_j = m/m_j & \text{for } j = 1, \dots, n \\ (ii) & \rho'_j > \sigma'_j \ge 0, \quad m'_j \rho'_j \ge m & \text{for } j = 1, \dots, k \end{cases}$$

and

(3.3)
$$L(t^{-\sigma}x, t^{-\sigma'}\tilde{y}, t^{\rho}\xi, t^{\rho'}\eta) = t^{m}L(x, \tilde{y}, \xi, \eta) \quad \text{for} \quad t>0,$$
where $t^{-\sigma}x = (t^{-\sigma_{1}}x_{1}, \dots, t^{-\sigma_{n}}x_{n}), t^{-\sigma'}\tilde{y} = (t^{-\sigma_{1}'}y_{1}, \dots, t^{-\sigma_{s}'}y_{s}),$

$$t^{\rho}\xi = (t^{\rho_{1}}\xi_{1}, \dots, t^{\rho_{n}}\xi_{n}), \quad t^{\rho'}\eta = (t^{\rho_{1}'}\eta_{1}, \dots, t^{\rho_{k}'}\eta_{k}).$$

Condition 1. If we put

(3.4)
$$L_0(x, \mathfrak{F}, \xi, \eta) = \sum_{|\alpha: \mathfrak{m}| + |\alpha': \mathfrak{m}'| = 1} a_{\alpha\alpha'\gamma\gamma'} x^{\gamma} \mathfrak{F}^{\gamma'} \xi^{\alpha} \eta^{\alpha},$$

then we have

(3.5)
$$L_0(x, \mathfrak{F}, \xi, \eta) \neq 0$$
 for $|x| + |\mathfrak{F}| \neq 0$ and $(\xi, \eta) \neq 0$,

which means that $L(x, \tilde{y}, \xi, \eta)$ is semi-elliptic for $|x| + |\tilde{y}| \neq 0$.

Condition 2. The equation $L(X, \mathfrak{F}, D_x, \eta)v(x)=0$ in R_x^n has no non-trivial solution in $\mathcal{S}(R_x^n)$ for $|\eta|=1$.

Theorem 3.1. We consider the operator $L(x, \tilde{y}, D_x, D_y)$ under Condition 1 and the assumption

$$\max_{1 \le i \le k} \{\sigma'_j\} < \min_{1 \le i, l \le k} \{m'_j \rho'_j / m'_l\}.$$

Then we have

- (S) If Condition 2 holds, then $L(x, \tilde{y}, D_x, D_y)$ is hypoelliptic.
- (N) If the coefficients of L are independent of \tilde{y} , i.e., s=0, then Condition 2 is necessary for the hypoellipticity of the operator L.

Examples 3.2.

- i) $L=(-\Delta_x)^l+|x|^{2\nu}(-\Delta_y)^{l'}$ in $R_x^n\times R_y^k$ (cf. [3], [7], [14]). We set $\rho_1=\dots=\rho_n=\sigma_1=\dots=\sigma_n=l_0/l$, $\rho_1'=\dots=\rho_k'=(\nu/l+1)l_0/l'$, $\sigma_1'=\dots=\sigma_k'=0$, where $l_0=\operatorname{Max}(l,\ l')$. Then we can see that L is always hypoelliptic.
- ii) $L_{\pm}(x, D_x, D_y) = D_x \pm ix^l D_y^m$ in $R_x^1 \times R_y^1$ (cf. [6], [8], [15]).

We set $\rho_1 = \sigma_1 = m$, $\rho'_1 = l+1$, $\sigma'_1 = 0$. Then we see the following three cases:

- a) If l is even, $L_{+}(X, D_{x}, \pm 1)v=0$ and $L_{-}(X, D_{x}, \pm 1)v=0$ have no nontrivial solution in S.
- b) If l is odd and m is even, $L_{+}(X, D_{x}, \pm 1)v = 0$ has no non-trivial solution in S and $L_{-}(X, D_{x}, \pm 1)v = 0$ has non-trivial solution $e^{-x^{l+1}/(l+1)} \in S$.
- c) If l and m are odd, $L_+(X, D_x, -1)v = 0$ has non-trivial solution $e^{-x^{l+1}/(l+1)} \in S$ and $L_-(X, D_x, 1)v = 0$ has non-trivial solution $e^{-x^{l+1}/(l+1)} \in S$.

