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Introduction. Let R be a commutative ring, and G a finite abelian group.
In [2] (see also [5]) the set of isomorphism classes of Galois extensions of
R with group G that have normal bases is described cohomologically by means
of Harrison's complex of RG; to this end, Galois algebras are first classified
and then Galois extensions with normal basis as a particular case. In this
paper we use a different approach to classify Galois extensions which are free as
Λ-modules the restriction of this classification to extensions with normal basis
yields the cohomological description of [2].

Free Abelian Extensions

Let R be a commutative ring, and G a finite abelian group. Recall that
a faithful Λ-algebra A is said to be a Galois extension of R with respect to a
representation of G by Λ-algebra automorphisms of A if the following equi-
valent conditions are satisfied:
1) AG=R and the map MA from A®R A to the ring of functions from G to A
defined by MA (x®y) (σ)=xσ(y) is an Λ-module isomorphism.
2) AG—R, A is a finitely generated projective Λ-module and L:AG-+EndR(A)
is an /?-algebra isomorphism, where AG is the twisted group ring of G over A

and L is defined by L(aσ)(x)=aσ(x)>
Let E denote the ring of functions from G to R if we let G act on E by

means of (σf) (rj)=f(a~lrj) then E is Galois over R with group G; we have E=
®Reσ with ]>>α =l> e<A = δ<r»7 e<r and σ(eΎ))=eσr). Clearly the condition 1) can
be reformulated as follows:
3) AG=R and MA: A®A-*E®A defined by MA(x®y)=^eσ®xσ(y) is an
Λ-module isomorphism.

Note that for M=ME: E®E-*E®E we have M(eΛ®eβ)=ecύβ~ι®e(Λ. Since
EG^EndR(E) we have EG®EG^EnάR (E®E)\ thus considering E®E as a
left module over EG®EG, the l?-module automorphisms of E®E are produced
by left multiplications by units of EG®EG.

Suppose the Galois extension A is free as an Λ-module. Then there exists
an Λ-module isomorphism/: A-^E and M~* \®j MA j~l®j~l: E®E-+E®Eis
an isomorphism of /?-modules. Therefore there exists a unique u€Ξ U(EG®EG)
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such that M~l \®j MA j~l®j~l=L(u), that is, there is a unique u such that
the diagram

is commutative. In particular if A=E and j is the identity then w=l.
Let A, A' be Galois extensions, j : A-^>E, j f \ A'-*E Λ-module isomorphisms,

and/: A'-+A an isomorphism of Galois extensions. Since jff'1: E-+E is an 1?-
isomorphism, there exists we U(EG) auch that jfj'~l=-L(v). If w, tt'(Ξ U(EG®EG)
are obtained from y and j' respectively, if follows from \®f.MA'=MA'.f®f
that

(2) L(u) L(v®v) = M-

Let us now define Λ-algebra homomorphisms Δ0, Δn Δ2: EG-*EG®EG

by means of ΔO(Λ)=I®Λ?, Δ2(x) = x®l and ΔjQ^σ β") — Σ a*<r®<r. Then
Λf-1 l®L(ί;)-M=L(Δ1(t;)) and (2) becomes

(3) «.Δ0(V)Δ,(ϋ) = Δ1(t;χ.

Note that if u^ U(EG®EG) is obtained from a Galois extension A by
means of j : A->E and z e U(EG) then the element of U(EG®EG) obtained from
J/=L(V~Ί:)J: A-+E is u'=Δι(v-l) u v(&v.

Consider the following relation in U(EG®EG): if u, w'<E U(EG®EG) then
w^'U7 if there exists v^ U(EG) such that ^1(v) u/=u v®v. It is easy to verify
that this is an equivalence relation. Let C be the quotient set. (The previous
remark shows that if we U(EG®EG) is obtained from a Galois extension, then
every element in its equivalence class is obtained from the same extension.)

