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Introduction

The purpose of the present note is to give an elementary proof of the follow-
ing theorems. Any C?—function on a compact connected Lie group G can be
expanded by the absolutley and uniformly convergent Fourier series of the matri-

cial components of irreducible representations if 2k >--;‘ dim G (Theorem 1).

The Fourier transform is a topological isomorphism of C~(G) onto the space
S(D) of rapidly decreasing functions on the set D of the classes of irreducible
representations of G (Theorem 3 and 4).

The related results which the author found in the literature are as follows.
In Séminaire Sophus Lie [1] exposé 21, it was proved that any C=—functions on
G can be expanded by the uniformly convergent Fourier series. Zhelobenko [3]
proved Theorem 3 for the group SU(2). R.A. Mayer [4] proved that the Fourier
series of any C'function on SU(2) is uniformly convergent but there exists a C'-
function on SU(2) whose Fourier series does not converge absolutely.

1. The Fourier expansion of a smooth function

Throughout this paper we use the following notations. G': a compact con-
nected Lie group, G,: the commutator subgroup of G, T: a maximal toral sub-
group of G, /: the rank of G = dim T, p: the rank of G, n: the dimension of G =
! + 2m, g: the Lie algebra of G, g°: the complexification of g, t: the Lie algebra
of T, R: the root system of g° with respect to t°, dg: the Haar measure on G norma-

lized as S dg = 1, L(G): the Hilbert space of the complex valued square integra-
G

ble functions on G with respect to dg, C#(G): the set of all k-times continuously
differentiable complex valued functions on G, [|4||=Tr(4A4*)"*: the Hilbert-
Schmidt norm of a matrix A4.

In this paper, a finite dimensional continuous matricial representation of G
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is simply called a representation of G. So a representation of G is a continuous
and hence analytic homomorphism of G into GL(k, C) for some k=1. For any
representation U of G, the differential dU of U is defined as

av(x) = [ -2 Uesp 1) |
dt t=0

for any X in g. The differential dU of U is a representation of the Lie algebra g.
The representation dUof g is uniquely extended to a representation of the univer-
sal enveloping algebra U(g) of g. This representation of U(g) is also denoted by
au.

For any representation U of G, all the elements in dU(t) can be transformed
simultaneously into the diagonal matrices. That is, there exists a non singular
matrix Q and pure imaginary valued linear forms \,,---,\, on t such that

(H 0
QaU()0™" = (M ) )
0 Ne(H)

for all H in t. The linear forms A,,---,\,, are called the weights of U.

We fix once for all a positive definite inner product (X,Y) on g which is in-
variant under Ad G. The norm defined by the inner product is denoted by | X | =
(X, X)”2. The inner product (X, Y) is extended to a bilinear form on the com-
plexification g° of g. A pure imaginary valued linear form(in particular a weight

of a representation) \ is identified with an element %, in t which satisfies
MH) = i(h, H)

for all Hint. So we denote as AM(H) = i\, H). Let T =T'(G) = {H <t ; expg
H =1} be the kernel of the homomorphisim expg : t — 7. Then I is a discrete
subgroup of t of rank /. Let I be the set of all G-integral forms on t:

I={\&t:(\, HE2rZ for all HET}.

Then the set I coincides with the set of all the weights of the representations
of G. We choose once for all a lexicographic order @ int. Let P be the set of posi-
tive roots with respect to the order @. Then the number 7 of elements in P is

equal to ; (n—1I). Let B be the set of simple roots in P, that is, B is the set of

roots in P which can not be the sum of two elements in P. B consists of exactly
p elements (p = rank G,). We denote the elements of B as a,,--,a .

Let A, -+,\, be the weights of a representation U. Then the maximal
element A among ;s in the order @ is called the highest weight of U. The
set of all highest weights of the representations of G coincides with the set D of
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all dominant G-integral forms on t:
D={el;(n o) =0 (1=Zi<p)}.

