Harada, M.
Osaka J. Math.
8 (1971) 309-321

ON CATEGORIES OF INDECOMPOSABLE
MODULES I

Manasu HARADA

(Received October 20, 1970)

We have studied the Krull-Remak-Schmidt-Azumaya’s theorem from point
of view of categories in [4], §3. In this note, we shall study further properties of
those categories.

We have defined an additive category ¥ induced from a family of completely
indecomposable modules {M,}, namely whose objects consist of directsums of
M, and studied the quotient category /I with respect to the ideal Fin A in [4].

In the first section, we characterize submodules M, in an object M in ¥,
which is in W and M,=M (mod J), and show that every such M, coincides with
M if and only if ¥ is the Jacobson radical of 2, (see [7] for the radical).

In the second section, we consider Conditions II and III defined in [4],
which are related with exchange property defined in [1]. We change slightly the
definition of exchange property in this note and show that every direct sum-
mand of objects M in A has the exchange property in M if and only if J is the
Jacobson radical of .

In the final section, we restrict ourselves to a case where M,’s are projective.
We shall show, in this case, that objects in U are closely related to semi-perfect
modules defined in [9]. Especially we show that an object P= Z @®P,in A is

perfect if and only if {P,} is an elementwise T-nilpotent system defined in [4] and
P is semi-perfect if and only if {P,} is an elementwise semi-T-nilpotent system.

Let R be a ring with unit element and all modules in this note be unitary right
R-modules. An R-module M is called completely indecomposable if Endy (M)
=S8 is a (non-commutative) local ring. We assume here that indecomposable
modules mean completely indecomposable.

1. Dense submodules
Let M, be an R-module and assume M,= > M ,, where M ’s are inde-
I

composable modules. We have defined an additive category U in [4] from the
above decomposition as follows: The objects of U consist of some directsums of
M,’s and the morphisms of ¥ consist of all R-homomorphisms., We denote
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those morphisms by [M, N']r and we call % is induced from a family {M,}.
Furthermore, we have defined an ideal 3 in 2 in [4] as follows: Let N= 3>} @M,
N'=31®M'y be in A. J consists of all morphisms f in [N, N']g such that
pefiss[Mpg, Mylr is not isomorphic for any S and 8, where i, pg are injection
and projection, respectively and N, N’ run through all objects in 2. We know
from Theorem 7 in [4], that J defines an ideal in N and A/F is a C,-completely
reducible abelian category, (see [2] for the definition of ideals).

When we consider object N and morphism f in /J, we denote them by N
and f. Furthermore, if N is in % and N=-N,®N, as R-modules, then N,
means Im ¢&;, where e, is a projection of Nto N,. Let S be aring. By J(S) we
denote the Jacobson radical of S and by Ju we denote I N Endg(M) for an
R-module M.

Let M DN be objects in U and ¢ the inclusion of N to M. If{ is isomor-
phic modulo J, i.e. M=N, then we call N a dense submodule in M.

Proposition 1. Every dense submodule of M is R-isomorphic to M.

Proof. Since M=N, M and N have isomorphic direct summands by [4],
Corollary 1 to Theorem 7. ’

Let {M,} be a family of completely indecomposable modules and {f,,}7-1
any sequence of non isomorphic R-homomorphisms of M,; to M,  in {M,}
(M,;,, may be equal to M,;). If there exists #n, which depends on the above
sequence and for any element 7 in M, , such that f, f,, ,-*'f, (m)=0, then we
call {M,} a (elementwise) T-nilpotent system (cf.[4]). If the above condition is
satistied for any sequence {f,;} such that M ,,#M,, if i%1, then we call {M,} a
(elementwise) semi-T-nilpotent system. In general, a semi-T-nilpotent system
is not T-nilpotent.

Let M= 2 @M, and J a subset of I, then we denote a submodule

3 @M. by M.

Proposition 2. Let M and P be in X and M2 P. Then there exists a
submodule P, in M satisfying the following conditions.
1 P, is an object in A; P= > PM,.
I

2 P, is a direct summand of M for any finite subset J of I, (if {Mu}, is T-
nilpotent system, |’ need not be finite).

3 P=P.

Furthermore, if P=1m ¢ and e is an idempotent in S py=End (M), then we can
choose P, in Im e.

