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Let G be an algebraic group scheme over an algebraically closed field k.

We shall first show that the set Φ(G) of left invariant high order derivations on

G will have a natural structure of bialgebra over k with only one grouplike

element. If a is a surjective homomorphism of a group variety G onto a group

variety G', the kernel H of a in the category of algebraic Λ-group schemes is

well defined. Moreover we have a bialgebra homomorphism da of ξ>(G) into

ξ>(G'). H. Yanagihara showed surjectivity of da and investigated /^-vector space

structure of the kernel of da in the category of bialgebras using the semi-deri-

vations in [13]. In this paper it will be proved that the kernel of da in the

category of bialgebras coincides with the bialgebra of H and we have an exact

sequence

0 > %(H) £(G) φ(G') • 0

in the category of bialgebras, while the bialgebra of H is not defined in

general using the semi-derivations. Thus the bialgebra ξ>(G) may be a good

substitute of Lie algebras in the case of positive characteristic. The next problem

which we are interested is the characterization of sub-bialgebra of Φ(G) which

arises from a closed subgroup scheme. Unfortunately we have no general

solution, but a solution will be given when G is a commutative group variety

over k. Our results have close connection with the work of H. Yanagihara and

our bialgebra ξ>(G) coincides with the bialgebra used by H. Yanagihara in [12]

when G is a group variety.

The author wishes to express his thanks to Professor Y. Nakai for his sug-

gestion and encouragement.

1. Local high order derivations of a local ring

Let O be a noetherian local ring containing a field k such that O/tn is

canonically isomorphic to k> where m is the unique maximal ideal of O. We

denote by x(o) the element of k representing the class of x in O modulo m. A

Λ-linear homomorphism D of O into k is called a local n-th order derivation of

O if we have
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for any sequence Λ?0, ̂ i,--*, Λ?M of (n+l)-elements in O. We denote by
CO

the set of local n-th order derivations of O and set ®(O) = A © U ®«(O), where

a(x) is defined by ax(o) for α G ft and Λ; G O. Then it is easily seen that S)(O)

is a subspace of !

Proposition 1. Let the situation be as above. Then we have

(1) ®W(O) is canonίcally isomorphίc to Homk(mlmn+1, k) as a k-vector space.
CO

(2) U ®Λ(O) is the set of k-lίnear homomorphisms of O into k vanishing on some

power of m.

(3) ®(O) has a cocommutatίve coalgebra structure over k.

Proof. (1) The mapping Φ of ®w (O) into Horn* (m/mΛ+1, A) is defined as

follows. If D G ®rt(O), we set Φ(D) (x) = D(Λ:) for # G m, where Λ is the class

of x in m modulo mn + 1. Since D vanishes on mM+1, Φ(ί>) is well defined. Clearly

Φ is ^-linear and injective. We shall prove that Φ is surjective. Let/ G HomΛ

(m/mM+1, k). We put D(x) =f(χ-χ(o)) for x in O. It will suffice to show D G

®Λ(O). Then Z) is /^-linear and [D, a+x] = [Z>, Λ;] for α in k and Λ in m. (For

the definition of [D, x], see [8].) Hence we have [# [[A «i + «̂ J, a2 + 2̂]? *">

^ Λ + ^ ] = [ [ [ A #i]> 2̂]>"*> ^»] for any a^k and any xt Gm. Now

[--[[D, x^, x2], ••-, xn](a-{-x)=0 for any « G A and any x, x^m since D is

^-linear and vanishes on mn+1. Hence D is in ®rt (O).

(2) Obvious from (1).

(3) Let μ, : O®kO-+O be the homomorphism induced by the multiplication

of O. Then we have the dual mapping μ*: Hom^O, h) -> Horn (O<g>kO, k).