Since an irreducible representation of G is uniquely determined, up to equiva-
lence, by its highest weight (cf. Serre [2] Ch. VII Théoréme 1), there exists a bijec-
tion from D onto the set D of equivalence classes of irreducible representations of
G. Disidentified with D by this bijection. We choose, once for all, an irreducible
unitary representation U* with the highest weight A for each A in D. The degree
d(\) of the representation U* is given by Weyl’s dimension formula:

_ 171 A +3,a)
(1.0) d(\) = I o

where § = 27" > a.

aEPpP
If G is abelian, the right hand side of (1. 0) should be understood to express 1.
Let X, -+, X,, be a basis of g and g;; = (X;, X;) and (¢/) = (g;;)”'. Then
the element A defined by

—A= 3 XX,

i, j=1

in the universal enveolping algebra U(g) of g is called the Casimir operator of g.
A is independent of the choice of the basis X,,--, X,,. As an element in U(g),
A is regarded as a left invariant linear differential operator on G.

Let u},(g) be the (7, j)—element of the unitary matrix U*g). Then the follow-
ing Lemma is well known.

Lemma 1.1. 1) Let dU* be the differential of the representation U*. Then
we have

dUMNA) = (A, 2+28) 1.
2) The matricial element u}, is an eigenfunction of the Casimir operator A regard-
ed as a differential operator on G:

Auly = (N, M28)uly.

Proof. 1) Since the Casimir operator A belongs to the center of U(g), dU*
(A) is ascalar operator ¢l by Schur’s lemma. The scalar ¢ is determined as
follows. We can choose a Weyl base E, (a¢=R), H(1=i<I[)of g° satisfying
(B, E_,)=1,(H;,H;)=§;;and E,+E_,, (E,—E_,), H;=g. Then we have

! 5 !
—A =N E E AN H = 3 QEE A H)+ 3 HY
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because [E,, E_,] = H, where H, is the element in the space it satisfying
(H, H,)=a(H) for every H in t°. Let x+0 be the weight vector corresponding
to the highest weight \: dUNE,) x=0 (a € P), dUNH,) x=NH,) x=—(N, a)x.
Then we have

ex = dUNA) & = {33, a)— T MH)Y © = {0 28)+(0 1)
= (N, A+20) x.
2) For any element X in g, we have

(@) du;},

u?»(g)[ gz (XP tX)]

(X )e) = [ frutg exp1x) | =3

t=0 k=1 t=0

This equality can be expressed as
(XUM(g) = UNg)dUNX).
So we get
(AUY)(g) = UNg)dUNA) = (N, M +28)UNg)
by 1). q.e.d.
By Peter-Weyl’s theorem, the set
B = {d\)"u}; ; €D, 1 <1i,j < d\)}

is an orthonormal base of L*G). Therefore any function f in LG) can be ex-
panded by a mean convergent Fourier series of B:

d(A)
(1) f=2d0 S (f
The precise meaning of (1.1) is given by
. ey

(12) timllf— 53 d() S5 (7, )yl = O.
(1.2) is equivalent to the Parseval’s equality:

2 d(A)

1l = S 33 1(F )

For an arbitrary function f in L*G), the right hand side of (1.1) does not, in gene-
ral, converge at every point of G. We shall show that if f is sufficiently smooth,
then the series(1.1) converges uniformly on G. First we give a convenient ex-

pression of the series (1.1). Let f be a function in L(G) and x&D. Then the
A-th Fourier coefficient Ff()\) of f is defined by

F1n) = | _fe)UMeds.



FOURIER SERIES OF SM0OOTH FuNcCTIONS ON ComPacT Lie GROUPS 37
Ff(\) is a matrix of degree d(\) and its (Z,j)—element Ff(\),; is given by
(1.3) Ff, = | feme )

— [_femile) = (.10,

Therefore we have

(1.4) ST u () = 25 F A t(g)
= Tr(Z M) UNg)).

By (1.3) the Parseval equality can be expressed as

(15) 11 = S dONIF A

Lemma 1.2. If f belongs to C*(G), then we have
FANN) = o(N)FF(N)

where
(1.6) o(Z) = (A, A14-205).
Proof. Let @ and 4 be any C*-functions on G. Then for any element X

in g, we have

Ko w) = [ [ Lotgexp )] ¥ dg = 21 { (g exp 1) v(e) ¢ |

t=0

= AN sleriieesp(—iXdg| =~ X¥).

