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INTEGRATION OF ORDINARY DIFFERENTIAL
EQUATIONS OF THE FIRST ORDER
BY QUADRATURES
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Abstract. A differential equation y’=f(x, y) can be solved by quadrature
if an infinitesimal transformation £0/0x+70/0y leaving y’=f invariant is known.
This theorem is due to Lie. Here, the converse will be proved in the following
form: '

Suppose that a one-parameter family of equations y’=8(x, y; a) each of
which is left invariant by £3/0x+7%0/0y is known. Then the equation £dy— ndx
=0 can be solved by quadrature.

Through this theorem we shall give a method different from that of Lie for
integrating y'=f(x, y) by quadratures.

1. Introduction. Consider a differential equation

(1) Y =f®3).

Suppose that an infinitesimal transformation

0 9
(2) Exy) - +a®y) -

Ox dy
leaves (1) invariant. Then the Pfaffian form

(n—f&)(dy—fdx)

is exactly integrable. This theorem is due to Lie [2, p.97].

Here, we shall consider an infinitesimal contact transformation leaving
(1) invariant. Every infinitesimal contact transformation is expressed in the
form

0 0 0
(3) Ve gy HO ) S ()
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where 2=y’ and v is a function of x, y, 2. Equation (1) is left invariant by (3)
if and only if 2=f{(x, y) is a solution of the partial differential equation of the
first order

( 4) _p\l"z—'_(\lb‘_z\]’z)q = ‘I"x+z\l"‘y >

where p=0z/0x, g=0z/0y. By Jacobi’s method of the last multiplier we shall
prove the following (Theorem 1):
Suppose that A(x,,2)=a is an integral of the system of ordinary differential

equations

(5) dx _ dy _ dz )
_‘\l"z \I"F—Z\I"z “I’x+z‘l’y

Then the two Pfaffian forms

(6) V¥ (dy—zdx),

(7) (Wn) " = dy— (b —2z,)dx}

are exactly integrable for each value of parameter a. Here, we replace z in
(6), (7) by its value @(x,y;a) obtained from A(x,7y, 2)=a.

In this theorem take Yyr=75—2&, where &, 5 are functions of x, y. Then the
infinitesimal transformation (3) is the prolonged one of (2) in the space of line
elements, and we have

—V.=§ Vv—2¥,=1n, Y.+, =15(),
where
£(2) = nat-(y—Ex)z—E,2".
The system (5) becomes
dx _dy _ dz

8 — T T T e, N
(%) 3 7 E(3)
and the Pfaffian form (7) takes on the form
(9) (V")) (Edy—ndx) .

Since A=a is an integral of (5), 2=0(x, y; a) is a solution of (4) for every a.
Hence we can state the converse of Lie’s theorem stated above as follows:
The equation £dy—ndx=0 can be solved by quadrature if a one-parameter
family of equations y’=6(x, y; a) each of which is left invariant by (2) is known.
Through this theorem let us give a method different from that of Lie for in-
tegrating (1) by quadratures. An equation y’=6@(x,y) is left invariant by (2)
if and only if f(x,y) is a solution of |
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(10) 5_2_61_}_,7_@: £().
x dy

We try to find such a pair of £(x, y), 7(x, y) that »/E=f and the equation (10) has
a solution of the form 6=6(f; a). Suppose that there exists such a pair of &, 7
that »/E=f and each of the coefficients of the quadratic form

(11) (EfcAnf)E(6)

is a function of f. Then f is a solution of Riccati’s equation

(12) j—f, — (Efutnf,)E ()

derived from (8), since we have the identity

9 (= 0 (= 7
S )=1(2)
O0x \ £ o \& 3
Hence the general solution 6(f; @) of (12) can be obtained by quadratures. It
is a solution of (10) for each a. Let us define the class Q as all of equations (1)
for which we can find such a pair of £(x, y), 7(x, y) that f=n/& and each of the
coefficients of (11) is a function of f. Suppose that equation (1) is a member

of Q and that the pair of £, 7 is given by exp (p(x, ¥)), fexpp. Then p,, p, are
determined from z=f(x, y) by