We shall prove μ*(®(0))c©(0) ®*®(O) (cHomΛ(O(g)ΛO,Λ)). To this pur-

pose, we have only to show ^*(®«(O))cS)(O)®ΛS)(O). Since Ojm^k, O/mn+1

is a finite dimensional ^-vector space. We assume that the classes of uo=l, uiy

~ ,um modulo mn+1 form a &-basis of O/mn+1. We denote by ui the class of u{

in O/mn+1 and w ,̂ wf, , «* its dual basis. Then B%oω)...? s*o ω form a Λ-basis

of ®W(O), where ω is the canonocal homomorphism of O onto Olmn+1. If Z) G

), an easy computation shows /^*(-D)=Σ D(uiuj) (tt*oωξZ)Ufoω) +
ί,y=i 1=1

f o ω + w*oω(g) Z7*oω) + β *o ω ( g) j/*o ω . Thus μ*(®Λ(O))c®(O)<g)Λ 3)

(O). We set Δ =μ* \ S)(O), the restriction of /^# on ® (O). Since O is commu-

tative, Δ is cocommutative. Augmentation S : ®(O) -> ft is defined by S (D)=

for D in ®(O). Then it is easily seen that(®(0), Δ,f) is a coalgebra over S,
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2. The bialgebras of group schemes

Let S be a prescheme and X be an S-prescheme. We denote by / the
structure morphism: X->S. An n-th order derivation D of X/S is, by definition,
an endomorphism of/"1(Os)-Module Ox satisfying the following identity:

D(φ0 Ψl ... φn) = Σ H Γ 1 Σ Ψi-Ψis D(<po-φir φis-φn)
s=»l ι'1< < ί s

for every open set U of X and every sequence φ0, φ^ -, φn of T(U, Ox). ίδψ

(X/S) denotes the set of n-th order derivations of XjS. We set ®0 (X/S) = U

^(X/S) and ®(X/5) = Γ(X, Ox) 0®o(X/5). We see easily that DE e ®0

(X/S) and [£>,?>] = Dφ-φD-D{φ) is an (m-l)-th order derivation for D <= © ψ
(X/S), E G ©^(X/S) and ^ G Γ ( Z , O*) (cf. [8]). From these we can see that
^(X/S) is a Γ(X, Ox)-algebra. If u is a morphism of preschemes : X -> Y, we
denote by w the homomorphism of O r into u*(Ox).

Let G be an 5-grouρ scheme and let g: S-+G be a section. The morphism

gG: G ^t S X G -̂ —> G X G -2. G is the left translation by^ of G, where 1G (resp.
5 S

m) is the identity morphism of G (resp. the multiplication of G). If Z) is a high
order derivation of G/S, then we set Dg=gG~

1(gG)*(D)gG. D8 is also a high order
derivation of G/S. A high order derivation D of G/S is called left invariant if
we have (DT)

8=DT for any base change t: T^S and any section g : T-+ Tx G,
s

where Dτ is the high order derivation of T X GjT induced by D. Let k be a
field and G be an algebraic Λ-group scheme. From now on we shall mean by a
Λ-group scheme an algebraic Λ-group scheme. In this case we say a high order
derivation of G/Sρec(&) simply a high order derivation of G/k. We shall denote
by ®(G) the set of left invariant high order derivations of G/k and set &(G) = k
© (S(G). It is clear that §(G) is a β-algebra. Then ξ>(G) coincides with the
algebra of left invariant differential operators on G defined in 2B of [3].

Hereafter we assume that k is an algebraically closed field of positive char-

acteristic p.

Proposition 2. Let G be a k-group scheme. Then ®(OG e) is a bialgebra
over ky where e is the origin of G.

Proof. We set 0=0Ge and denote by tn the maximal ideal of O. If we
put xι=O®km-\-m®kO{aO®kO), then we have the canonical isomorphism φ :
OGXG, exe ~ (O®kO)n. Let ΰ e ® w ( O ) and £e® Λ (O), then D®E: O®kO->
k is an (m+«)-th order derivation. D ® E is uniquely extended to an element
o f ^m+n((O®kO)n) ([8] Theorem 15). We denote it D®E again. The product
of D and E is given by
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(D * E) (x)=(D®E) (φm*(x))

for x in 0, where m* is the homomorphism of O=OG e into OGxGeXe associated

with the multiplication m of G. Clearly we have D * E e ®m+Λ(O). We define

a*D=D*a=aD and a*β=β*a=aβ for α, β in ft and Z> in U ®n(O).