Consequently we see from (N) and (S) that L_+ is hypoelliptic if and only if "l is even", or "l is odd and m is even", and L_- is hypoelliptic if and only if "l is even".

iii) $L = D_{x_1}^2 + D_{x_2}^6 + (x_1^2 + x_2^6) D_y^6 - 15x_2^4 D_y^5 + 45x_2^2 D_y^4 - 16D_y^3$ in $R_x^2 \times R_y^1$. We set $\rho_1 = \sigma_1 = 3$, $\rho_2 = \sigma_2 = 1$, $\rho_1' = 2$, $\sigma_1' = 0$. We can see that L does not satisfy Condition 2. In fact for $\eta = 1$ $L(X_1, X_2, D_{x_1}, D_{x_2}, 1)v(x_1, x_2) = 0$ is an equation given in Example 2.3 and has non-trivial solution $v = e^{(-x_1^2 + x_2^2)/2}$. Therefore applying (N) we can see that L is not hypoelliptic.

For the proof of the theorem we need several lemmas. We introduce notations: $|x, \tilde{y}|_{(\sigma, \sigma')} = \sum_{i=1}^{n} |x_j|^{1/\sigma_j} + \sum_{i=1}^{s} |y_j|^{1/\sigma'_j}$,

$$|\eta|_{\rho'} = \sum_{j=1}^{k} |\eta_j|^{1/\rho_j'}, \quad \mu(x, \tilde{y}, \eta) = \sum_{j=1}^{k} |x, \tilde{y}|_{(\sigma, \sigma')}^{(m_j' \rho_j' - m)} |\eta_j|^{m_j'}.$$

First we estimate the monomials of the form $x^{\gamma} \tilde{y}^{\gamma'} \eta^{\alpha'}$.

Lemma 3.3. Let α , α' , γ and γ' be multi-indices of dimension n, k, n, k, respectively, such that $|\alpha: m| + |\alpha': m'| \le 1$ and $\gamma'_{i} = 0$ for $j \ge s + 1$. We put

(3.6)
$$\theta = (\sigma, \gamma) + (\sigma', \gamma') + m - (\rho, \alpha) - (\rho', \alpha').$$

If we denote $\rho'_0 = \min_{1 \le j \le k} (m'_j \rho'_j / m)$, then we have

- (i) If there exists $\theta' \ge 0$ such that $m(|\alpha:m| + |\alpha':m'|) + (\theta + \theta')/\rho'_0 \le m$, we have
- $(3.7) |x, \mathfrak{J}|_{(\sigma,\sigma')}^{\theta'}|x^{\gamma}\mathfrak{J}^{\gamma'}\eta^{\alpha'}| |\eta|_{\rho'}^{\theta+\theta'} \leq C(|\eta|_{\rho'}^{m} + \mu(x,\mathfrak{J},\eta))^{1-|\alpha:\mathfrak{m}|}.$
- (ii) If $m(|\alpha:\mathfrak{m}|+|\alpha':\mathfrak{m}'|)+\theta/\rho_0'>m$, we have
- $(3.8) \qquad |x^{\gamma}\widetilde{y}^{\gamma'}\eta^{\alpha'}| |\eta|_{\rho'}^{(1-|\alpha:\mathfrak{m}|-|\alpha':\mathfrak{m}'|)m\rho_0'} \leq C(|\eta|_{\rho}^m + \mu(x,\,\mathfrak{J},\,\eta))^{1-|\alpha:\mathfrak{m}|}$

for $|x| \le \delta$, $|\mathfrak{I}| \le \delta$ and $|\eta| \ge 1$, where δ is some positive constant.

We can prove this by the same method as Lemma 3.1 and 3.2 in [4].