(13) { Ap, = Boy—v8B-+B(Ba—Av),
Apy, = yéa—ady—a(Ba—Ay),
where
st 3= rsmi(2). c-pi).
>0 A >0 A
-A{f 5 4] amnlt 22
=Gy ¢f PP o 5
9 B 0 B
- a{i__}-—im__}, A = a5B—Bsa,
"P[cayq c“ oy 4 abf—foa
and § is the operator pd/dy—q0/0x. Suppose that A=0. Then, integrating the
exactly integrable Pfaffian form p,dx+ p,dy, we have the p by quadrature. For
this p, let A (f, 2)=a be the integral of (8) obtained from the general solution
0(f; a) of (12). 'Then the Pfaffian form (9) takes on the form

(14) —[exp{—p—[(p+29)(g—p.—2p,)dz} | (dy—fdx) .

Here the integrand (p-+=29) '(g—p.—=2p,) is a function of 2. Hence, equation
(1) in Q is solved by quadratures if A+0. For defining Q, we shall give in
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Theorem 2 such a system of partial differential equations that equation (1) is a
member of Q if and only if f is a solution of the system.

Let us define the subclass Q, of Q as all of equations for which we can
find such a pair of the &, » that £,=0. Itis a necessary and sufficient condition
that Riccati’s equation (12) be linear. Equation (1) is a member of Q, if and only

if 2=f(x, y) satisfies
HOYEIR

and
(15) B_x4_x—o,
q q
where X=(£) / (—4> . The p is determined by p,=—X, p,=0. Suppose
q/otrg /sy

that X is an arbitrary function of x. Then each solution z=f{(x, y) of (15) gives
a member of Q,. The equation (15) is of Monge-Ampére’s type, since by the
definitions

A= (p+29) 7 {p(s+32t)—q(r+29)} ,
B = (p+29)7 (g7 —2pgs+p1),
where r=0°2/0x*, s=0%2/0x0y, t=0°2/0y®>. This equation can be solved by

Monge’s method of integration, and the general solution will be given in a finite
form in Theorem 3. In particular, ), contains the following three equations:

(16) Y = X(*) Yo(9);
(17) Y = X\(%)+Xy(%)y;
(18) = ¢i(y)x+¢(y’)  (Lagrange’s type).

Here, X,, Y,, X,, X,, ¢,, ¢, are arbitary functions.

2. Infinitesimal contact transformation. To prove the first theorem
stated in §1, let us recall here Jacobi’s method of the last multiplier ([1, p.356]).
Consider a system of ordinary differential equations

dx dy dz
19 or = & ,
(19) =0 =%

where P, O, R are functions of x, y, 2. Then a function M of x, y, = is called
the last multiplier of (19) if it satisfies

PM,+QM,+RM,+M(P,+0Q,+R,) = 0.

Suppose that M is the last multiplier of (19) and g(x, y, 2)=a is an integral of
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(19) satisfying g,+0. Then the Pfaffian form g;'M(Pdy—Qdx) is exactly inte-
grable for each a, where we replace z by its value obtained from g(x, y, 2)=a.
Effecting the quadrature, we have

H(x, y; a) = [g:'M(Pdy—Qdx) .

Suppose that P=+0 or Q=0, and M=0. Then the second integral of (19) is
given by H(x, y; g)=b, and any integral of (19) is expressed in the form

¢(g(x’ Ys z)’ H(x,y,g)) =c.

Theorem 1. Suppose that y+0 and \(x,y, 2)=a is an integral of (5)
satisfying N,%=0. Then the two Pfaffian forms (6), (7) are exactly integrable for
each a.