Then S)(O) is a ft-algebra with respect to this multiplication * and ordinary
addition. Let (3)(O), Δ, £) be the coalgebra defined in Proposition 1. Obviously
£ is an algebra homomorphism. To complete our proof, it suffices to show that
Δ is an algebra homomorphism, i.e. to see the following diagram is commutative

S)(O) ® ®(O) —^-> ®(O) • S)(O)

J Δ ® Δ

S)(O)

where ẑ  is the mapping induced by the multiplication * and T is a twisting

homomorphism: D ® E ^ E ® D. Let Δ (D) = Σ A ® £>t and Δ(£") = Σ # y

® ^ . Then we have Δ(D*£I) (Λ?®^) = (D®E) (φm*(xy)). On the other hand
we see (v®v) (1® 21® 1) (Δ®Δ) (Z)®£) (ίc®y)=

i

{φm*(y)). Since φm*{xy)=φm*{x)φm*(y) and a high order derivation is unique-
ly extended to a quotient ring, we have only to show the following identity:

(D®E) (xu®yv)= 2 (Dg®Ej) (x®y) (D[®E'S) (u®v) for x®y, u®v<=O

®kO. Being Δ (D) = Σ f l ^ ^ ί a n d HE)= ΈEJ®E/

J, we get D(xu)=
* y

D'i(u) and £"(3;^)= Σ Ej(y)E'j (̂ ) This proves our assertion.
y

REMARK 1. It is easily seen that ® ( O G e ) is a Hopf algebra, i.e. ®(OG > e) has
an antipode.

Proposition 3. Let the situation be the same as in Proposition 2. Then 3)
(OGe) is canonίcally ίsomorphίc to ξ>(G) as a k-algebra.

Proof. We set O = OGe. If D is in ®(G), D induces a high order deriva-
tion of O into itself. We shall denote it D again. Then we define Φ(D)=π°D,
where π is the canonical homomorphism of O onto ft, and Φ (a) = a for a 6Ξ ft.
Thus we have defined a mapping Φ : ξ>(<9) -> ®(O). Φ is ft-linear. To show
Φ is an algebra homomorphism, we must prove Φ(DE) = Φ(D) * Φ(E) for Z), £
in @(G). Since D is left invariant, the diagram:

o^ „ —> o,
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is commutative, where m* is the homomorphism associated with the multiplica-
tion m of G. (cf. [3] 2B, A) Lemma). Hence we have (ί®π) DGm* = (ί®π) m*
D=D, i.e. (l(g)Φ(D))m* = D where 1 denotes the identity mapping of O, and 1
®π and \®Φ(D) are given as follows. Let m be the maximal ideal of O and put

km + m®kO(C.O®kO). Then we see easily that the mapping: O®kO
*fπ(g)^O (re&p. O®kO e / ® g ->fΦ(D)(g)^O) can be extended

to the mapping: (O®kO)n -> O uniquely. We also denote by 1 ® π and 1 ® Φ
(D) these mappings composed with the canonical isomorphism: OGxGeXe ~ (O
®kO)n respectively. We have (1 ®Φ(Z>))m* (l®Φ(E))m* = DE. On the other
hand π(l®Φ(D))m* = Φ(D). Thus we get Φ(DE) = Φ(D) * Φ(E). To prove
Φ is an isomorphism, we exhibit the inverse mapping Ψ. Let Do e ®n(O) and
let S be the unit section: Spec(A) -> G. Then Do induces a high order derivation
of OG into £* (k) by adjointness with respect to £. We denote it Do again. We

~ m*(DQG)
stth= lGχ£ : Gx k -> Gx G and define Ψ(Z)0) to be OG -> m^Ocxc) > m*
*̂(OGXAf) S OG. It is easily seen that Φ and ψ are inverse to each other.

REMARK 2. This proof is a version of that of 2.4 of [3] 2B, A).
(*) A high order derivation: OG —> £*(k) is a ^-linear homomorphism satisfying
the similar identity as a high order derivation of G/k.

We transform the bialgabra structure of ® (OG e) into ξ> (G) by the isomor-
phism defined in Proposition 3. Thus £>(G) is a bialgebra over k.

Theorem 1. If G is a k-group scheme, then ξ>(G) is a bialgebra with only
one grouplike element l^k.