Let X,,--+,X,, be an orthonormal base of g: (X;, X;) = §;;. Then we have A=
—Eﬂ X?% and by the above equality we get

=1

(1.7) (Ap, ¥) = (p, AY)
for any C*~functions @ and yr. By (1.3), (1,7) and Lemma 1.1, 2), we have
F(ANN:; = (Af, uh) = (f, Auji) = oML SN
q.e.d.
Lemma 1.3. Let D, = D-{0}. Then the series

€0 =000

converges if 2s>1.
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Proof. Let I be the set of all G-integral form on t and [, = I-{0}. Itis
sufficient to prove the series

5 0

converges if 2s>I. Let A,,---,\;, be a basis of the lattice I and <x, y> be the inner

product on t defined by {Sx;\;, Sy;\;>=32x;y;. Then it is well known that the
series

(1.8) 2T = 3 (a4 m)”

XET, €27 (0)

converges if and only if 2s>/. On the other hand, there exists a positive definite
symmetric operator A such that (x, y) = (Ax, y> forallx, y in t. Let a and b
be the maximal and minimal eigenvalues of A. Then we have

A = (M) = al
for all A int. Therefore the series 3 (A, A)™° converges if and only if the series
\ET,

S n, A>7F converges. So we have proved that >3 (A, A)™° converges if 25>/,
AED,

Al

Theorem 1. Let f be a continuous function on a compact connected Lie group
G and let | = rank G,n = dim G = I4-2m. If f satisfies one of the following condi-

tions (1) and (2), then the Fourier series of f,
2 dMTH(F (M) UNg))

converges to f(g) absolutely and uniformly on G:
(1) fis 2k-times continuously differentiable and 2k>é—t— m=

n
2 )
2) I1FfON = O(NI™" (IN]|—o0) for some integer h>l—|—gfm.

Proof. (1) Suppose f belongs to C**(G). Then we have, by Lemma 1.2,
(19) FF(1) = () FF(AF)N) (reDy).
On the other hand we have an inequality
(1.10) o(N) = (A, A+28) = ||
By (1.9) and (1.10), we have
(L1) A = [IFA*HOI N for all e D, = D—{0}.

Since (4, B) = Tr(AB¥*) is an inner product on the space M,(C) of the matrices
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of order n, we have the Schwarz inequality
(1.12) I'T+(4B)| <||4]| |B].

Since U*(g) is a unitary matrix of order d()\), the Hilbert-Schmidt norm of
U™ (g) is equal to

(1.13) NUXI = d(\)”.
By (1.12), (1.13) and (1.11), we have
(1.14) 2 AN THFf MU [ = 22 A7 I

< SN I F AN

By the Schwarz inequality, the right hand side of (1.14) is

(1.15) = (AL A*HIPY7 G2 A I -H)7.
SinceA*f = C°(G)c L*(G), we have the Parseval equality
(1.16) IARf1E = 25 dOVIIF (AR

Moreover by Weyl’s dimension formula, we have for any A& D,

(1.17) d(n) < C(IM+ 181" <N ™

where C = al;IPIaI(& a)™ and N are positive constants. By (1.16) and (1.17),
the right hand side of (1.15) is

(1.18) S[A*fI(N? 23 ]2ty

Since 4k-2m>1+2m-2m=1Dby condition (1), the series in (1.18) converges (Lem-
ma 1.3). So we have proved that the Fourier series of f converges absolutely and
uniformly on G, if f satisfies the condition (1). The sum s(g) of the Fourier series
of f is a continuous function and equal to f(g) almost everywhere on G by the Par-
seval equality. Since f and s are continuous, the sum s(g) is equal to f(g) every-
where on G.

If a function f satisfies the condition (2), then there exists a positive constant
M such that

(1.19) NFfN) = M|N|7* for all A& D,.
So we have
(1.20) 23 I TH(FfNUN) | = 22 d)™ LN

= LS(IMH 8™
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where L = M(1II |a|(8, «)™')** is a positive constant. Therefore the series on
aep

the right hand side of (1.20) converges if A-3m/2>1, i.e., h>1+3m|2(Lemma 1.3).
q.e.d.

Corollary to Theorem 1. Iffis a C*—function on G, then we have || F f(\)||
= o(|N|72%) (|N|—>c0), that is,

lim |2 #|F0)] = 0.

Proof. By the inequality (1.11), we have
(1.21) MR = 1L (A*HMII-
Since A*f belongs to C°(G)c L¥G), we have

(1:22) lim ||F(A41))] = 0
by the Parseval equality (1.16). (1.21) and (1.22) prove the Corollary.