Lemma 3.4. Under condition 1 we have for a constant C > 0

(3.9)
$$C^{-1}|L_0(x, \mathfrak{F}, \xi, \eta)| \leq \{\sum_{j=1}^n |\xi_j|^{m_j} + \mu(x, \mathfrak{F}, \eta)\} \leq C|L_0(x, \mathfrak{F}, \xi, \eta)|.$$

Proof. In case $|x|+|\mathfrak{J}| \neq 0$, it is sufficient for the sake of semi-homogeneity to prove when $|x|+|\mathfrak{J}|=1$, and this is true because of Condition 1. In case $|x|+|\mathfrak{J}|=0$, (3.9) is clear by letting $|x|+|\mathfrak{J}|\to 0$.

Define $\lambda_h(x, \xi)$ with parameter $h = (\tilde{y}, \eta) (|\eta| = 1)$ by $\lambda_h(x, \xi) = \{1 + |L(x, \tilde{y}, \xi, \eta)|^2\}^{1/2m}$ and set $p_h(x, \xi) = L(x, \tilde{y}, \xi, \eta)$. Then we have

Proposition 3.5.

- (i) $\lambda_h(x, \xi)$ satisfies (1.1)–(1.3).
- (ii) $\{p_h(x, \xi)\}\$ is bounded in $\{S_{\lambda_h,1,0}^m\}$ in the sense that for any α , β there exists a bounded function $C_{\alpha\beta}(x, \tilde{y})$ which is independent of $\eta(|\eta|=1)$ and tends to zero as $|x|+|\tilde{y}|\to\infty$ when $\beta \neq 0$, such that

$$|p_{h(\beta)}^{(\alpha)}(x,\,\xi)| \leq C_{\alpha\beta}(x,\,\mathfrak{F}) \lambda_h(x,\,\xi)^{m-|\alpha|}.$$

(iii) There exists a constant C independent of h such that

$$(3.10) |p_h(x,\xi)| \ge C\lambda_h(x,\xi)^m for large |x| + |\tilde{y}| + |\xi|.$$

Proof. Set $\lambda_n'(x, \xi) = \{1 + \sum_{j=1}^n |\xi_j|^{m_j} + \mu(x, \mathfrak{I}, \eta)\}^{1/m}$. Then from Lemma 3.3 (i) and Lemma 3.4 we can prove

$$(3.11) |L(x, \mathfrak{I}, \xi, \eta)| \ge C \lambda_n'(x, \xi)^m \text{for large } |x| + |\mathfrak{I}| + |\xi|,$$

which induces

(3.12)
$$C^{-1}\lambda_h(x,\xi) \leq \lambda_h(x,\xi) \leq C\lambda_h(x,\xi).$$

For each term $a_{\alpha\alpha'\gamma\gamma'}x^{\gamma}\tilde{y}^{\gamma'}\xi^{\alpha}\eta^{\alpha'}$ in L, we have from Lemma 3.3

$$\begin{split} &|\partial_{x}^{\beta_{1}}\partial_{\xi}^{\alpha_{1}}(a_{\alpha\alpha'\gamma\gamma'}x^{\gamma}\tilde{y}^{\gamma'}\xi^{\alpha}\eta^{\alpha'})|\\ &\leq C \min\left(1, \ |x,\ \tilde{y}|_{(\sigma,\sigma')}^{-(\sigma,\beta_{1})}\right)\left(1+\mu(x,\ \tilde{y},\ \eta)\right)^{1-|\alpha:\mathfrak{m}|}\left(1+\sum_{j=1}^{n}|\xi_{j}|^{m_{j}}\right)^{|\alpha:\mathfrak{m}|-|\alpha_{1}:\mathfrak{m}|}\\ &\leq C \min\left(1, \ |x,\ \tilde{y}|_{(\sigma,\sigma')}^{-(\sigma,\beta_{1})}\right)\lambda_{h}'(x,\ \xi)^{m-|\alpha_{1}|} \qquad (\alpha_{1}\leq\alpha). \end{split}$$

Here we use the fact that $|\eta|=1$. Therefore we have

$$(3.13) |p_{h(\beta)}^{(\alpha)}(x,\xi)| \leq C \operatorname{Min}(1, |x, \tilde{y}|_{(\sigma,\sigma')}^{-(\sigma,\beta)}) \lambda_h(x,\xi)^{m-|\alpha|}.$$

First we check (i). From (3.12) λ_h satisfies (1.1) for $a = \min_{1 \le j \le n} \{m_j/m\}$. By usual

calculus (1.2) follows by (3.13). Since p_h is a polynomial in x, we have using Taylor series

$$|p_h(x+z,\,\xi)| \leq \sum_{|\alpha| \leq N} |z^{\alpha}p_{h(\alpha)}(x,\,\xi)|/\alpha! \leq C\langle z\rangle^{m\tau_1} \lambda_h(x,\,\xi)^m \leq C\langle z\rangle^{m\tau_1} \lambda_h(x,\,\xi)^m$$

for some τ_1 . So (1.3) holds for λ_h . Consequently we get (i). (ii) and (iii) follow at once by (3.11)–(3.13).