Proof. We shall show the assertion for ®(O), where O = OGe. Assume

that a+D(a<=k, ί)G U ®Λ (O)) is grouplike. Since A(a+D) = (a+D) ®(a+

Z>), we have (a+D) (xy) = (a+D) (x) (a+D) (y) for xy y in O. Hence D(Λy) = D
(x) D(y) for x9 y in m because α(#)—0 by the definition of operation of elements
in k on O. Let m* be the least power of tn on which D vanishes. We assume
i>\. Since D φ O there is an element x in m satisfying D(x) Φ 0. For x19 ;
^•.jGtn we have D(xx1> 'Xi_1)=D(x)D(x1" xi_1) — 0 and so D(x1-"Xi_1) = 0.
Now Z) vanishes on m*"1 contrary to the assumption on i and hence D=0. We
obtain # = 1 immediately.

Proposition 4.c υ We assume that G and G' are group varieties defined over
k, and a is a surjective k-homomorphism of G onto G'. We set O=OG e and O'=
OG

f jy where e(resp.e') is the neutral element of G(resp. G'). Then there exists a
regular system of parameters {£u , tn} for O such that {tf1, •••, t%m} is a regular
system of parameters for O', where we identity the rational function field of Gf with
a subfield of the rational function field of G by the cohomomorphism α*.

(1) The author knew that H, Yanagihara obtained this result in [13],
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Proof. We decompose a: G^>G' as follows:

G - £ - * G/Ker(α)red -U G',

where β is the canonical epimorphism and γ is the homomorphism induced by
α. Since β is separable and γ is a purely inseparable isogeny, we get the asser-
tion using Theorem in [6].

Let H, K be bialgebras over k and let n: H -> K be a homomorphism of
bialgebras. Then we define HKer (π) = {x^H\ l®x = (π®l) AH (x) in i£®Λ

H}. lί H is cocommutative we see that HKer (π) is a sub-bialgebra of if ([11]
Lemma 16. 1.1.).

We let a : G-*Gr denote a homomorphism of Λ-group schemes. Since the
induced homomorphism α* : OG'e/->OGe is local, it gives a homomorphism of &-
vector spaces da: ®(OGέ?)-^®(OG'y), where e(resp. e') is the origin of G(resρ.
G'), Then we have

Proposition 5. da is a homomorphism of bialgebras.

Proof. We shall first show that da is an algebra homomorphism. To this
CO

purpose, we have only to prove da(D * E)=da(D) * da(E) for D, E in U ©*
«=sl

(OGt,). Let ΛJ e OG/,/. Then we have iα(Z) * £) (Λ?)= (Z)®£) (φm*a*(x)),
where φ is the canonical isomorphism: OGxGeXe ~ (O ®kO)n used in the proof
of Proposition 2, and m* is the homomorphism: OGe^>OGxG eXe associated with
the multiplication m of G. On the other hand we have (da(D) *d a(E)) (x) =
(D®E) (af φ'm* (*)), where φ'ι OG>xG'>e>Xe' ~ {O'®kO')n' and m'*: OG't/-+O
G'XG('Jxe' a r ^ defined similarly for G' and αf is the homomorphism : {Of®kO\'
->(O®A,O)n induced by α*: O'->O. We obtain φm*a* = αf φ'm'*y since α is
a homomorphism of G into G7. Thence rfα is an algebra homomorphism. Next
we shall prove that da is a coalgebra homomorphism. Let A(D)="

Then we get (da® da) (A(D)) (x®y)= Σ £,(«*(*)) Z){(α*(y)) for ΛJ,
i

On the other hand Δ(Ax(D)) (ic(g)y)=Z)(a*(«)a*(y)). Since Δ(Z))= Σ Dg®Dt9

we see D(α*(Λi) α*(3;))= 2 Z)|(α*(Λ?)) D^(α#(j)). This completes our proof.
Thus rfα induces a homomorphism of bialgebfas: ξ>(G) -> ξ) (G7). We also

denote it da.
We assume that G is a group variety defined over k and {t19' ',tH} is a regular

system of parameters for OG e. Let/ e OG e and we express/=ΣΛ«i-»if ^I1---

^Λ mod. τnG te with # f y / w ^ & for sufficiently large iV, where mGe is the maxi-
mal ideal of OGe. Then the elements aiχ...in are uniquely determined by / and a

regular system of pareamters {t19—tn}. We set /^...^^ (f)=ah...in. If Σ * y >

0? ^ή ίn.̂  vanishes on 1 and on m ^ + 1 . Thence we see 7^...^,, e %)m(OG^) for
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some m by Proposition 1, (2). Since S)(OGe) is canonically isomorphic to
by Proposition 3, liλ^inte corresponds to the unique left invariant high order der-
ivation Ih...in of G. We say that the /, v .fM are the canonical left invariant high
order derivations with respect to a regular system of parameters {tv ",tn} for
OGJ2\

Proposition 6. In the above situation the / t l t n form a basis of the k(G)-
vector space of all high order derivations of k(G)jk, where k(G) is the rational func-
tion field of G over k.

