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Introduction. Let R be a commutative ring, and G a finite abelian group.
In [2] (see also [5]) the set of isomorphism classes of Galois extensions of
R with group G that have normal bases is described cohomologically by means
of Harrison’s complex of RG; to this end, Galois algebras are first classified
and then Galois extensions with normal basis as a particular case. In this
paper we use a different approach to classify Galois extensions which are free as
R-modules; the restriction of this classification to extensions with normal basis
yields the cohomological description of [2].

Free Abelian Extensions

Let R be a commutative ring, and G a finite abelian group. Recall that
a faithful R-algebra 4 is said to be a Galois extension of R with respect to a
representation of G by R-algebra automorphisms of A4 if the following equi-
valent conditions are satisfied:

1) A®=R and the map M, from AR A to the ring of functions from G to A
defined by M, (x®)y) (¢)=xa(y) is an R-module isomorphism.

2) ACP=R, A4 is a finitely generated projective R-module and L:4AG—Endg(A4)
is an R-algebra isomorphism, where AG is the twisted group ring of G over 4
and L is defined by L(ac)(x)=ad(x).

Let E denote the ring of functions from G to R; if we let G act on E by
means of (o f) (7)=f(c7'7) then E is Galois over R with group G; we have E=
@Re, with Dle,=1, e,e,=3J,,, €, and o(e,)=e,,. Clearly the condition 1) can
be reformulated as follows:

3) A°=R and M,: AQA—-ERXA defined by M ,(xRy)=>e,Qxa(y) is an
R-module isomorphism.

Note that for M=My: EQE—-EQE we have M(e,Qeg)=eq5-1Qe,. Since
EG=Endg(E) we have EGQEG=Endy (EQE); thus considering EQE as a
left module over EGRQEG, the R-module automorphisms of EQE are produced
by left multiplications by units of EGREG.

Suppose the Galois extension A is free as an R-module. Then there exists
an R-module isomorphism j: A—>Eand M- 1Qj-M,-j 'Qj ' EQE—-EQEis
an isomorphism of R-modules. Therefore there exists a unique us U(EGQEG)
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such that M7+ 1Qj-M ,+j'®Qj '=L(u), that is, there is a unique » such that
the diagram

M, .
ARA 225 BQA  1®]
i | s > EQE
o Y poE M1

is commutative. In particular if A=F and j is the identity then u=1.

Let 4, A’ be Galois extensions, j: A—E, j': A’—E R-module isomorphisms,
and f: 4’—A an isomorphism of Galois extensions. Sincejfj’~': E>Eisan R-
isomorphism, there exists ve U(EG) auch that j fj''=L(v). Ifu, '€ U(EGRQEG)
are obtained from j and j’ respectively, if follows from 1Qf.My=My.fQf
that

2) Lu)-Lo®v) = M- 1QL(v)- M-L(u') .

Let us now define R-algebra homomorphisms A,, A, A,: EGEGREG
by means of A(x)=1Rx, A,(x)=xX1 and A,(3a,0)=>"a,06Q0. Then
M- 1QL(v)- M=L(A,(v)) and (2) becomes
(3) u'Ao(v)Az(v) = A,(‘D)u’.

Note that if ue U(EGQEG) is obtained from a Galois extension 4 by
means of j: A—E and ve U(EG) then the element of U(EGQEG) obtained from
J’=L(®")j: A»Eis u'=A(v"") - u-vQ.

Consider the following relation in U(EGREG): if u, w' = U EGXREG) then
u~u' if there exists v& U(EG) such that A (v)-#'=u-vQ@v. It is easy to verify
that this is an equivalence relation. Let C be the quotient set. (The previous
remark shows that if u€ U(EGQEG) is obtained from a Galois extension, then
every element in its equivalence class is obtained from the same extension.)

Let EZ(R) be the set of Galois isomorphism classes [4] of Galois extensions

A of R with group G that are free as R-modules. The above construction
defines a map Vr: EL(R)—C and we have:

Proposition 1. +r: EL(R)—C is injective.