Proof. Let P= 3 @®M,. Since M2 P and /Y is completely reducible,
1

there exist i€ [P, Mg and p&[M, P]g such that pi=1p (mod J). Let J be a
subset of I and 7, p; be inclusion and projection, respectively. Since p,pii; is
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isomorphic, p,pii; is R-isomorphic by [4], Lemma 8 and Theorem 8 if J is finite
or {M,}; is a T-nilpotent system. Hence, a;=ii, splits, namely Im o is a
direct summand of M. Therefore, ¢ is R-monomorphic. We put P,=Im i
as R-module, then P, satisfies 1~3. If P=Im e, we have a relation pei=pi=1p
(mod ). Hence, if we take o,=eii;, we know that Im ei=P,CeM.

The following theorem gives a special answer for Condition III in [4].

Theorem 1. Let M be in and M= 3 DN, as R-module. Then each N,
K

contains a submodule P, such that P,is in W and > @P, is a dense submodule of
M.

Proof. Let =, be a projection of M to Ny. Then from Proposition 2 we
have P, in U such that P,=Im z,=N,. We shall show M= 3 @P,. Let
K

iy, 2y’ and z,”’ be inculsions of P, to M, of P, to N, and of N, to M such that

i,=1y"'1,’, respectively. Since Py=1Im 7,, there exists an R-homomorphism p,

of M to P, such that iypy,=n, (mod J). Let {f,} be an element in I [P,, N]o/3,
Y

where N is an object in A and f,[Py, N]g. We put f,"'=f,psiy’ €[Ny, Nz
and f=I1fy,'€[M, N]g. Then we have fi,=fi,"'i,’=f,""iy’=fyp4i,. Hence,
K

fiy=fy (mod ¥). We shall show that f does not depend on a choice of repre-

sentative f,. It is sufficient to show that if f| Py=fi, is in ¥ for all v, then f is

in I for any fin [M, N]g. Let N= 3 @M;; My’s are indecomposable. If f
L

is not in J, there exists an idecomposable direct summand 7' of M such that

Ps'fiy is isomorphic, where i,: T— M, ps': N— N; are inclusion and projection,

respectively. Since {7,}x is summable, 1y= 37, and f= > fr,. Further-
K K

more, since {p,'fryir}x is summable and py'fiy= 3 py'fr4ir, there exists a
finite subset K’ in K such that > p;'fzi+ is not isomorphic, and > ps'fryir is
E-K/ K’

isomorphic. Therefore, there exists v in K’ such that p;'fzyi 7 is isomorphic.
On the other hand p;'frzyir=ps fiyryiz=0 (mod J), which is a contradiction.
Conversely, we take a morphism f&[M, N]u/s and f€[M, N]g. Put f,=fi,,
then f, does not depend on a choice of f by Proposition 2 and [4], Lemma 5.
Thus, we have shown that [M, N]u/g= II [Py, N]2/3.

We call such P, a dense submodule of N,.

Theorem 2. Let M be in U induced from a family {M ,} of completely inde-
composable modules M ,, and N= > ©M," in N be a submodule of M. Then the
I

following statements are equivalent.

1 N is a dense submodule of M.

2 There exists a finite subset ] of I, for any direct summand P of M, such that
either PNN ;%0 or P®N is not a direct summand of M.
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3 N contains Im (1—f) for some element f in I and 1 is monomorphic.
In those cases N ;s is a direct summand of M for any finite subset ]’ of I. Fur-
thermore, Im (1—f) is always a dense submodule of M.

Proof. 1—2 Since every direct summand of M contains an indecompo-
sable module by [4], Corollary 1 to Theorem 7, we may assume sois P. Since Pisa
minimal object, Pis small (cf.[5], Theorem 1.4). Hence, PC 3 M, for some

J

finite set /. We assume that PN N ;=0 and PPN is a direct summand of M.
Let e, f and E be projections of Mto P, N; and PPN, respectively. We may
assume E=e—+f and ef=fe=0. We denote the inclusion of submodules to M
by i. Since PCN,, there exists a in [P, N,]g such that i;a=ip (mod J).
Since 1p=étp and fe=0, Ip=éi,a=0. Hence, P=0, which is a contradiction.