Proof. Since A=a is an integral of (5),

(20) _‘pzxx+(¢_z‘pz)xy+(‘I"x+z‘1"1)7\‘z = 0 .
Consider a system
@1 dx _ dy _ dz )

A o3, —(At20)

Then v~ is the last multiplier of (21) by (20). Hence the Pfaffian form (6) is
exactly integrable, because A=a is an integral of (21). The function y»~* is the
last multiplier of (5). Hence the Pfaffian form (7) is exactly integrable.

Effecting the quadratures, we have

2%, y; @) = [V (dy—=zdx) ,
II(x, y; @) = — [(A %) {r.dy+ (Y —2pr,)dx} .

Suppose tnat Y, =0 or y»—2r,30. Then >)(x, y; X\)=> and TI(x, y; \)=c give
the second integral integral of (21) and (5) respectively.

Proposition 1.  The transformation x,=3(x, y; \), y,=A(x, ¥, 2), 2,=1]"*
(%, y; \) is a contact one, and the infinitesimal transformation (3) is written in the
form 0[0x, by the coordinate system (x,, y,, 2,).

Proof. By (20) we have

%xl _l_(‘»b'x'}‘z‘:b:v)g‘zcl =1L
y 0z

_\Ira%x’l‘ + (‘!’_ z‘pz)
X

Hence x,, y,, 2, are functionally independent, and the infinitesimal transformation
(3) is written in the form 8/0x,. Since >},=TI, we have
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9y, —z Ox, _ 0,

0z 0z

9y, oy, _ (0x, axl) .
ox T2y z‘<ax T2 ) =0

Hence our transformation is a contact one.

3. Integration of édy—ndx=0. Suppose that £, » are functions of x, y
and that A(x,y, 2)=a is an integral of (8). Then by Theorem 1 an integrating
factor of the Pfaffian equation

(22) Edy—ndx =0

is given by (y*A,;)™'. Let us see how it depends on a. Suppose that w(x, y)=>b
is an integral of (22) and (%, y) is a solution of £5,+70,=1. Then w=b is an
integral of (8). The second integral of (8) is obtained as follows. Consider
Riccati’s equation

(23) L (@)

under the condition that w=b. Then there exists such a pair of u(o; ), v(c'; )
that the general solution of (23) is

2 = (u+ct)(v+cn).

When the quantity  in u, v is replaced by w(x,y), the second integral of (8) is
given by

(n—=2E) N (uz—v)=rc.
Let p denote the left-hand member. Then the integral A=a of (8) is expressed
in the form A(w,u)=a, and the integrating factor (\Js*A,)™* of (22) takes on

—{i,;—i}(&v—nu)}_l ,

where we replace p by its value obtained from A(w, p)=a.
In the case where A(x,y, 7/£) is not constant, we can obtain the integral
of (22) without integrating (9).

Proposition 2. Suppose that \(x,y, 2)=a is an integral of (8), and \(x, y,
n/[E) is not constant. Then the integral of (22) is given by \(x,y, n/E)=a.

Proof. Let o(x, y) denote A\(x, y, n/E). Then,
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- sxx+nx,+z(%)xz —o0.

Suppose that there exists such a function w(x, y) that each of coefficients
of (§w,+7w,) *¢(2) is a function of w. Then we can make an integral A=a of
(8) from the generzal solution 2=6(w; a) of Riccati’s equation

(24) j—; = (Ew,4mw,)E(2) ,

solving 2=@(w; a) with respect to a. In this case A(x, y, 7/£) is constant if and
only if w is a function of 7/E.

ExampLE 1. Suppose that £=y—x(log x—1), n=—(log x—1)y. Then we
can take w==y/x, and it is functionally independent on 7/£. Riccati’s equation
(24) is

dz

2
= £t
dw

22
T,
w® W

~1_
w
and its general solution is
z = w+w’{a— [exp(w")dw} 'exp(w?) .
Hence,
A = [exp(w™)dw+w’(z—w) 'exp(w™?),
and the integral of
ydy—(log x—1) (xdy—ydx) = 0
is given by
Jexp(x[y)d(y|x)+-(log x—1—y/x)exp(x[y) = a.
4. Integration of equation in Q. We shall prove the statements on
given in §1.
Proposition 3. Equation (1) is a member of Q if and only if the system of
two Monge-Ampére’s equations
(25) { 4Pzz—PPsyt+Aps+B =0,
9Pzy—PPyy+Ap, =0
has a solution p(x, y).