Proof. Let [4], [BI€EL(R),j: A—E, j:B—E and u, v'€ UEGRQEG)
the units associated to 4 and B by means of j and j’ respectively. Assume u~uw’'.
As remarked before, we may suppose u=u’. We then have a commutative
diagram

apa M g4 1@j
__% ]
i® 1 Lw M
EQE —5 EQE — > EQE
77

Bé)B Ms pop T 1O
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If f=j’-*-j then the commutativity of the diagram

M
ARA —2> ERA

1
187 BéB Ms, Eé)B ®f

shows that f(x)of(y)=f(xa(y)) V x, yeA, o=G. Thus f is an R-algebra
isomorphism. In particular, f(1)=1 and f(o(y))=0cf(y); then f: A—B is an
isomorphism of Galois extensions.

Let us now determine the image of ¥». Let A be a free Galois extension
of R with group G and j: A4—E an R-module isomorphism. Then the diagram

ARARA 1®M, ARERA —=5 192 ARARE
(3) Ma®1]
EQARA A — > EQERA 918 EQERE
@E@A@E 192 EQERA
|1®1®;
> EQEXE

h

is commutative, where p: XQY—>Y XX is defined by p(x @ y)=yXx and A:
EQERE—-EQEQRE is defined by k(e,Qe,Qz2)=e,Qe,-1,&Qz. Let u be an
element of U(EGQEG) making diagram (1) commutative. Then M,=1&Qj*:
M-L(u)j®j and it follows from A-1Q1Qj-1QM,-M,R1=1Q1Q;-1Qp-
M, ,R1:1Qp-1Q M, that

#) M @1 1QL(w)- MP1]- Lu®1)
=[M"@1-1QM-h - 1Qp- MR1- Lu®1)- 1R p- 1QM] - L(1Ru)

Consider now A;: EGQRQEG—EGREGQREG dened by A(x)=1Qx, Ay(x)=
2@1, A, (*Qy)=A(x)Qy, A(*Qy)=xRA(y). Then the A/s are R-algebra
homomorphisms and we can verify that

L(A(u)) = M7'Q®1-1QL(u)- M1,

L(Au) = M7'Q1-1QM*h - 1Qp- M1- L(u@1)- 1Qp- 1QM .

Thus the relation (4) is equivalent to
(5)  Av(u) Af(u)=2A4(u) Ag(u).

On the other side, if 1 , &4 is the identity element of 4, we have M 4(x®1 4)
=>%,Qx=1Qx and therefore L(x) (j(#)Qj(14))=M(1Q j(x))=j(*)X1 for
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every x€A. Then u(x®j(1,4)=xQ1 for every xE; therefore 1Q j(1,)=u"*
(1Q1) and if m: EQ E—E is the product map, it follows that j(1 ,)=m(z"'(1Q1)).
Thus

(6) ’ u(x@mu'(101))) = xQ1 for every xE.

Suppose now uc U(EGQ EG) verifies relations (5) and (6). We shall con-
struct a Galois extension A with [4]€ EZ(R) such that y» ([4]) is the class of u.
Consider ML(u): EQE—EQE; if tc EQE we have ML (u)(t)=>)e,Qt, with

t,€ E uniquely determined. Given x, yE, we set
x % y=(*Qy),
(that is, x*y is the coefficient of e,®@1 in ML(u) (x®Qy)). Since ML(u) is addi-
tive, it follows that (x, y)—x * y is a distributive product.
Let 1,=mu'(1®1))eE. Then ML(x) (x®1,)= M(x®1)=1Qx=
Se,Qx, that is
) xxl'=x for every xe E.

For every o€ G, let o: E—E be defined by &(x)=(1’"Qx),. Then ML(u)
1I'@x)=2e,@a(x). Since ML(u)(1'Q1")=1Q1'=>e,Q1’, we have 6(1")=1"

for all c=G.
Let us now show that

(8) ML(u) (x®y)=2] e, (x * 5(y))-
Since u verifies (5) and therefore (4), we have

h 1M - 1QL(u) -MR1:Lu®1)=1Q p- MR 1- L(u)@1-1Q p- 1Q M - 1Q L(u).
Applying this functions to xQ1’®Q y, », yE E, we obtain

0211 ecr®ea"1ﬂ®(x®y)n :g ea®eﬂ®(x®ﬁ(y))6

and therefore (*® y), = (*Q7(y)), = x*7(y).
If we apply the same relation to ¥® y®z and use (8), then we obtain

§ es@es-1n(x45(y))7(2) =2 €@ e,Quko(y*ij(2))
and it follows that
9 xxo(y*7(2)) = (¥*0(y))*a7(3) .