2—1 If M+ N, there exists an indecomposable module P such that P®N 7
is a direct summand of M for any finite subset J of I. Since PGN; is a
directsum of finite many of minimal objects, there exists a direct summand P,
of M such that P,N\ N ;=0and P,@N is a direct summand of M (see the proof
of Proposition 2).

1—3 Let 7 be an inclusion of N to M. Since 7 is isomorphic, there exists
jin [M, N]g such that 77=1,. Putf=1—jj, then fEeJyand 1 —f=sj. Since
7 is monomorphic, N2Im (1—f).

3—1 First we shall show that N’=Im (1—f) is a dense submodule of M.
We know from the proof of Proposition 10 in [4] that 1—f is monomorphic and
hence, N’ is in. Let7 bean inclusion of N’ to M and 1—f=i (1—f); (1—f)
€[M, N'lg. Sincel1=1—f=41—f) and (1—f) is isomorphic, so is z. There-
fore, N’ is a dense submodule. Hence, M 2N 2DIm (1—f) implies that 7y is
epimorphic. In order to get the last part we put M=N=P in Proposition 2,
then N, is a direct summand of M.

Corollary 1. Let M be an object in U and P a dense submodule of M. If
for a direct summand N= 3" GM ' of M in N, ] is finite or {M '} is a T-nilpotent
T

system, there exists an automorphism o of M such that o(N) is a direct summand of P.

Proof. P contains a submodule N,” which is isomorphic to N, and is a
direct summand of M by Proposition 2; say M=N/PN,/=N,PN, Since
N,/~N,, we obtain the corollary.

Corollary 2. Let {M} be a family of completely indecomposable modules and
A the induced additive category from {M,}. Then the following conditions are
equivalent.

1 {M,} is an elementwise T-nilpotent system.

2 Qs the Jacobson radical of .

3 Ewvery dense submodule of any M in U coincides with M.
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Proof. 12 is obtained in [4], Theorem 8.

1—-3 Let N beadensesubmodule of /4. We know from 1 and Proposition
2 that N is a direct summand of M. Hence, N=M by Theorem 2.

3—2 LetfbeinJyand N=Im(1—f). Since N is a dense submodule by
Theorem 2, N=M. 'Therefore, 1 —fis isomorphic, which implies 3 is equal to

J(Sm)-

REmMARk. Let M= i @M, as in Theorem 2. We assume that there

i=1
exists a sequence {f,}7-1 of monomorphisms but not epimorphisms f, of M, to
M;,,. Then for any finite set J of I there exists a dense submodule N in M
such that NN M ,;=(0). Because, we make use of matrix representation of

[M, M]g and by {e;,,} we denote a system of matrix unites. Put f= >} é fitran
i k=1
Jirnozrfi€irner then fis in §. Hence, P=Im (1—f) is a dense submodule and

P M,=(0).
If we use the same argument for any set /, we can give an example in which
for some subset J with | J| <|I| there exists a dense submodule P in M such

that PN M ,;=(0). Furthermore, we can give an example in which there exists
a dense submodule Pin M= i DM, such that PN M,=(0) for all  and P+M.

In the above corollary, we have a situation Jp=J(Sp). In this case we
obtain a further result.

Lemma 1. Let M be in U and Jyu=J(Su). Then for every direct sum-
mand N of M we have I y=_J(Sx).

Proof. Since 3y=J(Su), N is in A by [4], Corollary 2 to Theorem 7. Put
N=eM for some idempotent e in Sy. Then it is clear that eI ye=3Jy, since
¥ does not depend on decompositions of M by [4], Lemma 5. Furthermore,

J(Sy)=eJ(Su)e. Hence, J(Sy)=u.

Theorem 3. Let P bein N and Jp=](Sp). Then every idempotent a in
S[J(S) is lifted to S.

