ON THE BIALGEBRAS OF GROUP SCHEMES

YASUNORI ISHIBASHI

(Received October 1, 1971)

Let G be an algebraic group scheme over an algebraically closed field *k.* We shall first show that the set $\mathfrak{D}(G)$ of left invariant high order derivations on *G* will have a natural structure of bialgebra over *k* with only one grouplike element. If α is a surjective homomorphism of a group variety G onto a group variety G', the kernel H of α in the category of algebraic *k*-group schemes is well defined. Moreover we have a bialgebra homomorphism $d\alpha$ of $\mathfrak{D}(G)$ into $\mathcal{L}(G')$. H. Yanagihara showed surjectivity of $d\alpha$ and investigated k-vector space structure of the kernel of $d\alpha$ in the category of bialgebras using the semi-derivations in [13]. In this paper it will be proved that the kernel of $d\alpha$ in the category of bialgebras coincides with the bialgebra of *H* and we have an exact sequence

 $0 \longrightarrow \mathfrak{D}(H) \longrightarrow \mathfrak{D}(G) \longrightarrow \mathfrak{D}(G') \longrightarrow 0$

in the category of bialgebras, while the bialgebra of *H* is not defined in general using the semi-derivations. Thus the bialgebra $\mathfrak{D}(G)$ may be a good substitute of Lie algebras in the case of positive characteristic. The next problem which we are interested is the characterization of sub-bialgebra of $\mathfrak{D}(G)$ which arises from a closed subgroup scheme. Unfortunately we have no general solution, but a solution will be given when *G* is a commutative group variety over *k.* Our results have close connection with the work of H. Yanagihara and our bialgebra $\mathcal{D}(G)$ coincides with the bialgebra used by H. Yanagihara in [12] when G is a group variety.

The author wishes to express his thanks to Professor Y. Nakai for his sug gestion and encouragement.

1. Local high order derivations of a local ring

Let O be a noetherian local ring containing a field k such that O/m is canonically isomorphic to *k>* where m is the unique maximal ideal of O. We denote by *x(o)* the element of *k* representing the class of *x* in *O* modulo m. A Λ-linear homomorphism *D* of O into *k* is called a local n-th order derivation of *O* if we have

$$
D(x_0x_1\cdots x_n) = \sum_{s=1}^n (-1)^{s-1} \sum_{i_1 < \cdots < i_s} x_{i_1}(o) \cdots x_{i_s}(o) D(x_0\cdots \hat{x}_{i_1}\cdots \hat{x}_{i_s}\cdots x_n)
$$

for any sequence x_0, x_1, \dots, x_n of $(n+1)$ -elements in O. We denote by the set of local n-th order derivations of O and set $\mathfrak{D}(O) = k \oplus \stackrel{\circ}{\cup} \mathfrak{D}_n(O),$ where $a(x)$ is defined by $ax(0)$ for $a \in k$ and $x \in O$. Then it is easily seen that $\mathfrak{D}(O)$ is a subspace of $\text{Hom}_{k}(O,k)$.

Proposition 1. *Let the situation be as above. Then we have*

(1) $\mathfrak{D}_n(O)$ is canonically isomorphic to $Hom_k(\mathfrak{m}/\mathfrak{m}^{n+1}, k)$ as a k-vector space.

 (2) $\stackrel{\circ}{\cup}$ $\mathfrak{D}_n(O)$ is the set of k-linear homomorphisms of O into k vanishing on some *power of* m.

(3) ®(O) *has a cocommutatίve coalgebra structure over k.*

Proof. (1) The mapping Φ of $\mathfrak{D}_n(O)$ into $\text{Hom}_k(m/m^{n+1}, k)$ is defined as follows. If $D \in \mathfrak{D}_n(O)$, we set $\Phi(D)$ (\bar{x}) = $D(x)$ for $x \in \mathfrak{m}$, where \bar{x} is the class of x in m modulo m^{n+1} . Since D vanishes on m^{n+1} , $\Phi(D)$ is well defined. Clearly Φ is *k*-linear and injective. We shall prove that Φ is surjective. Let $f \in Hom_k$ $(m/m^{n+1}, k)$. We put $D(x) = f(x-x(0))$ for x in O. It will suffice to show $D \in$ $\mathfrak{D}_n(O)$. Then *D* is *k*-linear and $[D, a+x] = [D, x]$ for a in *k* and x in m. (For the definition of $[D, x]$, see [8].) Hence we have $[\cdots[[D, a_{1} + x_{1}], a_{2} + x_{2}], \cdots$, $[a_n+x,]=[\cdots [[D, x_1], x_2], \cdots, x_n]$ for any $a_i \in k$ and any x **Now** $[\cdots[[D, x_1], x_2], \cdots, x_n](a+x)=0$ for any $a \in k$ and any $x, x_i \in \mathfrak{m}$ since D is *k*-linear and vanishes on m^{n+1} . Hence *D* is in \mathfrak{D}_n (O).

(2) Obvious from (1).

(3) Let μ : $O \otimes_k O \rightarrow O$ be the homomorphism induced by the multiplication of O. Then we have the dual mapping μ^* : Hom_k $(O, k) \rightarrow$ Hom $(O \otimes_k O, k)$.

We shall prove $\mu^*(\mathfrak{D}(O)) \subset \mathfrak{D}(O) \otimes_k \mathfrak{D}(O)$ ($\subset \text{Hom}_k(O \otimes_k O, k)$). To this purpose, we have only to show $\mu^*(\mathfrak{D}_n(O))\subset \mathfrak{D}(O)\otimes_k\mathfrak{D}(O)$. Since $O/m\approx k$, O/m^{n+1} is a finite dimensional *k*-vector space. We assume that the classes of $u_0=1$, u_1 , \cdots , u_m modulo m^{n+1} form a k-basis of O/m^{n+1} . We denote by \overline{u}_i the class of u_i in O/m^{n+1} and $\bar{u}_0^*, \bar{u}_1^*, \cdots, \bar{u}_m^*$ its dual basis. Then $\bar{u}_1^* \circ \omega, \cdots, \bar{u}_m^* \circ \omega$ form a *k*-basis of $\mathfrak{D}_n(O)$, where ω is the canonocal homomorphism of O onto O/\mathfrak{m}^{n+1} . If $D \in$), an easy computation shows $\mu^*(D) = \sum_{i,j=1} D(u_i u_j) (\bar{u}_i^* \circ \omega \otimes \bar{u}_j^* \circ \omega) + \sum_{i=1} D(u_i u_j) (\bar{u}_i^* \circ \bar{u}_i^* \circ \omega)$ $i^*\circ \omega + \bar{u}^*_0\circ \omega\otimes \bar{u}^*_i\circ \omega) + \bar{u}^*_0\circ \omega\otimes \bar{u}^*_0\circ \omega.$ Thus $\mu^*(\mathfrak{D}_n(O))\!\subset\!\mathfrak{D}(O)\otimes_{\bm{k}}\mathfrak{D}$ (O). We set $\Delta \!=\! \mu^*| \mathfrak{D}(O)$, the restriction of μ^* on $\mathfrak{D}(O).$ Since O is commutative, Δ is cocommutative. Augmentation $\epsilon : \mathfrak{D}(O) \rightarrow k$ is defined by ϵ (D)= $D(1)$ for D in $\mathfrak{D}(O)$. Then it is easily seen that($\mathfrak{D}(O)$, Δ,ε) is a coalgebra over k,