Let E&(R) be the set of Galois isomorphism classes [A] of Galois extensions
A of R with group G that are free as Jf2-modules. The above construction
defines a map ̂ : E&(R)^>C and we have:

Proposition 1. -ψ>: Eζ(R)->C is injective.

Proof. Let [A], [B]<=Ef

G(R),j : A^E, j':B^E and u, uf^U(EG®EG)
the units associated to A and B by means of j and jf respectively. Assume u~u'.
As remarked before, we may suppose u=u'. We then have a commutative
diagram
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If /=y/~1 y then the commutativity of the diagram

A® A -- 1> E®A
f®f \ MB I I®/

^> E®B

shows that f(x)σ f(y)=f(xσ(y)) V x, y^A, σeG. Thus / is an jf?-algebra

isomorphism. In particular, /(!)=! and f(<r(y)}=<rf(y)\ then/: A-+B is an
isomorphism of Galois extensions.

Let us now determine the image of ψ . Let A be a free Galois extension
of R with group G and j: A-+E an Λ-module isomorphism. Then the diagram

A®A<8)A -̂ —> A®E®A —^ A®A®E

(3) MΛ<S>lJ

E®A®A -—->
\®MA

^^is®A®E^^ E®E®A
|l®l®;

> E®E®E
h

is commutative, where p: X®Y-^Y®X is defined by p(x®y)=y®x and h:
E®E®E-*E®E®E is defined by h(e(Γ®er,®z)=e(Γ®e(Γ-ιrt®2. Let u be an
element of U(EG®EG) making diagram (1) commutative. Then MA=\®j~l

M L(u) j®j and it follows from h l®l®j l®MA MA®l==l®l®j l®p
MA®l \®p l®MA that

(4) [M-l®\ \®L(u) M®\] L(u®\)

Consider now Δ, : EG® EG -^EG® EG® EG dened by \(x)=l®x, Δ3(x) =
x®l, Δj (xt&y^Δ^x^y, Δ2(x®y)=x®Δ1(y). Then the Δ/s are Λ-algebra

homomorphisms and we can verify that

L(^(w)) = M-l®l \®L(u) M®\ ,

L(Δ2(u)) = M-l®\Λ®M-l h-l l®

Thus the relation (4) is equivalent to

(5) Δ^) Δ3(u)=Δ2(u) Δ0(u).

On the other side, if \A^A is the identity element of A, we have MA(x® 1A)
>eσ®x=l®x and therefore L(u) (j(x)®j(lA))=M-1(l®j(x)) = j(x)®l for
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every x&A. Then u(x®j(\A) = x®\ for every x^E\ therefore l®j(lA)=u~l

( l(g)l) and if m: E®E-^E is the product map, it follows Ui^tj(lA)=m(u"1(l® !))•
Thus

(6) u(x®m(u-l(l®l)}) = x®\ for every x(=E .

Suppose now uG U(EG®EG) verifies relations (5) and (6). We shall con-
struct a Galois extension A with [A]^E&(R) such that ̂  ([A]) is the class of u.

Consider ML(u): E®E-*E®E\ if t<=E®E we have ML (w)(0=Σ^σ(8)^ with
σ

uniquely determined. Given x, y^E, we set

(that is, x*y is the coefficient of e^®\ in ML(u) (x(£)y)). Since ML(u) is addi-
tive, it follows that (x, y)->x * y is a distributive product.

Let lA = m(u-l(l®l))^E. Then ML(u) (x®lA) = M
, that is

(7) Λ * !' = Λ ' for every

For every σeG, let σ : E-*E be defined by &(x) = (l'®x)σ. Then

(l/®Λ?) = 2βα.(g)df<Λr). Since ΛfL(tt)(l/®l/)=l®l/ = Σeσ®l/, we have *(
σ σ

for all σeG.