Proof. Following [8] we denote by ®(f(A(G)/Λ) the set of all q-th order
n

derivations of k(G)jk. We have only to show that the /^...^ (0< Σ*y ^ <?) form

a &(G)-basis of SBψ^G)/*). From the proof of Proposition 18 in [9] we know
the dimension of ^Q

0\k(G)lk) over k(G). Thus it is sufficient to see that the Iiχ

...in are independent over k (G). Let Σβ«i f« Λy ί* = 0 with aiχ...in G & (G).
There is a closed point g in G such that non-zero aiγ..in are unit in OG g. We
have 2>,y,-B Ih...in{L%-ith -tin)) = Σ β ^ L ., V J t f ' - tf ) = 0 where
L*-i is the automorphism of k(G) associated with the left translation by g * of
G. By the definition of / f l.. i r t we see that L*-χ Iil...in {t(\ •• ί̂ ») is unit in OG ^
for iλ = j i y - ', in = jn a n d is non-unit in OG g otherwise. If ajχ...jn Φ 0, we have
aJ1'"JnL%-^IJ1"Jni^1 -tin)=- Σ aiϊ inL^-ilh iJίti1'"*&)• I n t h i s equalityΣ

the left hand side is unit in OG g while the right hand side is non-unit in OG g.
This is contradiction.

Let a: G->G' be surjective homomorphism of group varieties defined over
k. By Proposition 4 we can choose a regular system of parameters {tiy- >tn} for
O G e such that {ίifi , ^ w } is a regular system of parameters for OG

fy. We
let {Ij^...^} denote the canonical left invariant high order derivations of G with
respect to {̂ , , tn} and {7 .̂..̂ } be the canonical left invariant high order der-
ivations of G' with respect to {f£i , t%m}. Then we have

Theorem 2.(3) (1) da: %(G)-> £>(G7) ώ surjective.
(2) ξ>(i£er(α)) = HKer (da) and moreover as a k-vector space ξ)(Ker (a)) has a
k-basίs {Ih^h<p

eι(\<l<m).
(3) Ker (da) is a k-vector space with a basis {Ij1...jmO...o} 3 , (1 < i < ^ ) U {Ij\ -jn}

at least one of j m + 1 , - ,jn>0 and in fact Ker (da) is a left ideal of $Q(G) generated
by &(Ker(a))+={D(Ξ&(Ker (a))\S(D)=0}, where S is the augmentation ofbial-
gebra &(Ker (a)).

(2) These are the same as the canonical left invariant semiderivations of G with respect to
Oi, , tn) defined in [11].

(3) The author knew that H, Yanagihara obtained (1) and the latter part of (2) in [13].
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Proof. (1) We see that {IΊ^.iJ is a β-basis of ξ>(G'), since the 7'/l.../fM>/

form a &-basis of ®(O G ' y) . An easy calculation shows da(IilP^i...imp^mo...o) = ΐtχ

.../m and so da is surjective.

(2) Since Ker (a) is a closed subgroup scheme of G, it is clear that ξ> (Ker (a))

is a sub-bialgebra of ξ>(G). We see Ker (a) = Gx Spec(β). Hence if m' is the
G'

maximal ideal of OG

f j we have OKeτCcύ^>e= OGela*(m')OGe where α* is the ho-

momorphism: OG

/ /—>OGtβ induced by a. Now it is immediate to see that ξ>

(Ker (a)) coincides with HKer (da) as sub-bialgebras of ξ> (G). Next we prove

the second part. If Ijv..jn G HKer (da), we have 7/1.../Jlf,(α*(#')y) = a*(xf) (o)

Ij1».jHte(y) for any x'^OG\e' and any y G O G β and coversely. We see easily 7yr..