Proof. First suppose that p,==0. Then we have the identities

ESN(Ep+m9) = p3 (p+29) »
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Ev_l(’]y_‘i:x) = Pv_l(q_Px)‘f‘z ’

£y = py ' (p+29)—2py (q—ps) -
All of them are functions of z if and only if p is a solution of (25), since
(P +29) = Py (p+29)T
3py (g—po)t = —py {S+p7(g—P)TY

where S and 7 are the left-hand member of the first and second equations of
(25) respectively. Secondly suppose that p,=0. Then we have the identities

(my—&2)"1: = (¢—P2)(P+2ps) »

(ny—‘fx)_l(gp"""W) = (q_Px)_l(P+sz)+z .
They are functions of 2 if and only if p is a solution of
(26) qpxx—l_Apx_'_B =0 )

since

8 {(q_ px)—l(P“!‘sz)}
= —(¢—p2) 7 (p+29) (gpzxtAp.+B) .

Proposition 4.  Suppose that equation (1) is a member of Q satisfying C=0.
Then p,, p, satisfy (13).

Proof. By the compatibility condition that 9S/0y—0T/0x=0, we have

(27) thx“25ny+TPyy+Any—AxPy+By =0.

From the definition, C=¢*r—2pgs+p°t. Since C==0 by the assumption, we can
solve (25), (27) with respect to p,., Prys Pyy:

_ {4 L"’flié} {giié}
Pxx {q C ay Px C ox P Py
_{§+1Lq,i3}
(28) g C oy g¢q
Pe :_{M,,ﬁ_é}p +{Pfg~ié}p _r¢ 9 B
® Cc oy ¢J77 LcCc ox pI™7? C ¥y q’
* 8 A\ {A quaA} ¢ 0 B
=L — = ipt |+ — —p—L — —.
Py {Cay qu+_p Caxppy C oy ¢

Let E, F, G denote the right-hand member of the first, second and third equations
of (28) respectively, and D,, D, be the operator defined by



INTEGRATION OF ORDINARY DIFFERENTIAL EQUATIONS 31

0 G 0
D=0 +g 2 F 0,
* 6x+ 8p,,+ op,

p,=2 Fr9 42

%y 8p.  0p,
Then we have the identity

I
(29) [D,,D,] = U(q Cop ),
0p. 9p,

where U is a function defined by

(30) U= ap,+Bpy+7 .
Let H be the operator pD,—gD,. Then it is written in the form

a

) ) )
H=—q¢21p% +(4p,+B)-2 1+ 4p, %
q 8x+p6y+( [ )ap,,+ P’ap,

by the identities

(31) gE—pF+Ap,+B =0, gF—pG+Ap,=0.
Operating H on U, we have the identity

(32) HU—AU = (3a)p,+(88)p,+37+Ba—Ar .
The two equations U=HU=0 imply (13) by (30), (32).

Proposition 5. Suppose that \(f, 2)=a is the integral of (8) obtained from
the general solution 0(f; a) of (12). Then the Pfaffian form (9) takes on (14).

Proof. Riccati’s equation (12) is

dé -

gj‘ = (p+29) " {p+2p:+(g+2p,—p)0—p,07% .
Since f=z is a solution, we take f=2+7""'. Then the equation is changed to the
linear one

G = 0t a—sn—p—p}

Its general solution is
T = exp(— [vdz){a+ [ p,(p+=2q) 'exp([vdz)dz} ,
where

v = (p+29) " (q—=2py—p:) -
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Since

b= (f—0) = —77%, A, = (%)"_

(%)
— 7 = ,
Oa

the Pfaffian form (9) takes on the form (14).