In particular, xxa(1'*1(2))= (x+a(1’))*a(z). But (8) implies 1"-z=1’ -1(2) and
xx5(1)=xx1"=x by (7); then 1"se(l’*x2)=1"x5(2). Thus ML(u)(1'®=z)=
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e, Q1'% 6(2))=2] e,Q(1"x (1'% 2)) = ML(u)(1’Q@(1"* 2)); therefore 1’'Qz=
1’®(1’*z). Thus 2®1'=(1"*2)® 1’ and from (7) we obtain 1’+z=z for all zE E;
therefore 1’ is the identity element for the product (x,y)—>x*y. Moreover z=
Vsz=1/ *1(2) and then T(z)=z for every = E. Now (9) shows the associativity

of the product, and we have o(x*y) = &(x)*a(y) and 6%(2)=067(2). If r,s€R then
ML(u) (r1’Qs1")=ML(u) (1'Qrs1")=3] ,Q(1"*a(rs1"))=>] e,Q4(rs1’), and so

we have r1’#s1’=1(rs1")=rs1". Since r1’+x=x+rl’=rx, the map R—E (r—rl’)
defines on E with product * a structure of R-algebra, which we shall denote by 4.
Also 33 e,Qa(rs1’) = ML(u) (r1’®s1") = ML(u) (rs1’'@1") =3 e,Qrs1’x6(1") =

e, ®rsl’ and therefore o(r1’)=r1’, Vo= G, r&R. Thus G actson A4 as a group

of R-algebra automorphisms. Note that 71’*x=x%r1’=rx implies that 4 is free
over Rl’. If x€ A® we have ML(u) (I'Qx)=>] e,Qx=1Qx = ML(u) (xQ1’).

Therefore 1’Qx=x®1’, and we must have x& R1’, thus A°=R1’.

Since M,: AQA—-ERA is ML(u) by (8), we conclude that 4 is Galois
extension of R with group G. Clearly the diagram (1) with j =identity shows
that yr (class of A4) is the class of u.

We have remarked that if ue U(EGQEG) is obtained from a Galois exten-
sion by means of the diagram (1) then every ve U(EG® EG) equivalent to u is
obtained in that way. It follows therefore that if u verifies (5) and (6) and v is
equivalent to # then v also satisfies (5) and (6). Let H be the subset of C of
classes whose elements satisfy (5) and (6). Then we have

Theorem. Vr: EL(R)— H is bijective.

REMARKS.
1) Since Vr ([E])=class of 1, we have J» ([E])={A,(v™). vQu: ve U(EG)}
2) The group structure of U(EG® EG) does not induce a group structure on
H; in fact, the inverse of an element verifying (5) and (6) does not necessarily
verify (5) and (6), nor does the product of two such units. For example, if K
is a field and G=Z,, and x=-¢,+ 0, ¥ '=e,+ 0 then y=A(x)-x"'Qx"" verifies
(5) and (6) but y~* does not; if K=Z, then 2=A (x™")-x®x verifies (5) and (6)
but 2? does not.
3) If a is an automorphism of G and 4 is a Galois extension of R with group
G, we can obtain a new structure of Galois extension A% on 4 by defining
a(a)=a(c)(a). If a: E—FE is defined by a(e,)=éuxs, and a: EGQEG—EGRQEG
by a(ac®bn)=a(a)a(s)Ra(b)a(r), then Y (A%)=a*y(A4); more precisely, if u
is obtained from j:4 —E, then a~*(u) is obtained from a™* j: A—E.

Abelian Extensions with normal basis.
If A4 is Galois over R with group G, we have a commutative diagram
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ARQA ﬂ"» EQRA
«r®nl lm)"@v
ARA —45 E®RA

for every o, nE€G.

Let j: A—E be an R-module isomorphism, and ue U(EGRQ EG) the co-
rresponding element in diagram (1). Then it follows from M -0 ®@n=07"'Qo-M4
(and Mo®@n=07n"'®acM) that j is an RG-isomorphism if and only if L() is
an RG® RG-isomorphism, z.e. if uc U RG®RG). Note that there exists an
RG-isomorphism A—E if and only if 4 has a normal basis.