Let us now show that

(8) ML(u) (x®y) = Σ ^σ® (« *
σ

Since w verifies (5) and therefore (4), we have

A l®Λf
Applying this functions to x® \'®y, x, y^E, we obtain

and therefore (x
If we apply the same relation to x®y®z and use (8), then we obtain

Σ *σ®<^-
σ,ϊ|

and it follows that

(9) * * ar(y * ?(z)) = (x* &

In particular, x*σ(l'*ϊ(z)) = (x*d (l'))*σ(z). But (8) implies Γ a f = l / ϊ(ar) and

) = Λ?*1 / = Λ? by (7); then l'*<r(l'**)= I7 **(«)• Thus ML(u)(\'®z) =
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Σ *,®(l'*β(*))=Σ *,®(1'**(1'**)) = ML(w)(l'(g>(l'*z)); therefore 1'®* =
<r σ

Γ®(Γ*j8r). Thus *® Γ=(Γ**)® 1' and from (7) we obtain 1'**=* for all #e£;
therefore I7 is the identity element for the product (x,y)-*x*y. Moreover z=

17*#= I7*l(s) and then ϊ(z) = z for every z^E. Now (9) shows the associativity

of the product, and we have σ(x*y) = &(x)*&(y) and σ r(z) = στ(z). If r, se Λ then

ML(«) (rl/®jl/) = ML(M) (l/®rjl/)=Σ *σ®(l'*fr(™l'))=Σ *σ®*{™l')» and so
σ

we have rl/*ίl/=l(rίl/) = rίl/. Since rl'*x=x*rl' = rx, the map Λ->£ (r-»rΓ)
defines on £" with product * a structure of J?-algebra, which we shall denote by A.

Also Σ eσ®d (rsΓ) = ML(u) (r\'®s\') = ML(u) (™!7(g)l7) = Σ *σ®rίlW(l') =
<Γ <Γ

Σ *<r® rel' and therefore σ (r I7) = rΓ, FσeG, re/?. Thus G acts on A as a group
σ

of Λ-algebra automorphisms. Note that rl'*x=x*rl'=rx implies that A is free

over RΓ. If x^AG we have AfL(u) (Γ®*)=Σ eσ®x= l®x = ML(u) (x® Γ).
σ

Therefore 17®Λ;=Λ:® I7, and we must have x^Rl', thus AG = Rl'.
Since MA: ^4(g)^->J?®^[ is ML(u) by (8), we conclude that A is Galois

extension of R with group G. Clearly the diagram (1) with j = identity shows
that t|r (class of ^4) is the class of u.

We have remarked that if u^ U(EG®EG) is obtained from a Galois exten-
sion by means of the diagram (1) then every v^ U(EG®EG) equivalent to u is
obtained in that way. It follows therefore that if u verifies (5) and (6) and v is
equivalent to u then v also satisfies (S) and (6). Let H be the subset of C of
classes whose elements satisfy (5) and (6). Then we have

Theorem. ψ : E£(R)-*H is bίjective.

REMARKS.

1) Since ψ ([£])=class of 1, we have ψ ([£])= {Δ^"1). v®v: vtΞ U(EG)}
2) The group structure of U(EG®EG) does not induce a group structure on
H\ in fact, the inverse of an element verifying (5) and (6) does not necessarily
verify (5) and (6), nor does the product of two such units. For example, if K
is a field and G=Z2, and x=-eσ-}-σ, x~1=e1-\-σ then y = Δ1(x)*x~l®x~l verifies
(5) and (6) but jr1 does not; if K=Z2 then z= Δί(x~1) x®x verifies (5) and (6)
but z2 does not.
3) If a is an automorphism of G and A is a Galois extension of R with group
G, we can obtain a new structure of Galois extension A* on A by defining
&(a)=a(σ)(a). If a: E-+E is defined by a(eσ)=eΛ^ and a: EG®EG-»EG®EG

by a(aσ®bη)=a(a)a(σ)®a(b)a(η)y then ty(A*)=a~^(A)\ more precisely, if u
is obtained fromjiA ->E, then a~l(u) is obtained from α"1^: A-*E.