U α V M = + Σ .//1-/M,l(a*(^/)) Jr/1- /l/. ώ H e n c e w e o b t a i n Ih -y.eHKer
(rfα) if and only if '* Σ //1 ••/„,*(«* M ) //1w^(y)^=0foranyx'eOc/i/and

a n y j G O G e . Since 7/l.../llf#(ίϊ l/ ί i > | / )= 1 for li = l'i(\<ί<ri) and 0 otherwise,

we see 7/l.../n>β(α*(#/)) = 0 for any Λ?rG O G ^ / and any integers 119...91H satisfying 0

<li<ji(\ <i<n) and $]/,•>0. Thence we must havey ;</)e/ for 1 <l<m. Since

the Ij1 .jn form a Λ-basis of ξ> (G), our assertion is now immediate.

(3) we have da(IilPΊ...ιmP'mo...o) = Fh...lm and da(Ih...Jn)= 0 if (Λ,•••,;„) is not of

the form (lΊp
ei,- y lmpem, 0, ,0). Now the first assertion is obvious. We have

9>m*(ίί)Ξίt. (g) 1 -f 1 (g) t{ mod. m2( cf. chap. IX in [7]), where m* is the homomor-

phism : OGe -> O G x G e X e associated with the multiplication m of G and 9? is the

canonical isomorphism : OGxGeXe ^ (O G y β ®kO G e)n and m denotes the maximal

ideal of (OGe®kOGe)n. Then an easy computation shows 7^...^^ * Ijv..jn>e =

W *.+y. m o d Φ(G)nΦ,c?«'+^-13 (G/A). If we

express ίj = ajp
ei-\-bj with 0<bj<peJ for j = l , , m, we hvae Iil...iilfi...0=Iaii>n...

amp°»o-o IH-^O-O mod. φ(G) Π S>.C5'Γ« (G/A), since ( ^ j t " * ' ) = 1 mod. /».

We see Ibl ..bmO...o G ξ)(Ker (α)) + by (2) if some of i y is positive. Moreover we

have 7yi...yrt^7yi...ym0...0 7o...oym+1...yrt mod. ξ)(G) Π © o

c ? y ' " 1 5 (G/k). If at least one

of jm+i, > i« is positive, 7o...oym+1...yιl G ξ)(Ker(α))+ by (2). Now the induction on

the order of high order derivations completes our proof.

If G is a Λ-group scheme and G' is a closed subgroup scheme of G, it is

immediate that ξ>(G') is a sub-bialgebra of ξ>(G). We consider which sub-bial-

gebras of £>(G) arise from closed subgroup schemes of G. We obtain a charac-

terization in the case G is a commutative group variety.

Let G be a group variety defined over k and let ξ> be a sub-bialgebra of ξ>

(G). Then we define k(G)§ to be the set of elements x in Λ(G) such that D(x)=
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0 for every D in ξ> satisfying S (D) = 0 where k(G) denotes the field of rational
functions on G over k. We see that k(G)% is a subfield of k(G).

Proposition 7. fFie asume that G and Gf are group varieties defined over k
and a is a surjective hotnomorphism of G onto Gf defined over k. Then we have
k(G)HKeτCd«>=k(G% where we identify a*(k(G')) with k(Gf) and k(G')s denotes the
separably algebraic closure of k(G') in k(G).

Proof. We shall first show that k(G') is contained in k(G)KKetCd<*\ Let D
e HKer (da). Then D vanishes on k(Gf). Since an high order derivation can
be uniquely extended to an high order derivation of separably algebraic extension
field ([9] Theorem 17), D vanishes on k(G% Hence we have k(G% c k(G)
κκercda\ We assume k(G')s S k(G)KKercd«\ Then there exists an element x in
k(G)KKerCd^ satisfying x $ k(G')s. We shall show that this will lead to contra-
diction. Since x $ k(G')sy x is either transcendental over k(G')s or purely inse-
parable over k(Gf)s. In any case there exists an ordinary derivation D of k(G')s

(x) such that D vanishes on k(G')s and D(x) = 1. Then D can be extended to a
high order derivation D of k(G) ([9] Proposition 13, Theorem 17). Let {t19" ,
tn} be a regular system of parameters for OG e as in Proposition 4. We assume
that the Ijv .jn are the canonical left invariant high order derivations of G with
respect to {*!,•••> *»}• The Ij\...jn form a basis of the &(G)-vector space of all
high order derivations of k(G)jk by Proposition 6. Thence we have D=^aj1...jn