Proof. Let a be idempotent modulo p. Then there exist amodule P, in
A and @’ [P, Pylg, ¥’ =[P,, Plgsuchthatd’a’=a and a’b’=1p (mod J). Since
P, is isomorphic to a direct summand of P by [4], Theorem 7, Jp=J(Sp) by
Lemma 1. Hence & is R-monomorphic and &=a’l’ is R-isomorphic on P,.
We may regard P, as a direct summand of P via &’; P=Im ¥’ Q. We put
E=b'E7W '+1g, then €=1(mod J). Put e=&a’, then ¢|P,=1p and Im
e=P,. Hence, e is idempotent in Sp and e=E&Wa’ =b'a’=a (mod ).

Corollary. Let R be a (non-commutative) local ring such that J(R) is T-nil-
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potent. Let S be the ring of column finite matrices over R with any degree. Then
every idempotent in S|[J(S) is lifted to S.
Proof. Put M= 3} PR,; R,~R. Then S=Sy and J(Su)=3]m by [4],

Ise
Lemma 10.

2 Exchange property
We shall recall Condition II in [4]. Let M= > @M,= >} G Ng be de-
I I

compositions of M with indecomposable modules M ,, N, Condition II in [4]
says that for any subset J of I, there exists a subset J’ of I such that M= >} M,
‘T/

@ > BNy However, this is a special case of exchange property defined in [1].
T

Furthermore, this property induces Condition III in [4], namely every direct sum-

mand of M isin A. Therefore, we shall define a weaker exchange property than

onein [1]. Let M be as above (in %), and M= 3" @GP, be any direct decom-
IEl

position as R-modules. We call a direct summand N of M has the |I|-
exchange property in M if M=N 3} @P, and P/C P, for any decomposition

I3

M= 3PP, with |[|-factors. If N has the |I|-exchange property in M for

I3i

any cardinal |I|, we call N has the exchange property in M. It is clear that if
N has the exchange property in M, then N is an object of 2. P. Crawley and
B. Jonsson have shown in [1], Theorem 7.1 (and [10], Theorem 1) that if M
is countably generated for all « in I, then Condition III is satisfied.

In the following we always assume that M= > IEBM +=N.PN, with inde-

composable modules M.

Lemma 2. If either N, is finitely generated or a dense submodule of N, is a
T-nilpotent system, then N, is in U, (i=1, 2).

Proof. If N, is finitely generated, then IV, is a direct summand of M, for
some finite subset J of I. Hence, N;~M ;s for some J'CJ by Krull-Remak-
Schmidt’s theorem. Therefore, M=N,P 3 PMy, by [4], Corollary 1 to
Theorem 7 (Azumaya’s theorem), and hence N,~ 31 @M, is in A. Next, we
assume that a dense submodule N, of N, is a T-nilpotent system. Then N,=N,
by Proposition 2. Hence N, isin 2. Since A/ is completely reducible, M=,
@}Z}ﬁ]l?[,;: IZKM,,, P ; M, for some K in I. Let p be a projection of M to

SYM,. Sincep|N,isisomorphic and {M,};_ is a T-nilpotent system, p|N, is

I-K

an R-isomorphism of N, to > M,. Therefore, M=N,P Kerp=N,Pp > M,
I-K K

=N,BN, Hence, N,~ > PMs,.
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The following lemma is a special case of [1], Lemma 3.10 and [10], Proposi-
tion 1, however we shall give a proof from point of view of our categories.

Lemma 3. Let M and N, be as above. If N,= 3 @M, and M/~M,;

i=1

for all i, then N, has the exchange property in M.

Proof. We assume that M=N,PN,= Z} @0, as R-modules. Then
M=N,®N,= Z @P,, where P,= 3 ®P, isI a dense submodule of Q, and
P,;s are indeco;nposable. Since N ,j—: anl @M/ is a small object in A/, there
exist a finite subset I” of I and a finite subset J of J, for i&1” such that
N,C >} X pP;;. We know from Proposition 2, 2) that 22 @PP,;=Pisa

I"73i J;2j
direct summand of M. Since I"”” and J; are finite, Jp=J(Sp) by [4], Lemma
8. Hence, P contains a direct summand N, such that N/=N,, (P=N,®P’).