Lemma 3.6. Let a basic weight function $\lambda(x, \xi)$ satisfy

(3.14)
$$A_0^{-1}(1+|x|+|\xi|)^{a'} \leq \lambda(x,\xi) \leq A_0(1+|x|^{\tau_0}+|\xi|)$$
$$(a'>0, A_0>0, \tau_0>0)$$

instead of (1.1). Suppose that $p(x, \xi) \in S_{\lambda,1,0}^m$ (m>0) satisfies

$$|p(x, \xi)| \ge C\lambda(x, \xi)^m$$
 for large $|x| + |\xi|$.

Then for any $u \in L^2(\mathbb{R}^n_x)$, $Pu = p(X, D_x)u(x) = 0$ implies $u \in \mathcal{S}(\mathbb{R}^n_x)$.

Proof. Let $Q \in S_{\lambda,1,0}^{-m}$ be a parametrix such that QP = I - K, $K \in S_{\lambda,1,0}^{-\infty}$ ($= \bigcap_{-\infty < m < \infty} S_{\lambda,1,0}^{m}$). Then we have u = Ku. For any positive number r and t, $\langle X \rangle^r \langle D_x \rangle^t K(X', D_{x'})$ belongs to $S_{\lambda,1,0}^{-\infty}$ and we get $\langle X \rangle^r \langle D_x \rangle^t u \in L^2$. Therefore we get $u \in S$.

Proposition 3.7. If Condition 1 and 2 hold, then for any $v \in C_0^{\infty}(\mathbb{R}_x^n)$ we have

(3.15)
$$||v||_{L^2}^2 \leq C \left(|p_h(X, D_x)v(x)|^2 dx \right),$$

where C is independent of v and h with $|\eta|=1$.

Proof. From (3.10) there exists a parametrix $\{Q_h\}$ which is bounded in $\{S_{\lambda_h,1,0}^{-m}\}$ such that

$$Q_h P_h = I - K_h,$$

where $\{K_h\}$ is bounded in $\{S_{\lambda_h,1,0}^{-m}\}$, $\lim_{|x|+|\tilde{\mathcal{I}}|\to\infty}\sup_{\xi\in\mathbb{R}^n,|\eta|=1}|K_h(x,\xi)|=0$ and for any multi-index α , β

(3.17)
$$\sup_{x,\xi} |K_{h(\beta)}(x,\xi) - K_{h_0(\beta)}(x,\xi)| \to 0 \quad \text{as} \quad h \to h_0.$$

Therefore we have

$$||v|| \le ||Q_h P_h v|| + ||K_h v|| \le C ||P_h v|| + ||K_h v||.$$

Since $\{K_h\}$ is bounded in $\{S_{\lambda_h,1,0}^{-m}\}$ and $\lim_{|\mathfrak{I}|\to\infty} \sup_{(x,\xi)\in\mathbb{R}^{2n}, |\eta|=1} |K_h(x,\xi)| = 0$, we have for a constant l_0 in Theorem 1.8

$$|K_h|_{l_0,l_0}^{(0)} \to 0$$
 as $|\mathfrak{I}| \to \infty$.

Then for a sufficiently large constant M>0

$$||K_h v|| \leq \frac{1}{2} ||v||$$
 for $|\mathfrak{J}| \geq M$,

and we get (3.15) for $|\mathfrak{J}| \ge M$.