Ijv Jn W ^ t n aJ\-Jn m *(G). We shall show allPeι...lmPemo...o = 0. To the contrary
we assume allPeι...lmpem(y..Q Φ 0. There exists a closed point g in G such that
every non zero ajχ...jn is a unit in OGg. We have D(L^-1(tlιpei'"t^fnpem))z=z
Σ Λ /i-/* £*-iC0i•»y«(*51**1" *ι£m**>11))! where L*-i is the automorphism of k(G) asso-
ciated with the left translation by g'1. D vanishes on k(Gf) by our construction
and Σ«/i... /* L*-i(/y1...yw(^1 ί > ^ m ) ) is a unit in OGijr because Ijv..jn(tι^e^-
tmmpem) is a unit ίorjt = /t^«(l <i<m), jm+1=-'=jn = 0 and a non unit otherwise.
This is contradiction. Hence we have ai1p

ei...imP

em0...0=0. Since D(x)=l, there
is a set of integers OΊ,---, 7«} satisfying Ijr..jn(x) Φ 0. The above argument
means that either somej,. oϊjiy- 'yjm is not divisible by pei or at least one ofjm+1,
~ ,jn is positive. Consequently we have Ijχ...jn e Ker (da) by Theorem 2, (3)
and so there exists D' in HKer (dα)+ such that D'(x) Φ 0, because Ker (da) is a
left ideal generated by HKer (da)+ (Theorem 2, (3)). This contradicts to x e /ί

Lemma 1 ([14] Lemma 2). Le£ K be a field of positive characteristic and
{Do = l,Dlf D2, --} be a higher derivation of K in the sense of [4]. If we set K^
= {x^:K\Di(x) = Ofor any i > 1}, then Kis a separable extension of K^.

For the results of bialgebras with one grouplike element we refer to [10].
Let H be a cocommutative bialgebra over a perfect field k of positive character-



270 Y. ISHIBASHI

istic p. We assume that H has only one grouplike element and set W = HomΛ

(i/,&). Then H' is a commutative algebra with respect to convolution (Cf. [11]).
We define F(a') = afp for a! e H'. The transposed mapping ί1' : H" -> # " is
given by <Λ', F'(δ")> = <F(a')y V

rylP for a' (Ξ H' and δ" G # " . Identifying
H with subspace of H" we have ^'(72) c H. Let F denote the restriction of F'

on i ϊ and let V be F - V (n times). We put V°°(H) = f\ Vn(H). It is shown

that V°° (H) is a sub-bialgebra of H. We denote by L (H) the set of primitive
elements in H, i. e. x G i/ satisfying Δ(x) = # ® 1 + 1 ® # , where Δ is the co-
multiplication of # . Moreover we set L^H) = L(H) Π V*(H) for i = 0, 1, , <χ>.

REMARK 3. If G is a Λ-group scheme, then we have V°° (£>(£?)) = ξ> (G r e d),
and G is reduced if and only if ξ> (G) — V°° (ξ)(G)). This follows immediately
from 6.4 of [2] III §3.

Lemma 2. Let G be a group variety defined over k of dimension n. Then
we see that Lφ{G)) = Loo(£>(G)) and this is n-dimensional as a k-vector space.

Proof. We note that L (ξ> (G)) is the set of left invariant (ordinary) deriva-

tions of G and is of dimension n over k as a &-vector space. Thus we have only

to prove L($Q(G)) c Loo(ξ>(G)). Let {/̂ ...yn} be the canonical left invariant high

order derivations of G with respect to a regular system of parameters for OG e.

Then it is easily seen that {1, IQJ0^ /o...o£o...o, " , /o...oL.o'""} i s a n i n f ^ m t e

higher derivation in the sense of [4]. Thence we have IQ o~o o G L ^ ^ G ) ) by

Theorem 2 of [10]. On the other hand the /o o^o o form a A-basis of L($(G))

and so our proof is complete.

Theorem 3. Let G be a commutative group variety defined over an algebrai-
cally closed field k of positive characteristic and §>bea sub-bialgebra of$Q(G). Then
§ is the bialgebra of a closed subgroup scheme of G if and only if we have tr. degk k
(G)£ = dim G-dimkL^ffe), where tr. degkk(G)§ denotes the transcendence degree
of k(G)§ over k.