M=N/®P'&® ,2 D Qi’@IE P Q,, where Q':Q’/@JZ‘} @DP;;. Letpy, be a
77 =7 Ty

projection of M to N, in this decomposition. Since N,=N, and N,N(P'P

S B0/D S B0,)=0, (see the proof of Theorem 1), 5 v, | N, is isomorphic.

7 =17

Therefore, py/ [N, is isomorphic as an R-module. Thus, we obtain that
M=N,®P'® 2] DO/'D 2] DLa-

Theorem 4. Let M= Z eM, with M, completely indecomposable, and
N,= 2} ©My' be a direct summand of M; M=N,&®N,. If I is finite or {My'}
s a T:nilpotent system, then N; has the exchange prope}ty in M for i=1, 2.

Proof. We know from the assumption and [4], Theorem 8 that R
=J(Sy,). Let M=N,®N,= ; PQs Then M=N,PN,= X} @P,, where
P, is a dense submodule of Q,. We put Pa:,?;,. PP,; (€A). Since /Y is
completely reducible, M=N,D FI‘_, lea’ @ P,;, where J,/ is a subset of J,. The
fact N,~P= ; %/ @P,, implies Jp=J(Sp). Let py, be a projection of M to

N, with Ker py,=N,. Then py,| P is isomorphic, and hence py, | P is isomor-
phic as an R-module. Therefore, M=P®N, and }_," ®P,, =0, We have

shown that N, has the exchange property. If I’ is ﬁmte, then N, has the

exchange property from Lemma 3. Thus, we may assume that {}’g} is a T-nil-

potent system. Noting that N, is an object of U by Lemma 2, first we assume

N=>XpT,, N,= ZA} ®T’gand T,4T’g for any a, B, where T, and T”; are
K </

indecomposable. We make use of the same notation as above. Then M=N,®»
M @P, and P/ ,HP’,=P,. Since >) PP ,~N, > DF', is a direct sum-
J
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mand of M by Proposition 2, say M= >} (P,/PP",) and Q,=P,'/PP,”’. Then
SY@P”, is an object in A by Lemma 2. Let p be a projection of M to

I

SNPP’, with Ker p=3PP"”’,. Thenp|N,isisomorphic, since N, 31 PP,
J

7
=0 and p(N,)=0 by the assumption. Hence, p| N, is isomorphic as an R-module,
which implies M=N,@Ker p=N,Pp > P"”’,. Hence, N, has the exchange
property in M. In general case, we choose all direct components T/ in N,,
which is isomorphic to some T, in N, and put N,/= > PTy; N,=N,/PN,”.
Then, N/=N,PN, satisfies the assumuption in the first case. Therefore,
M=N/& []V‘_, @eP”, and Q,=P,/PP",. Then M=N,PN,P ; @ P,
Since N,  satisfies the assumption in the theorem, N, @ >} @GP’ , has the ex-
change property from the beginning case. Therefore, M=N,P IZ D P D

ST @pPY,, and Q,2P",. Thus, we have proved that IV, has the exchange
T
property in M.

Corollary. Let U be as above. Then the following statements are equivalent.
1 Ewvery direct summand of object M in N has the Ry-exchange property in M.
2 Every direct summand of object M in N has the exchange property in M.

3 {M.,} is an elementwise T-nilpotent system.

Proof. 1—3 Let M= > dPM,= Z] PMyPD Z DM} be a direct de-
compositions with |I’| <N,. ISince ever;f direct sumlmand of Z@M’B/ has the
R,-exchange property in M, it has the R-exchange property in Z/ IEBM’QA There-
fore, Condition II is satisfied for ;} @My, which implies 3 b; [4], Lamma 9.

3—2 Itis clear from the theorem and Proposition 2.
2—1 Itis clear.

Proposition 3 ([1], [3], [6] and [10]). Let M be in A and M=N,BN,.
If N, is countably generated, then N, isin U. If every M, is countably generated,
then every direct summand of M is in .