2. The bialgebras of group schemes

Let *S* be a prescheme and *X* be an *S*-prescheme. We denote by *f* the structure morphism: $X \rightarrow S$. An n-th order derivation *D* of X/S is, by definition, an endomorphism of $f^{-1}(O_s)$ -Module O_X satisfying the following identity:

$$
D(\varphi_0, \varphi_1 \dots \varphi_n) = \sum_{s=1}^n (-1)^{s-1} \sum_{i_1 < \dots < i_s} \varphi_{i_1} \dots \varphi_{i_s} D(\varphi_0 \dots \varphi_{i_1} \dots \varphi_{i_s} \dots \varphi_n)
$$

for every open set U of X and every sequence $\varphi_{0}, \varphi_{1} \cdots, \varphi_{n}$ of $\Gamma(U, O_{X}).$ $\quad \mathfrak{D}$ (X/S) denotes the set of n-th order derivations of X/S . We set $\mathfrak{D}_\mathrm{o}(X/S) = \mathfrak{U}$ $\mathfrak{D}_\mathbf{x}(X/S)$ and $\mathfrak{D}(X/S) = \Gamma(X, \, O_X) \oplus \mathfrak{D}_0(X/S).$ We see easily that $DE \in \mathfrak{D}_0$ (X/S) and $[D,\varphi] = D\varphi \cdot \varphi D \cdot D(\varphi)$ is an (m-1)-th order derivation for $D \in \mathfrak{D}_0^{(m)}$ $(X/S), E \in \mathfrak{D}_{0}^{\infty}(X/S)$ and $\varphi \in \Gamma(X, O_{X})$ (cf. [8]). From these we can see that $\mathfrak{D}(X/S)$ is a $\Gamma(X, \, O_X)$ -algebra. If *u* is a morphism of preschemes $: X \to Y$, we denote by \tilde{u} the homomorphism of O_Y into $u_*(O_X)$.

Let G be an S-group scheme and let $g: S \rightarrow G$ be a section. The morphism $g_G: G \to S \times G \to G \times G \to G$ is the left translation by g of G, where 1_G (resp. m) is the identity morphism of G (resp. the multiplication of G). If D is a high order derivation of G/S , then we set $D^g = \tilde{g}_G^{-1}(g_G)_*(D)\tilde{g}_G$. D^g is also a high order derivation of *G/S.* A high order derivation *D* of *G/S* is called left invariant if we have $(D_T)^{\mathcal{B}} = D_T$ for any base change $t: T \rightarrow S$ and any section $g: T \rightarrow T \underset{S}{\times} G$, *s* where D_T is the high order derivation of $T \times G/T$ induced by D. Let k be a field and G be an algebraic k -group scheme. From now on we shall mean by a k -group scheme an algebraic k -group scheme. In this case we say a high order derivation of G/Sρec(&) simply a high order derivation of *G/k.* We shall denote by $\mathfrak{G}(G)$ the set of left invariant high order derivations of G/k and set $\mathfrak{G}(G) = k$ \bigoplus $\mathfrak{G}(G)$. It is clear that $\mathfrak{G}(G)$ is a *k*-algebra. Then $\mathfrak{G}(G)$ coincides with the algebra of left invariant differential operators on G defined in 2B of [3].

Hereafter we assume that *k* is an algebraically closed field of positive char acteristic *p.*

Proposition 2. Let G be a k-group scheme. Then $\mathfrak{D}(O_{G,e})$ is a bialgebra *over k^y where e is the origin of* G.

Proof. We set $O = O_{G,e}$ and denote by m the maximal ideal of O. If we put $\mathfrak{n} = O \otimes_k \mathfrak{m} + \mathfrak{m} \otimes_k O(C \otimes \mathfrak{g} O)$, then we have the canonical isomorphism φ : $O_{G\times G, e\times e} \simeq (O\otimes_k O)_{\mathfrak{n}}$. Let $D \in \mathfrak{D}_m(O)$ and $E \in \mathfrak{D}_n(O)$, then $D \otimes E: O \otimes_k O \rightarrow$ *k* is an $(m+n)$ -th order derivation. $D \otimes E$ is uniquely extended to an element of $\mathfrak{D}_{m+n}((O\otimes_k O)_{\mathfrak{n}})$ ([8] Theorem 15). We denote it $D\otimes E$ again. The product of *D* and *E* is given by

$$
(D * E) (x) = (D \otimes E) (\varphi m^*(x))
$$

for x in O, where m^* is the homomorphism of $O=O_{G,e}$ into $O_{G\times G, e\times e}$ associated with the multiplication *m* of *G*. Clearly we have $D * E \in \mathfrak{D}_{m+n}(O)$. We define $\alpha * D = D * \alpha = \alpha D$ and $\alpha * \beta = \beta * \alpha = \alpha \beta$ for α, β in k and D in $\bigcup_{n=1}^{\infty} \mathfrak{D}_n(0)$. Then $\mathfrak{D}(O)$ is a k-algebra with respect to this multiplication $*$ and ordinary addition. Let $(\mathfrak{D}(O), \Delta, \varepsilon)$ be the coalgebra defined in Proposition 1. Obviously ϵ is an algebra homomorphism. To complete our proof, it suffices to show that Δ is an algebra homomorphism, i.e. to see the following diagram is commutative

$$
\mathfrak{D}(O) \otimes \mathfrak{D}(O) \xrightarrow{\nu} \mathfrak{D}(O) \xrightarrow{\Delta} \mathfrak{D}(O) \otimes \mathfrak{D}(O) \downarrow \Delta \otimes \Delta \qquad 1 \otimes T \otimes 1 \qquad \qquad \downarrow \nu \otimes \nu \mathfrak{D}(O) \otimes \mathfrak{D}(O) \otimes \mathfrak{D}(O) \xrightarrow{\nu} \mathfrak{D}(O) \otimes \mathfrak{D}(O) \otimes \mathfrak{D}(O) \otimes \mathfrak{D}(O)
$$

where ν is the mapping induced by the multiplication $*$ and T is a twisting homomorphism: $D \otimes E \to E \otimes D$. Let $\Delta(D) = \sum_i D_i \otimes D'_i$ and $\Delta(E) = \sum_i E_j$ $\otimes E'$. Then we have $\Delta(D*E)$ $(x \otimes y) = (D \otimes E)$ ($\varphi m^*(xy)$). On the other hand we see $(\nu \otimes \nu)$ $(1 \otimes T \otimes 1)$ $(\Delta \otimes \Delta)$ $(D \otimes E)$ $(x \otimes y) = \frac{1}{i}$ $(\varphi m^*(y))$. Since $\varphi m^*(xy) = \varphi m^*(x) \varphi m^*(y)$ and a high order derivation is uniquely extended to a quotient ring, we have only to show the following identity:

 $(D \otimes E)$ $(xu \otimes yv)=\sum\limits_i{(D_i \otimes E_j)}\ (x \otimes y)\ (D_i' \otimes E_j')\ (u \otimes v) \text{ for } x \otimes y, \ u \otimes v \in O$ $\otimes_k O$. Being $\Delta(D) = \sum_i D_i \otimes D'_i$ and $\Delta(E) = \sum_j E_j \otimes E'_j$, we get $D(xu) =$ $D'_i(u)$ and $E(yv) = \sum_j E_j(y)E'_j(v)$. This proves our assertion.

REMARK 1. It is easily seen that $\mathfrak{D}(O_{G,e})$ is a Hopf algebra, i.e. $\mathfrak{D}(O_{G,e})$ has an antipode.

Proposition 3. Let the situation be the same as in Proposition 2. Then $\mathfrak D$ $(O_{G,e})$ *is canonically isomorphic to* $\mathfrak{D}(G)$ *as a k-algebra.*

Proof. We set $O = O_{G,e}$. If *D* is in $\mathfrak{B}(G)$, *D* induces a high order derivation of *O* into itself. We shall denote it *D* again. Then we define *Φ(D)=π°D,* where π is the canonical homomorphism of *O* onto *k*, and Φ (*a*) = *a* for $a \in k$. Thus we have defined a mapping $\Phi : \mathfrak{D}(G) \to \mathfrak{D}(O)$. Φ is *k*-linear. To show Φ is an algebra homomorphism, we must prove $\Phi(DE) = \Phi(D) * \Phi(E)$ for D, E in $\mathfrak{G}(G)$. Since *D* is left invariant, the diagram:

$$
\begin{array}{ccc}\nO_{G,e} & \xrightarrow{m^*} & O_{G\times G,e\times e} \\
D & & D_G \\
O_{G,e} & \xrightarrow{m^*} & O_{G\times G,e\times e}\n\end{array}
$$

is commutative, where *m** is the homomorphism associated with the multiplica tion *m* of G. (cf. [3] 2B, A) Lemma). Hence we have $(1 \otimes \pi) D_G m^* = (1 \otimes \pi) m^*$ $D=D$, i.e. $(1\otimes\Phi(D))m^* = D$ where 1 denotes the identity mapping of O, and 1 *®π* and *\®Φ(D)* are given as follows. Let m be the maximal ideal of *O* and put $m = O \otimes_k m + m \otimes_k O(C O \otimes_k O)$. Then we see easily that the mapping: $O \otimes_k O$ $f \otimes g \rightarrow f \pi(g) \in O$ (resp. $O \otimes_k O \in f \otimes g \rightarrow f \Phi(D)(g) \in O$) can be extended to the mapping: $(O {\otimes}_k O)_{\mathfrak{n}} \to O$ uniquely. We also denote by $1 {\otimes} \pi$ and $1 {\otimes} \Phi$ *(D)* these mappings composed with the canonical isomorphism: $O_{G \times G.e^{Xe}} \to (O)$ $\otimes_k O$ _n respectively. We have $(1 \otimes \Phi(D))m^* (1 \otimes \Phi(E))m^* = DE$. On the other hand $\pi(1 \otimes \Phi(D))m^* = \Phi(D)$. Thus we get $\Phi(DE) = \Phi(D) * \Phi(E)$. To prove is an isomorphism, we exhibit the inverse mapping Ψ . Let $D_0 \in \mathfrak{D}_n(O)$ and let ε be the unit section: $\operatorname{Spec}(k) \to G.$ Then $D_{\mathfrak{o}}$ induces a high order derivation of O_G into $\varepsilon_*(k)$ by adjointness with respect to ε . We denote it D_o again. We \widetilde{m} $m_*(D_{0G})$ $\det h = 1_G \times \varepsilon : G \times k {\,\rightarrow\,} G \times G$ and define $\Psi\left(D_{\scriptscriptstyle 0}\right)$ to be $O_G \overset{m}{\rightarrow} m_*(O_{G \times G}) \longrightarrow m_*$ $h_*(O_{G\times k}) \simeq O_G$. It is easily seen that Φ and Ψ are inverse to each other.

REMARK 2. This proof is a version of that of 2.4 of [3] 2B, A). (*) A high order derivation: $O_G \rightarrow \varepsilon_*(k)$ is a *k*-linear homomorphism satisfying the similar identity as a high order derivation of *G/k.*

We transform the bialgabra structure of $\mathfrak{D}(O_{G,e})$ into $\mathfrak{D}(G)$ by the isomorphism defined in Proposition 3. Thus $\mathfrak{D}(G)$ is a bialgebra over *k*.

Theorem 1. If G is a k-group scheme, then $\mathfrak{D}(G)$ is a bialgebra with only *one grouplike element* $1 \in k$.

Proof. We shall show the assertion for $\mathfrak{D}(O)$, where $O = O_{G,e}$. Assume that $a+D(a\in k, D\in \bigcup_{n=1}^{\infty} \mathfrak{D}_n(O)$ is grouplike. Since $\Delta(a+D)=(a+D)\otimes (a+D)$ D), we have $(a+D)(xy) = (a+D)(x) (a+D)(y)$ for x, y in O . Hence $D(xy) = D$ (*x*) $D(y)$ for *x*, *y* in m because $a(x)=0$ by the definition of operation of elements in k on O . Let $mⁱ$ be the least power of m on which D vanishes. We assume *i*>1. Since $D \neq 0$ there is an element *x* in m satisfying $D(x) \neq 0$. For $x_1, \dots,$ $x_{i-1} \in \mathfrak{m}$ we have $D(xx_1 \cdots x_{i-1}) = D(x)D(x_1 \cdots x_{i-1}) = 0$ and so $D(x_1 \cdots x_{i-1}) = 0$. Now D vanishes on m^{i-1} contrary to the assumption on i and hence $D=0$. We obtain $a = 1$ immediately.