Abelian Extensions with normal basis.
If A is Galois over R with group G, we have a commutative diagram
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A®A — >̂ E®A

σ®rj\ \ση"l®σ
* MA *

A®A -̂> E®A

for every σ, τ?^G.

Let/: A-+E be an Λ-module isomorphism, and u^U(EG®EG) the co-

rresponding element in diagram (1). Then it follows from MA σ® η=ση~l® σ MA

(and Mσ®η=ση~1®σM) that/ is an ΛG-isomorphism if and only if L(u) is

an ΛG(g)ΛG-isomorphism, i.e. if u^ U(RG®RG). Note that there exists an

ΛG-isomorphism A-+E if and only if A has a normal basis.
Let us recall the definition of Harrison's complex; if (RG)n=RG® ®RG

(n-times) we define Δ,: (RG)n-+(RG)n+1, i=0y 1, •••, n+l by Δ0(x)= l®x,

Δn+1(x)=x®l and for ι"=l, •-, n, Δ, is the map induced by Δjfa®•• ®σn)=
<TI®•• ®<ri®σi®σi+1 σn. Then the Δ/s are algebra homomorphisms and
therefore Δ, : U(RG")-*U(RGn+1). Since RG is commutative, setting Δ(*)=
» + l

Π Δ, (Λ?)C~I:> for x^U(RG) we obtain group homomorphisms Δ: U(RG")-+
ι=0

U(RGn+1) such that ΔΔ—0; we thus have a complex whose cohomology groups
are denoted by H"(R, G), ([3]).

Note that the Δ/s defined on RG and on RG®RG are the restrictions of
the Δ/s considered before; thus for u^ (RG®RG) the condition (5) is equivalent

to Δ(w)=l also if u, u'^ U(RG®RG) then u^u' is equivalent to u'=uΔ(v) for

some v<= U(RG). If it is known that for u<= U(RG®RG) (5) implies (6), it

follows that there is a one to one correspondence from the set of Galois isomor-

phism classes of Galois extensions of R with group G that have normal basis

onto H2(R, G). Now, let us show that (5) implies (6) for we U(RG®RG): If
π: RG®RG®RG-+RG®RG is the map induced by π(σ®η®τ)=σ®τ then π

is an Λ-algebra homomorphism and from Δ2(w)Δ0 (u)=Δ3(u) Δj(w) we obtain
tt 7rΔ0(tt)=7rΔ3(tt) tt, and then πΔ0(u~ί) = πΔz(u~'1). If u~l=^rσyΎ1σ®η we have

σ,i|

and therefore for x<=E, L(u~l) (x®ϊ)=^rσt1)σ(x)®
σ,τq

Since Σ r(ΓΎ)=m u~1(l®l), we have (6).
σ,ι? '

Recall now that the set EG(R) of Galois isomorphism classes of all Galois
extensions of R with group G is a group, whose product is defined as follows:

Let g={σ, σ-^eGxG. If A, B(=EG(R) then A.B=(A®B}8 with σ<=G

acting on A.B as the restriction of σ®l. (see [1], [4]). The subset ££(#) of
extensions with normal basis is a subgroup of EG(R)\ indeed, if A and B have

normal bases there exist ΛG-isomorphisms jA: A-+Ey jB\ B-+E, then JA®JB
(A®B)8-+(E®E)g and it is an jRG-isomorphism. Since t: E-*(E®E)g given

eΛ-\ is a Galois isomorphism, we obtain that JAB=t~1 *JA®ΪB\A.B
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A B-*E is an 7?G-isomorphism, i.e. A B has a normal basis. On the other
side, if uy vG U(RG® RG) are the cocycles associated tojA and/β respectively,
it is easy to verify that the cocylce associated to jAB is u.v. Thus we have

([2], [4])

Proposition. Let R be a commutative ring, and G a finite abelian group.
Then there is an isomorphism ψ: £"£(/?)->ί/2(Λ, G); if A has a normal basis and
j: A^>E is an RG-isomorophίsm, then ty([A\) is the cohomology class of the cocylce u
defined by the diagram (1).
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