Proof. We make use the argument of the proof of [1], Theorem 7.1. First,
we note that for any element x in N, there exists a direct summand N, of N, such
that x& N, and N, is in 2. Because, there exists a finite set J such that M 7
contains x. From Theorem 4 we have M=M ;PN,PN,/, N,=N,/BN,” and
N,=N,®N,”, where N,””=(M,®N,)NN, and N,”=(M,;BN,’)NN,, and
xeN,”. If we use the same argument in [6], then we obtain the proposition.
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3 Semi-perfect modules

We shall study further properties of 2 in a case of semi-perfect modules
defined by E. Maresin [9]. She has shown that every semi-perfect module is a
direct sum of completely indecomposable semi-perfect modules ([9], Corollary
4.4). Let P be an R-module and J(P) the radical of P. If P is semi-perfect,
then J(P) is small in P, [P/J(P),P|J(P)lr/;cr~Sp[J(Sp) and J(P)=PJ(R), (see
[9], §§ 2-5).

Theorem 5. Let P be a directly indecomposable projective module. Then P
is completely indecomposable if and only if P is semi-perfect, (cf. [5], the proof of
Theorem 2.8).

Proof. If P is semi-perfect, then P is completely indecomposable by [9],
Corollary 4.4. Conversely, we assume that so is P. Since P/J(P) is R/J(R)-
projective, J([P/J(P), P[J(P)]) =0. From an exact sequence 0 — [P, J(P)]g—
Sp—[P/J(P), P|J(P)]r/;cr»—0 we have [P, J(P)]D J(Sp). On the other hand,
J(Sp) is a unique maximal ideal in Sp and [P, J(P)]#Sp. Hence, Jp=](Sp)
=[P, J(P)]g. Next, we shall show that J(P) is small in P. Let N be a sub-
module of P such that P=J(P) + N. From the following row exact sequence

N———»NNO](P) 0

. P/J(P)
o P

we have f:P— N, which commutes the above diagram. If N=P, feJp.
Hence, Im fc NN J(P), which is a contradiction. Finally, we show that
J(P) is a unique maximal submodule in P. Put P=P/J(P), R=R/J(R) and
S=85p/Jp. We define p :P?[F, R]z—S by setting u(p® f)()=tf(t).

Since P=0 and R-projective, p#0. Furthermore, S is a division ring, and
hence, y is isomorphic. P7(P)=P implies that there exists p in P such that
w(pQ[P, I?]):Q:O where 7 is the trace map of P. Hence, ;L(p®f)§ S for
some f in [P, R]. Therefore, P—SP——M(p@f)SPcpf(P)CpRCP Hence,
P=pR~eR for some idempotent & in R. Since éRe is a division ring and R is
semi-simple, P is R-irreducible by [8], Proposition 1 in p. 65. Hence, J(P) is
unique maximal, since J(P) is the radical of P. Thus we have proved that P is
semi-perfect by [9], Theorem 5.1.
Now let {P,} be a family of completely indecomposable projective modules,
and A the induced additive category from {P,}. Let P= > ®P, and
=>1PPy be in WA and f in [P, Plg. If fap=pa.fis is epimorphic, then f,g
splits and hence f,s is isomorphic. Since J(P,') is unique maximal, Im f,g
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C J(P) is f g is not isomorphic. Hence, if fis in &, then Im f < >3 P J(Py')
=J(P’). Conversely, if ImfC J(P’), then fis in J. Therefore, [P, P’ ] NI
=[P, J(P')]z. Furthermore, 0—[P, J(P')]g—[P, P'1g—[P/J(P), P’|J(P)]riscr>
—0 is exact. Thus, for any object P in A, many arguments in /I concerned
with P coincide with those as R/J(R)-modules. From this reason, we make use
of terminologies in A/J, instead of ones as R/J(R)-modules, if there are no
confusions.

Theorem 6. Let  be an induced category from a family of completely inde-
composable projective modules {P,}. Then an object P= >) D P, in W is perfect if
I .

and only if {P,}; is an elementwise T-nilpotent system.