Proposition 4.⁽¹⁾ We assume that G and G' are group varieties defined over *k, and* α *is a surjective k-homomorphism of G onto G'. We set* $O = O_{G,e}$ *and* $O' =$ $O_{G',e'}$, where e(resp.e') is the neutral element of $G(resp. G')$. Then there exists a *regular system of parameters* $\{t_1, \dots, t_n\}$ for O such that $\{t_1^{p^e1}, \dots, t_m^{p^e_m}\}$ is a regular *system of parameters for O', where we identity the rational function field of G^f with a subfield of the rational function field of G by the cohomomorphism* α*.

⁽¹⁾ The author knew that H, Yanagihara obtained this result in [13],

Proof. We decompose $\alpha: G\rightarrow G'$ as follows:

$$
G \xrightarrow{\beta} G/\text{Ker}(\alpha)_{\text{red}} \xrightarrow{\gamma} G',
$$

where β is the canonical epimorphism and γ is the homomorphism induced by α . Since *β* is separable and γ is a purely inseparable isogeny, we get the assertion using Theorem in [6].

Let H, K be bialgebras over k and let $\pi: H \to K$ be a homomorphism of bialgebras. Then we define HKer $(\pi) = \{x{\in}H\,|\, 1\otimes x = (\pi\otimes 1)\ \Delta_H\,(x) \text{ in } K{\otimes}$ *H*}. If *H* is cocommutative we see that HKer (π) is a sub-bialgebra of *H* ([11] Lemma 16. 1. 1.).

We let α : $G \rightarrow G'$ denote a homomorphism of k -group schemes. Since the induced homomorphism α^* : $O_{G',e'}$ \rightarrow $O_{G,e}$ is local, it gives a homomorphism of k vector spaces $d\alpha \colon \mathfrak{D}(O_{G,e}) \to \mathfrak{D}(O_{G',e'})$, where $e(\text{resp. } e')$ is the origin of $G(\text{resp. } e')$ G'). Then we have

Proposition 5. $d\alpha$ is a homomorphism of bialgebras.

Proof. We shall first show that $d\alpha$ is an algebra homomorphism. To this $\mathsf{purpose}, \text{ we have only to prove } d\alpha(D*E){=}d\alpha(D)*d\alpha(E) \text{ for } D, \, E \text{ in } \overset{\circ}{\cup} \text{ } \mathfrak{D}_n$ **«=sl** $(U_{G,e})$. Let $x \in U_{G',e'}$. Then we have $d\alpha(D * E)(x) = (D \otimes E)(\varphi m^* \alpha^*(x)),$ where φ is the canonical isomorphism: $O_{G \times G, e \times e} \to (O \otimes_k O)_{\mathfrak{n}}$ used in the proof of Proposition 2, and m^* is the homomorphism: $O_{G,e} \rightarrow O_{G \times G, e \times e}$ associated with the multiplication *m* of *G*. On the other hand we have $(d\alpha(D) * d\alpha(E))$ (x) = $(D \otimes E)$ ($\alpha_1^* \varphi' m^* (x)$), where $\varphi' : O_{G' \times G', e' \times e'} \to (O' \otimes_k O')_{n'}$ and $m'^* : O_{G', e'} \to O$ $G' \times G'$, $e' \times e'$ are defined similarly for G' and α_1^* is the homomorphism : $(O' \otimes_k O')$ ⁿ $\rightarrow (O \otimes_k O)_{\mathfrak{n}}$ induced by $\alpha^* \colon O' \rightarrow O$. We obtain $\varphi m^* \alpha^* = \alpha_1^* \varphi' m'^*$, since α is a homomorphism of G into G'. Thence $d\alpha$ is an algebra homomorphism. Next we shall prove that $d\alpha$ is a coalgebra homomorphism. Let $\Delta(D) = \sum D_i \otimes D'_i$. Then we get $(d\alpha \otimes d\alpha)$ ($\Delta(D)$) $(x \otimes y) = \sum_i D_i(\alpha^*(x)) D'_i(\alpha^*(y))$ for *x*, On the other hand $\Delta(d\alpha(D))$ $(x \otimes y) = D(\alpha^*(x)\alpha^*(y))$. Since $\Delta(D) = \sum_i D_i \otimes D_i$

we see $D(\alpha^{n}(x) \alpha^{n}(y)) = \sum_{i} D_{i}(\alpha^{n}(x)) D_{i}(\alpha^{n}(y))$. This completes our proof.

Thus $d\alpha$ induces a homomorphism of bialgebfas: $\mathfrak{D}(G) \to \mathfrak{D}(G')$. We also denote it *da.*

We assume that G is a group variety defined over k and $\{t_{1}, \cdots, t_{n}\}$ is a regular system of parameters for $O_{G,e}$. Let $f \in O_{G,e}$ and we express $f \equiv \sum a_{i_1 \cdots i_n} t_1^{i_1}$. $t_n^{\epsilon_n}$ mod. m_G^N with $a_{i_1} \cdots_{i_n} \in k$ for sufficiently large N, where $m_{G,e}$ is the maxi mal ideal of $O_{G,e}$. Then the elements $a_{i_1\cdots i_n}$ are uniquely determined by f and a regular system of pareamters $\{t_1, \dots, t_n\}$. We set $I_{i_1 \dotsb i_n, e}(f) = a_{i_1 \dotsb i_n}$. If $\sum_{i} i_j$ 0, $I_{i_1\cdots i_{n},e}$ vanishes on 1 and on $\text{m}_{G,e}^{\sum_{i=1}^{i}+1}$. Thence we see $I_{i_1\cdots i_{n},e} \in \mathfrak{D}_m(O_{G,e})$ for

some *m* by Proposition 1, (2). Since $\mathfrak{D}(O_{G,e})$ is canonically isomorphic to $\mathfrak{D}(G)$ by Proposition 3, $I_{i_1\cdots i_n,e}$ corresponds to the unique left invariant high order derivation $I_{i_1\cdots i_n}$ of G. We say that the $I_{i_1\cdots i_n}$ are the *canonical* left invariant high order derivations with respect to a regular system of parameters $\{t_1, \dots, t_n\}$ for $O_{G,e}^{(2)}$

Proposition 6. In the above situation the $I_{i_1\cdots i_n}$ form a basis of the $k(G)$ *vector space of all high order derivations of* $k(G)/k$, where $k(G)$ is the rational func*tion field of G over k.*