Now assume that for $|\mathfrak{I}| \leq M$ (3.15) does not hold. Then we can choose sequences $\{h_{\nu}\}$, $\{v_{\nu}\}$ such that

$$(3.18) ||v_{\nu}|| = 1,$$

$$(3.19) ||P_{h_{\nu}}v_{\nu}|| \to 0 as \nu \to \infty,$$

(3.20)
$$h_{\nu} = (\mathfrak{J}^{\nu}, \eta^{\nu}), \text{ where } |\mathfrak{J}^{\nu}| \leq M, |\eta^{\nu}| = 1.$$

From (3.20) we may assume that

$$(3.21) h_{\nu} \rightarrow h_{0}$$

for some $h_0 = (\mathfrak{F}^0, \eta^0)$. Applying v_{ν} to (3.16) we get

$$Q_{h_{\nu}}P_{h_{\nu}}v_{\nu}=v_{\nu}-K_{h_{\nu}}v_{\nu}.$$

From (3.19) and (3.21) we have $Q_{h_{\nu}}P_{h_{\nu}}v_{\nu}\to 0$ in L^2 as $\nu\to\infty$, and from the fact that $\{K_h\}$ is bounded in $\{S_{\lambda_h,1,0}^{-m}\}$, $\lim_{|x|\to\infty}\sup_{\xi}|K_{h_0}(x,\xi)|=0$ and (3.17) we get K_h is uniformly continuous and K_{h_0} is a compact operator in L^2 (cf. [10], [12]). So writing $K_{h_{\nu}}v_{\nu}=(K_{h_{\nu}}-K_{h_0})v_{\nu}+K_{h_0}v_{\nu}$ we can choose a convergent subsequence $\{K_{h_{\nu}},v_{\nu'}\}$ in account of (3.18). Therefore from (3.22) we can choose an element $v_0\in L^2$ such that

$$(3.23) v_{\nu'} \rightarrow v_0 in L^2.$$

Then from (3.19) and (3.21) $P_{h_0}v_0=0$. When $\eta_j^0=0$ for all j such that $m'_j\rho'_j \neq m$, we have $v_0=0$ since $p_{h_0}(x,\xi)=\sum a_{\alpha\alpha'_{00}}(\eta^0)^{\alpha'}\xi^{\alpha}$. Otherwise (3.12) implies (3.14) and we get $v_0=0$ from Lemma 3.6 and Condition 2. This is the contrary to (3.18) and (3.23). Then Proposition 3.7 is proved.

Theorem 3.8. If Condition 1 and 2 hold, we can get the following formulas for $|\mathfrak{J}| < \delta$, $|\eta| \ge 1$ and $v \in C_0^{\infty}(\{x; |x| < \delta\})$, where δ is a number which was taken in Lemma 3.3.

(3.24)
$$\sum_{|\alpha:\mathfrak{m}|\leq 1}\int |\left(\mu(x,\,\mathfrak{F},\,\eta)+|\,\eta\,|_{\rho^{\prime}}^{m}\right)^{1-|\alpha:\mathfrak{m}|}D_{x}^{\alpha}v(x)|^{2}dx$$

$$\leq C\int |L(X,\,\mathfrak{F},\,D_{x},\,\eta)v(x)|^{2}dx.$$

For any k-dimensional multi-index α_1 , β_1 we have

(3.25) $||\partial_{\eta}^{\alpha_{1}}\partial_{y}^{\beta_{1}}L(X, \mathfrak{F}, D_{x}, \eta)v||_{L^{2}} \leq C |\eta|_{\rho'^{0}0}^{-\rho_{0}|\alpha_{1}|+\sigma_{0}|\beta_{1}|} ||L(X, \mathfrak{F}, D_{x}, \eta)v||_{L^{2}}$ $where \ \rho_{0} = \underset{1 \leq i, l \leq k}{\min} (m'_{j}\rho'_{j}/m'_{l}), \ \sigma_{0} = \underset{1 \leq i \leq k}{\max} (\sigma'_{j}).$

Proof. Let $r(x, \tilde{y})$ be a positive root of the equation

$$\sum_{j=1}^{n} \frac{x_{j}^{2}}{r^{2\sigma_{j}}} + \sum_{j=1}^{s} \frac{y_{j}^{2}}{r^{2\sigma_{j}'}} = 1.$$