Remark 1. (i) Suppose that p+=2¢g=0. Then equation (1) is Clairaut’s
one y=xy'+¢(y’). (ii) Suppose that C=0. Then equation (1) is of Lagrange’s
type (18). It is a member of Q for which we can take p=0. (iii) Suppose
that A=0. Then equation (1) takes on the form

y—Id(2)2dz = dy(x—[ddz),

where ¢, ¢, are arbitrary functions of z and x— [¢pdz respectively. Its integral
is obtained by eliminating 2 from

y—[p(2)zdz = py(b), x—[pdz=b.

(iv) Suppose that (4/p),=0. Then §{Y *(p+=29)} =0, where Y=exp([(A4/p)dy).
Hence, p+29=¢(2)Y, where ¢ is an arbitrary function of 2. Its general solu-
tion is obtained by elimintaing ¢ from x— [z 'dy=¢,(c), | Ydy—[¢p 'zdz=c,
where ¢, is an arbitrary function of ¢ and we replace z in the first equation by
its value obtained from the second equation. This equation y ’'=f(x,y) is
changed to y,/=¢(y,)Y (x,) by the transformation x,=y, y,=f(x, y), since y,’
=p+2q.

ReEMARK 2. The Pfaffian form (14) is exactly integrable if the integrand
v is a function of 2. Suppose that A+0 and p,, p, are defined by (13). Then,
under the condition that za—B=0, we have (p,),—(p,).—8»=0 if and only if
Ps» Py satisfy (25).

5. Definiing equation of (). Let us give a system of partial differential
equations for defining Q.

Theorem 2. Suppose that A+0. Then equation (1) is a member of Q if and
only if 2=f(x,y) is a solution of the system of two partial differential equations

(33) a(Bx'},y_By'Yx)-}"lB('yxay—'Yyax)+7(axﬁy_ayﬁx)
-1 0 4
+C(pa+ qﬂ)[qﬁ{ﬁa( B)+e}— 4

trafas(T)vefs o +aeta(Z)) 5 ]

+a(Bv,—B,) ?Jrﬁ('rax—“/xa); +a(aﬁy—ayﬁ)g
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+9Beq_ 9,
g
(34) (B8y—v8B+EB)S’a+(vda—ady—Ea)s’B
+(8%y+86+Bda— ASy—AE)A = 0,

where E=Ba— Avy.

Proof. We have the identities

- A pq 0 4
35 = —at_P1 9 4
(35) DU {ax aq ¢ (pa+4qB) % q }p,

P’ 9 A
+{Bx+E(Pa+qﬁ)a ;}Py

B pq o B
+v.—a——LPL (pa+g¢B)— =,
;C (pa+q )8y .
3 @ 0.4
(36) D,U = {a,— L (pa+-8) o q}p,
A, pg R
+{ﬁy+ﬁp +o (pa+aB) - }p,

iz 0 B
Vy C(Pa qm) 6y_ _q ’
and

(37) (H—A)'U = (Sa)p.+(8°B)py
+8(87+6)+Bsa— A(S7+-€)

by (32). Suppose that equation (1) is 2 member of Q. Then, D, U=D,U=U
=0 imply (33) by (35), (36), and H*U=HU=U=0 imply (34) by (32), (37).
Suppose conversely that the two identities (33), (34) are satisfied by z=f(x, y).
Then D, U, D,U and H*U are linearly dependent on U and HU, since we as-
sumed that A+0. Let us replace p,, p, by their values defined by (13):

(38) ps = ATN(BSY—73B+EB), py= AT (véa—adr—Ea).
Then, U=HU=0, and D,U=D,U=H*U=0. Hence,

(39) a{(p.):—E}Y+B{(p,):—F} = U,—D,U=0,

(40) a{(ps)y—F}+B{(ps)y—G} = U,—D,U=0.