Proof. Following [8] we denote by $\mathfrak{D}_{0}^{\alpha}(k(G)/k)$ the set of all q-th order derivations of $k(G)/k$. We have only to show that the $I_{i_1\cdots i_n}$ ($0<\sum i_j\le q$) form a $k(G)$ -basis of $\mathfrak{D}_{0}^{\alpha}(k(G)/k)$. From the proof of Proposition 18 in [9] we know the dimension of $\mathfrak{D}^{(q)}_{0}(k)$ (*R*) over $k(G)$. Thus it is sufficient to see that the $I_{i,j}$ *...in* are independent over $k(G)$. Let $\sum a_{i_1\cdots i_n} I_{i_1\cdots i_n} = 0$ with $a_{i_1\cdots i_n} \in k(G)$. There is a closed point *g* in *G* such that non-zero $a_{i_1\cdots i_n}$ are unit in $O_{G,g}$. We have $\sum a_{i_1\cdots i_n} I_{i_1\cdots i_n}(L_{s-1}^*(t_1^j \cdots t_{n}^j)) = \sum a_{i_1\cdots i_n} L_{s-1}^* I_{i_1\cdots i_n}(t_1^j \cdots t_{n}^j) = 0$ where L_{g-1}^* is the automorphism of $k(G)$ associated with the left translation by g^{-1} of G. By the definition of $I_{i_1\cdots i_n}$ we see that $L_{s-1}^* I_{i_1\cdots i_n}(t_1^j\cdots t_n^j)$ is unit in $O_{G,g}$ for $i_1 = j_1, \dots, i_n = j_n$ and is non-unit in $O_{G, g}$ otherwise. If $a_{j_1 \dots j_n} \neq 0$, we have $a_{j_1\cdots j_n} L_{s-1}^* I_{j_1\cdots j_n}(t_1^{j_1}\cdots t_n^{j_n}) = -\sum_{(i_1,\cdots,i_n)} a_{i_1\cdots i_n} L_{s-1}^* I_{i_1\cdots i_n}(t_1^{j_1}\cdots t_n^{j_n}).$ In this equality

the left hand side is unit in $O_{G, g}$ while the right hand side is non-unit in $O_{G, g}$ This is contradiction.

Let $\alpha: G \rightarrow G'$ be surjective homomorphism of group varieties defined over *k*. By Proposition 4 we can choose a regular system of parameters $\{t_1, \dots, t_n\}$ for $O_{G,e}$ such that $\{t_1^{pe_1}, \dots, t_m^{pe_m}\}$ is a regular system of parameters for $O_{G',e'}.$ We let ${I_{j_1...j_n}}$ denote the *canonical* left invariant high order derivations of G with respect to $\{t_1, \dots, t_n\}$ and $\{I'_{t_1 \dots t_m}\}$ be the *canonical* left invariant high order der ivations of G' with respect to $\{t_1^{pe_1}, \ldots, t_m^{pe_m}\}$. Then we have

Theorem 2.⁽³⁾(1) $d\alpha$: $\mathfrak{D}(G) \rightarrow \mathfrak{D}(G')$ is surjective.

(2) $\mathcal{L}(Ker(\alpha)) = HKer(d\alpha)$ and moreover as a k-vector space $\mathcal{L}(Ker(\alpha))$ has a *k*-*basis* $\{I_{j_1\cdots j_n}\}_{j_l < p}^{e_l} (1 \le l \le m).$

(3) Ker (da) is a k-vector space with a basis $\{I_{j_1\cdots j_m0\cdots 0}\}\exists_i(1\leq i\leq m)\cup\{I_{j_1\cdots j_n}\}$ *at least one of* j_{m+1}, \cdots, j_n >0 *and in fact Ker (d* α *) is a left ideal of* $\mathfrak{D}(G)$ generated by $\mathfrak{D}(Ker(\alpha))^+ = \{D \in \mathfrak{D}(Ker(\alpha)) \mid \varepsilon(D)=0\}$, where ε is the augmentation of bial*gebra* $\mathcal{D}(Ker(\alpha)).$

⁽²⁾ These are the same as the canonical left invariant semiderivations of *G* with respect to $\{t_1, \dots, t_n\}$ defined in [11].

⁽³⁾ The author knew that H, Yanagihara obtained (1) and the latter part of (2) in [13].

Proof. (1) We see that ${I'}_{i_1\cdots i_m}$ is a k-basis of $\mathfrak{D}(G')$, since the $I'_{i_1\cdots i_m,e'}$ form a *k*-basis of $\mathfrak{D}(O_{G',e'})$. An easy calculation shows $d\alpha(I_{I_1p^{e_1}...i_mp^{e_m}0...0}) = I'_{I_1}$ m_{m} and so $d\alpha$ is surjective.

(2) Since Ker (α) is a closed subgroup scheme of G, it is clear that $\oint (\text{Ker } (\alpha))$ is a sub-bialgebra of $\mathcal{L}(G)$. We see Ker $(\alpha) = G \times \text{Spec}(k)$. Hence if m' is the *G'* maximal ideal of $O_{G',e'}$ we have $O_{Ker(\omega),e} = O_{G,e}/\alpha^*(\mathfrak{m}')O_{G,e}$ where α^* is the ho momorphism: $O_{G',e'} \to O_{G,e}$ induced by α . Now it is immediate to see that \mathfrak{D} (Ker (α)) coincides with HKer $(d\alpha)$ as sub-bialgebras of $\mathfrak{D}(G)$. Next we prove the second part. If $I_{j_1 \cdots j_n} \in H$ Ker $(a\alpha)$, we have $I_{j_1 \cdots j_n, e}(a^{\alpha}(x) y) = a^{\alpha}(x)$ (0) *v n* $I_{j_1\cdots j_{n,\theta}(y)}$ for any $x \in \mathcal{O}_{G',\theta'}$ and any $y \in \mathcal{O}_{G,\theta}$ and coversely. We see easily $I_{j_1\cdots j_{n,\theta}}$ $U_{n,e}(\alpha^{\text{T}}(x|y)) = \sum_{l_i + l'_i = j_i} I_{l_1 \cdots l_n, e}(\alpha^{\text{T}}(x)) I_{l'_1 \cdots l'_n, e}(y)$. Hence we obtain $I_{j_1 \cdots j_n} \in \Pi N$ (da) if and only if $\sum_{i_1+i_2 \leq i_1, \sum_{i_1} i_2 \leq 0} I_{i_1 \cdots i_n,e}(\alpha^*(x')) I_{i_1 \cdots i_n e}(y) = 0$ for any $x' \in O_{G',e'}$ and

any $y \in O_{G,e}$. Since $I_{l_1 \cdots l_n,e}(t_1^{l_1} \cdots t_n^{l_n}) = 1$ for $l_i = l'_i (1 \le i \le n)$ and 0 otherwise, we see $I_{\iota_1\cdots\iota_{n,e}}(\alpha^*(x'))=0$ for any $x'\!\in O_{G',e'}$ and any integers $l_1,\!...,l_n$ satisfying 0 $\leq l_i \leq j_i(1 \leq i \leq n)$ and $\sum l_i > 0$. Thence we must have $j_i < p^e i$ for $1 \leq l \leq m$. Since

the $I_{j_1\cdots j_n}$ form a *k*-basis of $\mathfrak{D}(G)$, our assertion is now immediate.