Then $r(x, \mathfrak{J})$ is a C^{∞} -function in $R_{x}^{n} \times R_{y}^{s} \setminus \{0, 0\}$ and

$$(3.26) r(x, \mathfrak{F}) \sim |x, \mathfrak{F}|_{(\sigma, \sigma')}.$$

Let $\chi(x, \tilde{y})$ be a C^{∞} -function such that $\chi=1$ if $|x|+|\tilde{y}| \ge 1$ and $\chi=0$ if $|x|+|\tilde{y}| \le (1/2)$. For any multi-index α ($|\alpha: \mathfrak{m}| \le 1$) and $h=(\tilde{y}, \eta)$ ($|\eta|=1$) we define R_{ah} by

$$R_{\mathrm{wh}}(x,\,\xi)=(\textstyle\sum_{j=1}^k\chi(x,\,\widetilde{y})\mathrm{r}(x,\,\widetilde{y})^{(m_j'^\rho_j'^{-m_j})}|\,\eta_j\,|^{m_j'}+1)^{\mathrm{1-loi}\,:\,\mathrm{mil}}\,\xi^{\mathrm{oi}}\,.$$

Then $\{R_{\alpha h}\}$ is bounded in $\{S_{\lambda_h,1,0}^m\}$. From (3.16) we can write for any $v \in C_0^\infty(R_x^n)$

$$R_{ab}(X, D_x)Q_b(X', D_{x'})p_b(X'', D_{x''})v = R_{ab}(X, D_x)v - R_{ab}(X, D_x)K_b(X', D_{x'})v$$

Noting that $\{R_{\omega h}(X, D_x)Q_h(X', D_{x'})\}$, $\{R_{\omega h}(X, D_x)K_h(X', D_{x'})\}$ are bounded in $\{S_{\lambda_{h,1,0}}^0\}$, we get from Proposition 3.7

$$||(\sum_{j=1}^k X(x,\, \mathfrak{J}) r(x,\, \mathfrak{J})^{m_j' \rho_{j'} - m} |\, \eta_j |^{m_j'} + 1)^{1 - |\mathfrak{a}| : \, \mathrm{ntl}} |D_x^{\mathfrak{a}} v|| = ||R_{\mathrm{ah}}(X,\, D_x) v||$$

$$\leq ||R_{ah}Q_{h}P_{h}v|| + ||R_{ah}K_{h}v|| \leq C(||P_{h}v|| + ||v||) \leq C||P_{h}v||.$$

Considering (3.26) we have for $|\eta|=1$

$$\sum_{|\alpha|:|\alpha|\leq 1}\int |\left(\mu(x,\,\widetilde{y},\,\eta)+\,|\,\eta\,|_{\rho'}^{\,m}\right)^{1-|\alpha|:\,\mathfrak{M}|}D_{x}^{\,\alpha}v\,|^{\,2}dx \leq C\int |L(X,\,\widetilde{y},\,D_{x},\,\eta)v\,|^{\,2}dx\;.$$

From the semi-homogeneity we get (3.24). Using Lemma 3.3 and (3.24) we can get (3.25) by the same method as Lemma 3.6 in [4].

Proof of (S) in Theorem 3.1. By the same method as [4] we can prove (S) by using Theorem 3.8.

Proof of (N) of Theorem 3.1 (cf. [3]). Let there exist non-trivial solution $v(x) \in \mathcal{S}$ of $p_h(X, D_x)v(x) = L(X, D_x, \eta)v(x) = 0$ for some $h=\eta$ with $|\eta|=1$. From Proposition 3.5 we can apply Theorem 2.2 and we get that v(x) is analytic, and therefore there exists multi-index α_0 such that

$$\partial_x^{\alpha_0} v(0) \neq 0.$$

We may assume $\eta_1 \neq 0$. We set $m_0 = \text{Max}(m, |\alpha_0|)$ and take even number l_1 and

positive number b such that $\{(\rho, \alpha_0) - (\rho'_1 - 1) + b\}/\rho'_1$ is an even number (we denote it by l_2) and $2l_1 \rho'_1 \ge m_0 \cdot \text{Max}(\rho_j, \rho'_j) + 2 + b$. We define

$$u(x, y) = \int_0^\infty e^{iy \cdot t^{\rho'} \eta} \frac{v(t^{\rho_1} x_1, \dots, t^{\rho_n} x_n) t^b}{(1 + t^{2\rho_1'})^{I_1}} dt.$$