2. Fourier coeffcients of a smooth function

Theorem 2. Let G be a compact connected Lie group and D be the set of all
dominant G-integral forms on the Lie algebra t of a maximal toral subgroup T of G.
Let U™ be an irreducible unitary representation of G with the highest weight x& D

and d(\) be the degree of U*. Then we have the following inequality for every X
in the Lie algebra g of G:

2.1) dUNX)||? < dA) N2 X |? for any v D and
[AUNX)|IPSN X" X|?  for any e D,
where N is a positive constant and m is the number of the positive roots.

Proof. First we show that the inequality (2.1) is valid for every X in g if
(2.1) is valid for every X in the Cartan subalgebra t. Since every element X in

g is conjugate to an element / in t, that is, there exists an element g in G such that
(Ad g)X= H, we have

(2.2) IAUNH)|| = [|UNg)dUNX)UNg )|l = [|dUX(X)[| and
(2.3) |H| = | X].

The equalities (2.2) and (2.3) prove that if the inequality (2.1) is valid for any H
in t, then (2.1) is valid for every X in g.
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Now let X be any element in t and W(\) be the set of weights in the repre-
sentation U*. Then the linear transformation dUNX) is represented by a
diagonal matrix whose diagonal elements are {i(u, X): u € W(\)} with respect
to some orthonormal base of the representation space. Therefore we have

(24) MUNX)IF =33 [, D)1 <, 33 |ul* 1 X%

rew)

On the other hand every weight x in W()) has the form
(2.5) m = 7\“2 miaia

where m,’s are non negative integers. (cf. Serre [2] Ch. VII Théoreme 1). If u=
W(\) is dominant, that is, (u, a;) = 0 (I < 7 < p), then we have by (2.5)

26) |l S [l +Zmlu @) = O\ u) = M7= Smlx, @)= 12

Since every weight g in W(\) is conjugate to a dominant weight in W(\) under
the Weyl group, (cf. Serre [2] Ch. VII-12 Remarque), we have the inequality

(2.7) MY for all u W(\)

by (2.6). The inequalities (2.4) and (2.7) prove the inequality

(2.8) [AUNX)[I* < dn) N1 X2

Since the degree d()\) of U is given by Weyl’s dimension formula
d\) =w1;IP(7x—{—8, a)$, a)7t,

d(\) is estimated by (1.17) as

(2.9) dX\) = C(IM+|8])"<N|1|™ for any AeD,

where C and N are positive constants and m is the mumber of positive roots. So
we have proved Theorem 2 completely.

Lemma 2.1. Let G be a connected Lie group and § be the Lie algebra of G.
Moreover let f be a complex valued function on G, and k be a positive integer. Then
the function f belongs to C*(G) if and only if

X1 =[ L fig exp 1) |

t=0

can be defined for every X in g and g in G, and it belongs to C*~*(G).
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Proof. I afunction f belongs to C#(G), then ¢(g, ) = f(gexp tX) belongs
to C4(G X R). So(Xf)(g) =%p(g, 0) exists and belongs to C*~*(G).

Conversely suppose that Xf is defined and belongs to C*~'(G) for every X&
g. Then for any real number ¢, (df/dt)(g exp tX) exists and is equal to (Xf)

(gexpt X). Moreover for any element % in G, (df/dt)(g exp t Xh) exists and is
equal to

(2.10) dit flg exp t Xh) = ;“t f(gh exp (t Ad kX))
— (Ad A X)f)(g exp t XP).
Let X,, X,,:-+,X, be a base of g and
D(2) = Pltsyeryty) = exp tX,wvexp tu X

Then @ is an analytic diffeomorphism of an open neighbourhood W of 0 in R*
onto an open neighbourhood V of the identity element e in G. Let

(2.11) (Ad( exp £,X,--exp £,X,) ") X, = g a;,()X,.