Proof. Let J’ be a full subcategory in & which is induced from {P.},.
If P is perfect, then every object in 2’ is semi-perfect. Hence, 3’ is equal to
the Jacobson radical in 2’ by the above remark and [9], Theorem 2.4. Therefore,
{P,}, is a T-nilpotent system by [4], Theorem 8. Conversely, we assume that {P,},
is a T-nilpotent system. Then Jp=J(Sp) for every object P in A’. We shall
show that J(P)is smallin P for every object P in A’. Let P=Q- J(P) for some
submodule Q and p, a projection of P to P,, where P= > @P,. Since p,(J(P))

G

CJ(P,) and J(P,) is small by Theorem 5, p,(Q)=P,. Hence, there exists f in
[Py, Qlr such that p,f=15. Therefore, Q contains an object in " which is a
direct summand of P. Let T be the set of such objects in Q and define a pertially
order in T by the inclusion. We take a totally ordered subset OQ,CQ,C---
in T. Put Q;=UQ,, then Q,= > @Ng; Ng~P,p by Lemma 2. Fur-
thermore, the inclusion Zg: Ng— P is not zero modulo 3, since Q; is a direct
summand of P. Hence, Q, is a direct summand of P by the proof of Proposi-
tion 2,2. Thus, we have a maximal element P, in 7. P=P,pU and Q=P,
@ONU. Since P=0+J(P) and J(P)=]J(P,)PJ(U), U=J(U)+UNQ. Uis
also in A’ by Lemma 2. If U=40, UNQ contains an object in A’ which is a
direct summand of U and hence of P. Which contradicts to the maximality of
P,. Therefore, P=P,=Q. Thus, every object in 2’ is semi-perfect by Theorem
5 and [9], Theorem 5.2.

In the above argument, we have used only facts that P, are semi-perfect and
Sp=J(Sp). Hence, from Lemma 1, [4], Corollary 2 to Theorem 7 and [9],
Theorem 2.3 we have

Proposition 4. Let P= > PP, and P, semi-perfect. Then P is semi-
perfect if and only if Jp=J(Sp).

Theorem 7. Let P be an object in A induced from projective, completely
indecomposable modules P,. Then we have the following equivalent conditions.
1 P is semi-perfect.
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2 Ip=J(Sp)-

3 Ewvery dense submodule of P coincides with P.

4 P=>)®P,in¥, then {P,} is a semi-T-nilpotent system.
I

5 P satisfies the Condition 11 in [4].

Proof. 1¢>2 is proved in Proposition 4.

1—-3 Let N be a dense submodule of P. Then N2Im (1-f) for some
feJp. Hence, PCN+f(P)C N+ J(P)CP by the remark before Theorem 6.
Therefore, P=N+ J(P) implies P=N, since J(P) is small.

3—4 Let {f,} beafamily of non isomorphisms of P,; to P,,,, (Py;+P,;. ).
Put f= 3 (—e;+,:f;), where {e,;} is a system of matrix units in Sp. Then
Im (1—f) is a dense submodule of P. From the assumtion and the argument
of Lemma 9 in [4], we know that {f,} is a T-nilpotent sequence.

2—5 is proved in [4], Corollary 2 to Theorem 7.

5—4 is proved in [4], Lemma 9.

4—1. Let

=2 @Mmﬂ"'(*)’

Ko T,58
where M,4’s are indecomposable and M g~M 57, M o3 M o if a=a’. First
we assume that the cardinal A, of |I,| is finite for all ¢ in K. We put P,

= i DM 45, where n=2»x,, and show that J(P) is small in P. We assume
B=1

P=N-+J(P) for some submodule N of P. Let py,, be a projection of P to
Py Since A, is finite, J(Py,»,) issmall in Py, ,. Hence, pycm .|V is epimor-
phiC, and there exists gE [Paﬁ(n) n N]R such that (Pm(n) n| N)g: 1Pa(n) ne Put
Piw n:Img Since Ker p“"")”z.,*z.,(,,)@l)"ﬂ’

P = Pioo o 3 ®Pap(+4).