Then $u \in C^{m_0}$ and $L(X, D_x, D_y)u=0$. But $u \notin C^{\infty}$. In fact operating $\partial_x^{\alpha_0}$ and substituting $x=0, y_2=\dots=y_k=0$, we get

$$\partial_x^{\omega_0} u(0, y_1, 0, \dots, 0) = \int_0^\infty e^{iy_1 t^{\rho_1'} \eta_1} \frac{\partial^{\omega_0} v(0) t^{(\rho, \omega_0) + b}}{(1 + t^{2\rho_1'})^{I_1}} dt.$$

By changing the variable t by $\theta = t^{\rho_1}$, we get

$$\partial_x^{\alpha_0} u(0, y_1, 0, \dots, 0) = \frac{\partial_x^{\alpha_0} v(0)}{\rho_1^{\prime}} \int_0^{\infty} e^{iy_1\theta\eta_1} \frac{\theta^{l_2}}{(1+\theta^2)^{l_1}} d\theta.$$

Noting l_2 is an even number we can write

$$Re\int_{0}^{\infty}e^{iy_{1} heta\eta_{1}}rac{ heta^{l_{2}}}{(1+ heta^{2})^{l_{1}}}d heta=P(|y_{1}|)e^{-|y_{1}||\eta_{1}|}$$

for some polynomial P of order l_1-1 . Therefore we get from (3.27) $\partial_x^{a_0} u(0, y_1, 0, \dots, 0) \notin C^{\infty}$. Consequently (N) holds.

OSAKA UNIVERSITY

References

- [1] R. Beals and C. Fefferman: Spatially inhomogeneous pseudodifferential operators, I, Comm. Pure Appl. Math. 27 (1974), 1-24.
- [2] A.P. Calderón and R. Vaillancourt: A class of bounded pseudo-differential operators, Proc. Nat. Acad. Sci. USA 69 (1972), 1185-1187.
- [3] V.V. Grushin: On a class of hypoelliptic operators, Math. USSR Sb. 12 (1970), 458-476.
- [4] ——: Hypoelliptic differential equations and pseudodifferential operators with operator-valued symbols, Math. USSR Sb. 17 (1972), 497–514.
- [5] L. Hörmander: Pseudo-differential operators and hypoelliptic equations, Proc. Symposium on Singular Integrals, Amer. Math. Soc. 10 (1967), 138–183.
- [6] Y. Kannai: An unsolvable hypoelliptic differential operator, Israel J. Math. 9 (1971), 306-315.
- [7] Y. Kato: On a class of hypoelliptic differential operators, Proc. Japan Acad. 46 (1970), 33-37.
- [8] ————: Remarks on hypoellipticity of degenerate parabolic differential operators, Proc. Japan Acad. 47 (1971), 380-384.
- [9] H. Kumano-go: Algebras of pseudo-differential operators, J. Fac. Sci. Univ. Tokyo 17 (1970), 31-50.

- [10] H. Kumano-go: On the index of hypoelliptic pseudo-differential operators on Rⁿ, Proc. Japan Acad. 48 (1972), 402-407.
- [11] ———: Oscillatory integrals of symbols of pseudo-differential operators and the local solvability theorem of Nirenberg and Treves, Katata Symposium on Partial Differential Equation, pp. 166-191 (1972).
- [12] H. Kumano-go and C. Tsutsumi: Complex powers of hypoelliptic pseudo-differential operators with applications, Osaka J. Math. 10 (1973), 147-174.
- [13] H. Kumano-go and K. Taniguchi: Oscillatory integrals of symbols of pseudodifferential operators on Rⁿ and operators of Fredholm type, Proc. Japan Acad. 49 (1973), 397-402.
- [14] T. Matsuzawa: Sur les équations $u_{tt} + t^{\alpha} u_{xx} = f$ ($\alpha \ge 0$), Nagoya Math. J. 42 (1971), 43-55.
- [15] S. Mizohata: Solutions nulles et solutions non analytiques, J. Math. Kyoto Univ. 1 (1962), 271-302.