(3) we have $d\alpha(I_{I_1p^{e_1}\cdots I_mp^{e_m}}=I'_{I_1\cdots I_m}$ and $d\alpha(I_{J_1\cdots J_n})=0$ if (j_1,\cdots,j_n) is not of the form $(l_1 p^{e_1}, \dots, l_m p^{e_m}, 0, \dots, 0)$. Now the first assertion is obvious. We have $\varphi m^*(t_{\pmb{i}}){\equiv} t_{\pmb{i}}\otimes 1+1\otimes t_{\pmb{i}}$ mod. $\mathfrak{m}^2($ cf. chap. IX in [7]), where m^* is the homomor phism : $O_{G,e} \rightarrow O_{G \times G, e \times e}$ associated with the multiplication *m* of G and φ is the canonical isomorphism : $O_{G\times G, e\times e}\cong (O_{G, e}\otimes_k O_{G, e})$ n and m denotes the maximal ideal of $(O_{G,e} \otimes_k O_{G,e})_n$. Then an easy computation shows $I_{i_1\cdots i_n,e} * I_{j_1\cdots j_n,e} \equiv$ $I_{i_1+j_1\cdots i_n+j_n}$ mod. $\mathcal{D}(G)\cap \mathcal{D}_0\mathcal{C}_l^{(i_1+j_1)-1}$ (G/k) . If we express $i_j = a_j p^{e_j} + b_j$, with $0 \le b_j < p^{e_j}$ for $j = 1, \dots, m$, we hvae $I_{i_1 \cdots i_m 0 \cdots 0} \equiv I_{a_1} p^{e_1 \cdots p}$ $a_n e^{i\theta}$ _{*amove I_b and supposed to* $\mathfrak{D}(G) \cap \mathfrak{D}_s$ *.* $\mathfrak{D}_i G/k$ *, since* $(a_i p^{e_i} + b_i) \equiv 1 \mod 3$ *.}* W_{α} see I_b $\subset \mathcal{B}(K_{\alpha r}(\alpha))^{+}$ by (2) if some of h is positive. Moreover we have $I_{i,j} = I_{i,j}$.
have $I_{i,j} = I_{i,j}$. $I_{i,j}$ is mod. $\mathfrak{H}(G) \cap \mathfrak{D}^{(n)}(\Sigma_{i,j-1})$ (G/k). If at least one y y of $j_{m+1},..., j_m$ is positive, $I_{0...j_m}\equiv \mathfrak{D}(\text{Ker}(\alpha))^+$ by (2). Now the induction on the order of high order derivations completes our proof.

If G is a k -group scheme and G' is a closed subgroup scheme of G , it is immediate that $\mathfrak{D}(G')$ is a sub-bialgebra of $\mathfrak{D}(G)$. We consider which sub-bialgebras of $\mathcal{D}(G)$ arise from closed subgroup schemes of G. We obtain a characterization in the case G is a commutative group variety.

Let G be a group variety defined over k and let \mathcal{D} be a sub-bialgebra of \mathcal{D} (G). Then we define $k(G)$ ^{\emptyset} to be the set of elements x in $k(G)$ such that $D(x)$ = 0 for every D in \mathfrak{D} satisfying $\mathfrak{E}(D) = 0$ where $k(G)$ denotes the field of rational functions on G over *k*. We see that $k(G)$ ^{$\tilde{\phi}$} is a subfield of $k(G)$.

Proposition 7. We asume that G and G^{*'*} are group varieties defined over k and α is a surjective homomorphism of G onto G' defined over k . Then we have $k(G)^{\mathrm{HKer}(d_a)}$ $=$ $k(G')$ _s, where we identify $\alpha^*(k(G'))$ with $k(G')$ and $k(G')$ _s denotes the *separably algebraic closure of k(G') in k(G).*

Proof. We shall first show that $k(G')$ is contained in $k(G)^{\text{HKer}(d\omega)}$. Let D \in HKer (da). Then D vanishes on $k(G')$. Since an high order derivation can be uniquely extended to an high order derivation of separably algebraic extension field ([9] Theorem 17), *D* vanishes on $k(G')_s$. Hence we have $k(G')_s \subset k(G)$ *HKer(d*^{*a*}). We assume $k(G')$ _{*s*} $\subseteq k(G)^{\text{HKer}(d_{\alpha})}$. Then there exists an element *x* in $k(G)^{\text{HKer}(d_{\mathfrak{B}})}$ satisfying $x \in k(G')_s$. We shall show that this will lead to contra diction. Since $x \notin k(G')_s$, x is either transcendental over $k(G')_s$ or purely inse parable over $k(G')$ _s. In any case there exists an ordinary derivation D of $k(G')$ _s *(x)* such that *D* vanishes on $k(G')$, and $D(x) = 1$. Then *D* can be extended to a high order derivation \tilde{D} of $k(G)$ ([9] Proposition 13, Theorem 17). Let $\{t_1, \dots, t_m\}$ t_n } be a regular system of parameters for $O_{G,e}$ as in Proposition 4. We assume that the $I_{j_1 \cdots j_n}$ are the *canonical* left invariant high order derivations of G with respect to $\{t_1, \dots, t_n\}$. The $I_{j_1 \dots j_n}$ form a basis of the $k(G)$ -vector space of all high order derivations of $k(G)/k$ by Proposition 6. Thence we have $\tilde{D} \!\!=\! \sum a_{j_1\cdots j_m}$ *I*_j₁...</sup>*j*_n</sub> with $a_{j_1...j_n}$ in $k(G)$. We shall show $a_{l_1} p^{e_1...l} p^{e_m}$ ₀...₀ = 0. To the contrary we assume $a_{l_1}p^{e_1}...p_{m}p^{e_m}$ ∞ 0. There exists a closed point *g* in *G* such that every non zero $a_{j_1\cdots j_n}$ is a unit in $O_{G,g}$. We have $\tilde{D}(L_{g-1}^*(t_1^{l_1}\rho^{e_1}\cdots t_m^{l_m}\rho^{e_m}))$ $a_{i_1,\dots,i_r}L_{q-1}^*[I_{i_1,\dots,i_r}(t_1^{i_1}\rho^{e_1}\cdots t_m^{i_m}\rho^{e_m}))$, where L_{q-1}^* is the automorphism of $k(G)$ asso ciated with the left translation by g^{-1} . \tilde{D} vanishes on $k(G')$ by our construction and $\sum a_{j_1...j_n} L^*_{g-1}(I_{j_1...j_n}(t_1^{l_1}\rho^{e_1}...t_m^{l_m}\rho^{e_m}))$ is a unit in $O_{G,g}$ because $I_{j_1...j_n}(t_1^{l_1}\rho^{e_1}...$ $t_m^l m^{p^{e_m}}$ is a unit for $j_i = l_i p^{e_i} (1 \le i \le m)$, $j_{m+1} = \cdots = j_n = 0$ and a non unit otherwise. This is contradiction. Hence we have $a_{i_1} p^{e_1} \cdots p^{e_m} q^{e_m} \cdots q^{e_m} = 0$. Since $D(x) = 1$, there is a set of integers $\{j_1, \dots, j_n\}$ satisfying $I_{j_1 \dots j_n}(x) \neq 0$. The above argument means that either some j_i of j_1, \dots, j_m is not divisible by p^{e_i} or at least one of j_{m+1} , \cdots , *j_n* is positive. Consequently we have $I_{j_1\cdots j_n} \in$ Ker $(d\alpha)$ by Theorem 2, (3) and so there exists D' in HKer $(d\alpha)^+$ such that $D'(x) = 0$, because Ker $(d\alpha)$ is a left ideal generated by HKer $(d\alpha)^+$ (Theorem 2, (3)). This contradicts to $x \in k$ $(G)^{\mathrm{HKer}(d\omega)}$.