By (29) and the identity
[D., H] = —sD,+rD,+p[D,, D,],
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we have

D.HU = [D,, HH{U4+HD,U =0,
since HD,U=0. Hence,

D,HU = p~(H+¢D,)HU = 0,

and

(41) (8a){(px)»—E} +(88) {(py)-—F}
= {(H-4)U},—D,(H-—-A)U =0,

(42) () {(p.)y—F}+(88){(py)y,— G}

= {H—A4)U},—D,(H—-A)U=0.
By (39), (41) we have

) (px)x == E’ (p:y)x - F)
and by (40), (42),

(P)y=F, (py)y=G.

Hence, we can integrate (38), and the p thus obtained satisfies (28). By (31), p
is a solution of (25). Therefore, by Proposition 3, equation (1) is a member of
Q.

REMARK 3. Suppose that A=0. Then equation (1) is a member of Q if and
only if =f(x,y) is a solution of the two equations

B(dy+E)—v8B = yéa—a(dy+€)=0.
Remark 4. Let Z,, Z, denote

(p+29)7'py,  (P+29)7(9—p2)

respectively. 'Then equation (1) is a member of Q if and only if Z,, Z, are func-
tions of 2. We have p,=q—(p-+29)Z,, py=(p+29)Z,. Hence, Q is defined
by Monge-Ampére’s equation

Zr+(Zz+2,)s+(Z,z—1)t
+(p+29) (Z/p+2,/9)+9(Z,p+Z,9) = 0

- involving two arbitrary functions Z,, Z, of z as parameters, which is the compa-
tibility condition that (p,),=(p,),- This equation is the intermediate integral of
the second order of the system of partial differential equations (33), (34) of
the fifth and sixth order.
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6. General solution of defining equation of ,. We shall determine
the form of equation (1) contained in Q,, solving its defining equation. By
Proposition 3, equation (1) is a member of Q, if and only if the equation (26) has
a solution p depending only on x. Suppose that equation (1) is a member of
Q,. Then p, is determined by

= (LI

Let X be the right-hand member. Then we have (15). Conversely suppose
that X is an arbitrary function of x. 'Then each solution of (15) gives a member
of Q,, for which p,=—2X, p,=0.

Theorem 3. The general solution of Monge-Ampére’s equation (15) is
obtained by eliminating ¢ from

(#3) y— X7 'p(2)dz = ()
and
(44) ¢ = [Xdx—[z7(p—1)d=,

where ¢ and < are arbitrary functions of 2 and c respectively. Here, we replace
x in the integrand X ‘¢ in (43) by its value obtained from (44).

Proof. The equation (15) takes on the form
(45) UX—q)r+{(2q—p)X+2pg}s—p(2 X +p)t
—4(p+29)X" = 0.

To this equation, Monge’s method of integration can be applied with success as
follows. One of the two characteristics of (45) is

pdx—qdy = dz = (X—q)dp+(p+2X)dg—(p+2q)X'dx = 0.

The last equation is written in the form

e {(p-+2X)d(p+29)—(p+2)d(p+2X)} = 0

by dz=0. Hence, the two functionally independent intermediate integrals of
the first order are given by (p+2q)~(p+=2X) and 2. Therefore, the integra-
tion of (45) is reduced to that of the partial differential equation of first order

(46) p+2X—(p+29)$(z) = 0
involving an arbitrary function ¢ of 2. The characteristic of (46) is

dx d

-1  =¢

dz
2X
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Hence, the general solution of (45) is expressed in the form stated in our theorem.

ExampLE 2. In the intermediate integral (46) let us replace ¢ or X by
special values. (i) Take $=0. Then p+2X=0. Its general solution is z=exp
(— J Xdx+ Y(y)), and equation (1) is of type (16). (ii) Take ¢=1. Then X=q.
Its general solution is 2= Xy+X,(x), and equation (1) is of type (17). (iii) Take
X=0. Then pg~'=—2(¢p—1)"'¢. Its general solution is y—,(2)x=ep,(2),
where ¢,=2(¢p—1)"'¢. Equation (1) is of Lagrange’s type (18).
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