Now, we assume N& My, and x,EM,,,;,,—N. Then x,=x"+ >}y, from
(*x), where &’ € Py, 5, ¥, Pag.  From the assumption there exists some y, EEN
since Py, ,—N. Hence, there exists x, in M, ,,—N such that y,=x,+ >3 2,

€M, ; (j*i,). If we replace () by (**), we can find x, in M, ;,—N and
P=P, s sDPrirr mP > PP,s. Repeating this argument, we have a sequence
{x;} so that x,& M, ,,—N, and f,(x;)=x;.,, where f, is a projection of P to

M;,, 5, Whichisa contradiction. Therefore, J(P) is small. Finally, we shall
consider a general case. Let P= 3} EEBM,,BGB 2 ZEBM,,,( and put
Aoy B
P= > >'M, and P,= Z 21 ®M,;. We know from the first case P, is

Ag? Ry B Ro ¢
semi-perfect. If A,>R, for a, the fact that {M,g} is semi-T-nilpotent implies

from the definition that {M,g} is a T-nilpotent system. Hence, P, is perfect
by Theorem 6. Therefore, P is semi-perfect from [9], Corollary 5.3 (see Pro-
position 6 below).
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Corollary 1. Let P be projective and artinian, then P is perfect. Further-
more, if P’ is a directsum of artinian submodules and P’ is semi-perfect, then P’ is

perfect.

Proof. If P is artinian and projective, then P is in 2 and J, is nilpotent
ideal by [5], Theorem 2.8. Hence, for any directsum M of any copies of P, we
have Jp=J(Sum), since I is nilpotent. Therefore, M is semi-perfect, and P is
perfect. Let P’= > @PP;; P’s are artinian and P’ be semi-perfect. Then {P,}
is a semi-T-nilpotent system from Theorem 7. Furthermore, since Jp; is nil-
potent, {P,} is a T-nilpotent system. Hence, P’ is perfect from Theorem 6.

Corollary 2. Let P be a semi-perfect module. Then there exists a maximal
one among submodules which are perfect and direct summand of P. Those maximal
perfect submodules are isomorphic each other.

Proof. Let P= >} >I®M,, D > > M, asin theabove proof. If Jp,;
ASSR,

Xa<g
is elementwise T-nilpotent, then {M,;, Mg} is T-nilpotent, since it is semi-7-nil-

potent. Hence, if we chooseevery M,,; whose ideal 3y, is T-nilpotent, P,= 3>V 33
Ap<Ro

P M‘”"Ga)\gk SV P M, is a direct summand of M and perfect, where 3>V runs
through all ]lol,,,‘. in the above. Put P=P,®P, If P=0,HQ, 0,2P,and Q,
is perfect, then P=Q/PP,PQ, and Q,=0,/PP,. Since P,~Q,/PQ,, O/ =(0)
by the assumption. Hence, P, is a desired perfect submodule. Let T, be a
maximal element as in Corollary 2; P=T,H7T,, then T, is in 2A. It is clear
that T,, P, and T, P, have the isomorphic direct components, respectively.
Hence, P,.~T,.

Finally, we shall give some results concerned with ones obtained in [9].

First we shall give another proof of [9], Theorem 5.5.

Proposition 5 ([9]). Let 2 be as above and P a direct summand of an object
M in A. If J(P) is small in P, then P is in A.

Proof. Let M=P@®P, and P=eM for some idempotent e. P contains a
dense submodule P, with inclusion 7 such that if =e (mod ¥) for some f in

[M, Pj]g. Pute=if+x, x3. Then P=P,+x(P)and (P)cP N _J(M)=J(P).
Hence, P=P,.

Proposition 6 ([9], Corollary 5.3). Let {P}} be a finite set of semi-perfect
modules. Then > @P, is semi-perfect.

Proof. Since Jp,=J(Sp;) for every 7, we can show Jp=J(Sp) by using
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fundamental transformations of matrices (see [4], Lemma 8). Hence, P is semi-
perfect from Propostion 4.

Proposition 7 ([9], Theorem 7.2). If J(R) is right T-nilpotent, then every
semi-perfect modules is perfect.

Proof. Let P= 21 @®P, be semi-perfect. Then Jp=[P, J(P)]=[P, PJ(R)].

Hence, for any fe[P,, Pg]NT and x,E P, f(x,)= > xg;a5;, ag,E J(R). There-
fore, {P,} is T-nilpotent system by the assumption. Hence, P is perfect from
Theorem 6.

RemARk. [9], Theorem 5.1 is a special case of Theorem 3.
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