Lemma 1 ([14] Lemma 2). Le£ *K be a field of positive characteristic and* $\{D_{o}=1, D_{1}, D_{2}, \cdots\}$ be a higher derivation of K in the sense of [4]. If we set K_{∞} $=\{x{\in}K|D_i(x) = 0\text{ for any }i \geq 1\}$, then K is a separable extension of K_{∞}.

For the results of bialgebras with one grouplike element we refer to [10]. Let *H* be a cocommutative bialgebra over a perfect field *k* of positive character

istic p. We assume that H has only one grouplike element and set $H' = \text{Hom}_{k}$ (H,k) . Then H' is a commutative algebra with respect to convolution (Cf. [11]). We define $F(a') = a'^p$ for $a' \in H'$. The transposed mapping $F' : H'' \to H''$ is given by $\langle a', F'(b'') \rangle = \langle F(a'), b'' \rangle^{1/p}$ for $a' \in H'$ and $b'' \in H''$. Identifying *H* with subspace of H'' we have $F'(H) \subset H$. Let V denote the restriction of F' on H and let V^* be $V \cdots V$ (n times). We put $V^*(H) = \tilde{\cap} V^*(H)$. It is shown that $V^{\infty}(H)$ is a sub-bialgebra of H. We denote by $L(H)$ the set of primitive elements in *H*, i. e. $x \in H$ satisfying $\Delta(x) = x \otimes 1 + 1 \otimes x$, where Δ is the comultiplication of H. Moreover we set $L_i(H) = L(H) \cap V^i(H)$ for $i = 0, 1, \dots, \infty$.

REMARK 3. If *G* is a *k*-group scheme, then we have $V^{\infty}(\mathfrak{D}(G)) = \mathfrak{D}(G_{\text{red}})$, and *G* is reduced if and only if $\mathfrak{D}(G) = V^{\infty}(\mathfrak{D}(G))$. This follows immediately from 6.4 of [2] III §3.

Lemma 2. *Let G be a group variety defined over k of dimension n. Then we see that* $L(\mathfrak{D}(G)) = L_{\infty}(\mathfrak{D}(G))$ and this is n-dimensional as a k-vector space.

Proof. We note that $L(\mathfrak{D}(G))$ is the set of left invariant (ordinary) derivations of G and is of dimension n over *k* as a &-vector space. Thus we have only to prove $L(\mathfrak{D}(G)) \subset L_{\infty}(\mathfrak{D}(G))$. Let $\{I_{j_1\cdots j_n}\}$ be the *canonical* left invariant high order derivations of G with respect to a regular system of parameters for $U_{G,e}$. Then it is easily seen that $\{1, I_{0...0} \n\}_{0...0}$, $I_{0...0} \n\}_{0...0}$, \cdots , $I_{0...0} \n\}_{0...0}$, \cdots } is an infinite higher derivation in the sense of [4]. Thence we have $I_{0...010...0} \in L_{\infty}(\mathfrak{D}(G))$ by Theorem 2 of [10]. On the other hand the $I_{0...010...0}$ form a *k*-basis of $L(\mathfrak{D}(G))$ and so our proof is complete.

Theorem 3. *Let G be a commutative group variety defined over an algebraically closed field k of positive characteristic and* \mathcal{D} be a sub-bialgebra of $\mathcal{D}(G)$. Then § *is the bialgebra of a closed subgroup scheme of G if and only if we have tr. deg^k* $(G)\mathfrak{F} = \dim G - \dim_k L_\infty(\mathfrak{F})$, where tr. deg_k $k(G)\mathfrak{F}$ denotes the transcendence degree *of k(G)§ over k.*