Proof. We assume ξ> = $(G7) for some closed subgroup scheme G' of G.
We consider the canonical epimorphism a: G-^GjGf of group varieties. Then
we have HKer(Λx) = ξ)(G7) by Theorem 2, (2). Hence Λ(G)δ = k(G/G% by
Proposition 7 and so tr.deg^(G)^ = dim G-dim G/ On the other hand Loo(S)(0

G V ) ) = L4®(OG ' r e dy)) by Theorem 2 of [10], since O G V = OG>ndy®JI for
some finite bialgebra H over k ([2]ΠI 3, 6.4) and so ®(OG 'y) = ®(<Vred,/) ®k
Homk(H, k). Being G ^ smooth over ky we have dimA;Loo(©(0G/red>/)) = dimΛ

d)) — dim G'Γed — dim G' by Lemma 2. Hence we have tr.degJt(G)%
G- dίm^Loo^). Conversely we assume tr.deg^(G)^ = dim G- dim^L^θ).

Since §(G) has only one grouplike element 1, ξ> is so. Thus we can apply The-
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orem 3 of [10] to see the coalgebra structure of ξ>. Since G is commutative, ξ>
(G) is commutative. An element of ξ> therefore induces a high order derivation
of k(G)v°°c& into itself. We assert that k(G)v°°c& is a finite modular purely in-
separable extension of k(G)®> for the latter is the constant field of higher deriva-
tions of finite rank in the sense of [4] by the coalgebra structure of €>([10]
Theorem 3). We see that k(G)v°°c& (resp.Λ(G)Φ) is the function field of some
group variety G0(resp. Gx) defined over k by Proposition 8 of [1], because ξ> c ξ>
(G) and G is commutative. We also have epimorphisms β : G ^ Go and y : Go

-> G r Clearly y is purely inseparable isogeny. Since V°°(!Q) is commutative and is
generated by the components of infinite higher derivations by Theorem 3 in [10],
β is separable by Lemma 1. We set a = 7°/3. We shall prove ξ> = HKer(rfα).
To this purpose it suffices to show Lt (ξ>) = Lt (HKer(rfα)) (i = 0, 1, 2, , oo) by
Theorem 3 of [10]. By our assumption dimjX^ξ)) = dim G-tr.deg*&(G)$=dim
G-dim G r Since β is separable and y is purely inseparable, there exists a regu-
lar system of parameters {*„•••, tn} for OGe such that {̂ , , tm} (resp. {ί?βl, ,
ft6"1}) is a regular system of parameters for the local ring of Go at the origin
(resp. the local ring of Gλ at the origin). Then dim G-dim G1=n-m and on the
other hand dimAίLoo(HKer(ί/α)) = n-m by Theorem 2,(2). Being ξ)cHKer(rfα)
we get Loo(ξ)) = L00(HKer(Jα)). We see dim* Lx (HKer(Jα)) = (n-m) + (the
number of / satisfying i + 1 <e7(l <l<nή) from Theorem 2 in [10] and Theorem
2,(2). Thus we have dim^L, (HKer (dy)) = dim^L, (HKer(rfα))-dimArLoo (HKer
(da)) for i = 0, 1, 2 , - . We also see that HKer (dy) = {D \κc&

v~c& for some
D in ξ>} by Jacobson-Bourbaki Theorem (cf. [5]), where D | KCG)V°°C& denotes the
restriction of D on k(G)v°°^\ Since L^φ) = L^HKer^α)) we have
-dimkL^φ) < d im^ (HKer (da))-dim^ (HKer (da)) = dim^^H
We set H={D\KG7~C® for some D in φ}. By Theorem 3 of [10] we see dim*
HKer(Jγ) = pΣ^kLicnκercdy^ a n d άimkH < pψ6imkL^-6imkLβocsb^ gince HKer

(dy) = H we get dim^L,(φ) -dim^L.(ξ>) - dim^L,(HKer (dy)) for i = 0, 1, 2 , - .
Hence we have dirn^L,. (ξ)) = dim^L,. (HKer (da)). Since ξ> c HKer (da) we
obtain L,(ξ>) - L£(ΉKer(da)) for i = 0, 1, 2 , - . Thus we have φ = HKer(rfα),
i. e . ξ) = ξ)(Ker(α)) and we are done.
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