Let us recall the definition of Harrison’s complex; if (RG)"=RG®---QRG
(n-times) we define A;: (RG)"—(RG)"*, i=0, 1, -+, n+1 by A(x)=1Qx,
Ayuiy(x)=2®1 and for =1, -+, n, A, is the map induced by A(o,Q - Qo,)=
0,QQR0;Q0;Q0;4,**c,. Then the A;’s are algebra homomorphisms and
therefore A;: U(RG™)—U(RG"™*"). Since RG is commutative, setting A(x)=

T‘[:Aa(x)‘“”i for x€ U(RG) we obtain group homomorphisms A: U(RG™)—

U(RG™") such that AA=0; we thus have a complex whose cohomology groups
are denoted by H*(R, G), ([3]).

Note that the A;’s defined on RG and on RGQ RG are the restrictions of
the A,’s considered before; thus for ue (RGQ RG) the condition (5) is equivalent
to A(u)=1; also if #, '€ U(RGR RG) then u~u’ is equivalent to #’=uA(v) for
some ve U(RG). If it is known that for ue U(RG®RG) (5) implies (6), it
follows that there is a one to one correspondence from the set of Galois isomor-
phism classes of Galois extensions of R with group G that have normal basis
onto H*R, G). Now, let us show that (5) implies (6) for uc U(RGQRG): If
7: RGRRGRRG—RGQRRG is the map induced by 7(c ®@7@7)=c@7 then =
is an R-algebra homomorphism and from A,(u)A, (#)=A,(u) A,(u) we obtain
u-wA(u)=nA{u)-u, and then zA(u*)=nA(u"). If “—lz,,z,,}r“»" o®n we have

2 7.,1Q07=2]7,,0Q1 and therefore for x€E, L(u™") (xQ1)=>]7,,0(x)Q
o,m o, o,n
1=3r, x@1=x@® 7,,). Since X} 7,,=m-u"'(1®1), we have (6).

Recall now that the set Eg(R) of Galois isomorphism classes of all Galois
extensions of R with group G is a group, whose product is defined as follows:
Let g={o, 07}€GXG. If A, BEE;R) then A.B=(AQRB)* with c€CG
acting on A4.B as the restriction of o®1. (see [1], [4]). The subset Eg(R) of
extensions with normal basis is a subgroup of Eg(R); indeed, if 4 and B have
normal bases there exist RG-isomorphisms j,: A—E, jz: B—E, then j,Qjp:
(AQB)*—>(EQE)* and it is an RG-isomorphism. Since ¢: E—(EQE)* given
by t(e,,)=¥ e,sQe,-11s a Galois isomorphism, we obtain that j,p=2""+j4® 15| 4. 5:
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A-B—E is an RG-isomorphism, Z.e. A-B has a normal basis. On the other
side, if 4, vE U(RGQ® RG) are the cocycles associated to j, and j; respectively,
it is easy to verify that the cocylce associated to j,p is u.v. Thus we have

(2], (41

Proposition. Let R be a commutative ring, and G a finite abelian group.
Then there is an isomorphism \r: EG(R)— H*(R, G); if A has a normal basis and
ji: A—E is an RG-isomorophism, then \r([A]) is the cohomology class of the cocylce u
defined by the diagram (1).

UNIVERSIDAD NACIONAL DEL SUR, BAHIA BLANCA

References

[11 S. Chase, D. Harrison and A. Rosenberg: Galois theory and cohomology of
commutative rings, Mem. Amer. Math. Soc. No. 52 (1965).

[2] S. Chase and A. Rosenberg: A theorem of Harrison, Kummer theory and Galois
algebras, Nagoya Math. J. 27 (1966), 663-685.

[31 D. Harrison: Abelian extensions of arbitrary fields, Trans. Amer. Math. Soc.
106 (1963), 230-235.

[4] M. Orzech: Cohomological description of Abelian Galois extensions, Trans. Amer.
Math. Soc. 137(1969), 481-500.

[5] P. Wolf: Algebraische Theorie der Galoischen Algebren, Deutscher Verlag der

Wissenschaften, Berlin, 1956.