Proof. We assume $\mathfrak{H}=\mathfrak{H}(G')$ for some closed subgroup scheme G' of $G.$ We consider the canonical epimorphism $\alpha: G \rightarrow G/G'$ of group varieties. Then we have $HKer(d\alpha) = \mathfrak{F}(G')$ by Theorem 2, (2). Hence $k(G)\mathfrak{F} = k(G/G')$, by Proposition 7 and so tr.deg_k $k(G)^{\S} = \dim G$ -dim G.' On the other hand $L_{\infty}(\mathfrak{D}(O))$ $\sigma(s',s')$) = $L_{\infty}(\mathfrak{D}(O_{G'\mathrm{red}, s}'))$ by Theorem 2 of [10], since $O_{G',s'}=O_{G'\mathrm{red},s'}\otimes_k H$ for some finite bialgebra *H* over *k* ([2]III 3, 6.4) and so $\mathfrak{D}(O_{G',e'}) \cong \mathfrak{D}(O_{G'\text{red},e'}) \otimes_k$ $\text{Hom}_{k}(H, k)$. Being G'_{red} smooth over k, we have $\dim_{k}L_{\infty}(\mathfrak{D}(O_{G'\text{red}, e'})) = \dim_{k}$ $\sigma_{\rm dd}) =$ dim G' _{red} $=$ dim G' by Lemma 2. Hence we have $\text{tr.deg}_{k}k(G)^{\mathfrak{H}}$ $\Xi = \dim G - \dim_k L_\infty(\mathfrak{H})$. Conversely we assume tr.deg_k $k(G)\mathfrak{H} = \dim G - \dim_k L_\infty(\mathfrak{H})$. Since $\mathfrak{D}(G)$ has only one grouplike element 1, \mathfrak{D} is so. Thus we can apply Theorem 3 of [10] to see the coalgebra structure of \mathfrak{D} . Since *G* is commutative, \mathfrak{D} (G) is commutative. An element of $\hat{\mathfrak{D}}$ therefore induces a high order derivation of $k(G)$ ^{*v* \propto Φ}) into itself. We assert that $k(G)$ ^{*v* \propto Φ}) is a finite modular purely in separable extension of $k(G)\$ ^{\tilde{v}}, for the latter is the constant field of higher derivations of finite rank in the sense of [4] by the coalgebra structure of \mathcal{D} ([10] Theorem 3). We see that $k(G)^{V^{\infty}(\mathfrak{D})}$ (resp. $k(G)^{\mathfrak{D}}$) is the function field of some group variety $G_{\scriptscriptstyle 0}$ (resp. $G_{\scriptscriptstyle 1}$) defined over k by Proposition 8 of [1], because ${\mathfrak G}\subset {\mathfrak G}$ (G) and G is commutative. We also have epimorphisms β : $G \to G_o$ and γ : G_o \rightarrow G_1 . Clearly γ is purely inseparable isogeny. Since $V^{\infty}(\mathfrak{H})$ is commutative and is generated by the components of infinite higher derivations by Theorem 3 in [10], β is separable by Lemma 1. We set $\alpha = \gamma \circ \beta$. We shall prove $\mathfrak{D} = H \text{Ker}(d\alpha)$. To this purpose it suffices to show $L_i(\hat{\mathbb{Q}}) = L_i(HKer(d\alpha))$ $(i = 0, 1, 2, \dots, \infty)$ by Theorem 3 of [10]. By our assumption $\dim_k L_{\infty}(\mathfrak{D}) = \dim G$ -tr.deg $_kk(G)\mathfrak{D} = \dim$ G-dim G_1 . Since β is separable and γ is purely inseparable, there exists a regu lar system of parameters $\{t_1, \dots, t_n\}$ for $O_{G,e}$ such that $\{t_1, \dots, t_m\}$ (resp. $\{t_1^{p^e_1}, \dots, t_m\}$ $f_m^{\mathbf{p}^{\theta_m}}$) is a regular system of parameters for the local ring of G_0 at the origin (resp. the local ring of G_1 at the origin). Then dim G -dim $G_1 = n-m$ and on the other hand $\dim_{k}L_{\infty}(H\mathrm{Ker}(d\alpha))=n-m$ by Theorem 2,(2). Being $\mathfrak{D}\subset H\mathrm{Ker}(d\alpha)$ we get $L_{\infty}(\mathfrak{D}) = L_{\infty}(\mathrm{HKer}(d\alpha))$. We see dim_k $L_{\infty}(\mathrm{HKer}(d\alpha)) = (n-m) + ($ the number of *l* satisfying $i+1 \leq e_l (1 \leq l \leq m)$ from Theorem 2 in [10] and Theorem 2,(2). Thus we have $\dim_k L_i$ (HKer $(d\gamma)$) = $\dim_k L_i$ (HKer($d\alpha$))- $\dim_k L_n$ (HKer $(d\alpha)$ for $i = 0, 1, 2, \cdots$. We also see that HKer $(d\gamma) = {D \vert}_{K(G)}^{V^{\infty}(\mathfrak{H})}$ for some $D \text{ in } \mathfrak{D}$ by Jacobson-Bourbaki Theorem (cf. [5]), where $D |_{K(G)} V^{\infty}(\mathfrak{D})$ denotes the restriction of *D* on $k(G)^{V^\infty(\mathfrak{H})}$. Since $L_\infty(\mathfrak{H}) = L_\infty(HKer(d\alpha))$ we have $-\dim_{k}L_{\infty}(\mathfrak{D}) \leq \dim_{k}L_{i}(\mathrm{HKer}(d\alpha))-\dim_{k}L_{\infty}(\mathrm{HKer}(d\alpha)) = \dim_{k}L_{i}(\mathrm{HKer}(d\gamma)).$ We set $H=\{D\vert_{kG}^{V^{\infty}(\mathfrak{H})}$ for some D in \mathfrak{H} . By Theorem 3 of [10] we see dim_k H Ker($d\gamma$) = $p^{\sum_{i}^k L_i$ ^cHKer($d\gamma$) and $dim_k H < p^{\sum_{i}^k (dim_k L_i \setminus \{x\})}$ ^b Since HKer $(d\gamma) = H$ we get $\dim_k L_i(\mathfrak{H}) - \dim_k L_{\infty}(\mathfrak{H}) = \dim_k L_i(HKer (d\gamma))$ for $i = 0, 1, 2, \cdots$. Hence we have $\dim_k L_i(\mathfrak{D}) = \dim_k L_i(HKer (d\alpha))$. Since $\mathfrak{D} \subset HKer (d\alpha)$ we obtain $L_i(\mathfrak{D}) = L_i(\mathrm{HKer}(d\alpha))$ for $i=0,1,2,\cdots$. Thus we have $\mathfrak{D} = \mathrm{HKer}(d\alpha)$, i. e. $\mathfrak{H}=\mathfrak{H}(\mathrm{Ker}(\alpha))$ and we are done.

OSAKA UNIVERSITY

Bibliography

- [1] P. Carrier: *Isogenies des variέtes de groupes,* Bull. Soc. Math. France 87 (1959), 191-220.
- [2] M. Demazure and P. Gabriel: Groupes Algebriques. Tome I, North-Holland, Amsterdam, 1970.
- [3] M. Demazure and A. Grothendieck: Schémas en Groupes I (SGA 3), Lecture notes in Math. **151,** Springer-Verlag, 1970.
- **[4] H. Hasse and F.K. Schmidt:** *Noch eine Begrϋndung der Theorie der hδheren Differ entialquotienten in einem algebraischen Funktionenkδrper einer Unbestimmten,* **J.**

Reine Angew. Math. **177** (1937), 215-237.

- [5] N. Jacobson: Lectures in Abstract Algebra III, Van Nostrand, Princeton, New Jersy, 1964.
- **[6] K. Kosaki and H. Yanagihara:** *On purely inseparable extensions of algebraic function fields,* J. Sci. Hiroshima Univ. Ser. A-I Math. 34 (1970), 69-72.
- [7] S. Lang: Introduction to Algebraic Geometry, Interscience, New York, 1958.
- [8] Y. Nakai: *High order derivations* I, Osaka J. Math. 7 (1970), 1-27.
- [9] Y. Nakai, K. Kosaki and Y. Ishibashi: *High order derivations* II, J. Sci. Hiroshima Univ. Ser. A-I Math. 34 (1970), 17-27.
- **[10] M. Sweedler:** *Hopf algebras with one grouplike element,* **Trans. Amer. Math. Soc. 127** (1967), 515-526.
- [11] M. Sweedler: Hopf Algebras, Benjamin, New York, 1969.
- **[12] H. Yanagihara:** *On the structure of bialgebras attached to group varieties,* **J. Sci.** Hiroshima Univ. Ser. A-I Math. 34 (1970), 29-58.
- **[13] H. Yanagihara:** *On the functorial properties of bialgebras attached to group varieties* (in Japanese), Akagiyama Daisukikagaku Symposium, 1970.
- **[14] F. Zerla:** *Iterative higher derivations in fields of prime characteristic,* **Michigan** Math. J. 15 (1968), 407-415.