Then a; (t) = a;(t,,-+-,t,) is an analytic function on R”. Let g be a fixed element
in G. Then the mapping go(t)—t = (¢, +,t,) defines a local coordinates on gV,
the canonical coordinates of the second kind. Let 3/0¢; be the partial deriva-
live with respect to #; just introduced. Then by the equalities (2.10) and (2.11),

g(gqa(t)) exists and is equal to

@12) 2 flep(t) = [Adlexp tiniXovyorrexp £,X,) X1 fle(t)

= 30 0(0,,0, L )X el

By the assumption, the right hand side of (2.12) regarded as a function of ¢ is a
C*-'-function on W. So f is a Ck—fucntion on gV. Since g is arbitrary, this
proves that f is a C#—function on G.

Lemma 2.2. Let G,q,f, k be as in Lemma 2.1. Then fis a C*—function on

G if and only if X, X, ,---X,f can be defined and is continuous for any k ele-
ments X,, -+, X, in g.

Proof. This Lemma is easily proved by the induction with respect to &
using Lemma 2.1.

Theorem 3. For any continuous function f on a compact connected Lie group
G, the following two conditions (1) and (2) are mutually equivalent.
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(1) fis a C*—function on G.
(2) The Fourier coefficients F f(\) is rapidly decreasing: Lim |\ |*||Ff(\)]|=0
[Al><
for every non negative integer h.

Proof. (1)=(2). 'This part of Theorem 3 is proved in Corollary to Theorem

1.

(2)=(1). Suppose that Ff(\) is rapidly decreasing. Then f satisfies the condi-
tion (2) in Theorem 1. So the Fourier series of f converges uniformly to f. Thus
for every g G, X =g and t€ R we have

(2.13) flg exp tX) = 33 dNTHF N UNg exp 1X).

The series obtained from the right hand side of (2.13) by termwise differentiation
with respect to the variable ¢ is

(2.14) S ANTHE /(N UNg exp tX)dUNX)).

By Theorem 2 and the rapidly decreasingness of & f(\), the series (2.14) conver-
ges absolutely and uniformly with respect to #, when ¢ runs through any bounded
set in R. Therefore the series(2.13) can be differentiated termwise and the func-
tion f(g exp tX) is differentiable with respect to . So

@NE = [Lfigexp 1))

t=,

is defined and equal to

(2.15) A;Dd(x)Tr(EFf()») UNg)dUNX)).

Since (2.15) is uniformly convergent on G, the sum Xf is a continuous function
on G. Therefore f is a C'—function by Lemma 2.1.

By the same argument, X,-- X fis defined and continuous for any k= N and
X,,++-,X,=g and it has the following uniformly convergent expansion;

(2.15) (X Xef)g) = 2 dNTHFN) U (g)dUNX,) - dUNX,)).
So f is a C*-function for any ke N by Lemma 2.2, i.e.,f is a C~—function on G.

3. The topology of C~(G) and S(D)

Let G be a compact connected Lie group as before. The space C=(G) of all
complex valued C~—functions on G is topologized by the family of seminorms:

(3.0) {pu(f) = IIUfll~ : U€U(g)}.
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C=(G) is a complete locally convex topological vector space by this topology. It
is clear that the topology of C=(G) is coincides with the one which is determined
by the subfamily of seminorms:

(31) {le"'Xk(f) = “Xl"'kaHeo: k= 0,1,2; "ty Xn"'XkEg}-

Let S(D) be the space of matrix valued functions F on the lattice D which satisfies
the following two conditions:

(1) F(\) belongs to the space M, (C) of complex matrices of order d(\) for
each AeD.

(2) F(\) is a rapidly decreasing function of A: i.e., lim |\ |#||F(\)||=0 for all
IA[><

kEN.
In the following, we use the inner product (X, Y) which satisfies the following
condition:

(3.3) (X, A)=1 for all A& D, = D—{0}.
The vector space S(D) is topologized by the family of seminorms

{:(F) = Max |2 [*[[F (V)5 20}

By the condition (3.3), we get the following inequality for the seminorms on

S(D):
(3.4) 0.(F) < q(F)  if0<s<t

for all F in S(D).
Using these topologies, the result in Theorem 3 can be reformulated more
precisely in the following Theorem 4.

Theorem 4. The Fourier transform F :f—S f is a topological isomorphism
of C=(G) onto S(D).

Proof. By Theorem 3, the Fourier transform & mapps C(G) into S(D).
Since any continuous function f on G is uniquely determined by its Fourier coeffi-
cients Ff(\) by (1.5), the mapping &F is injective. The mapping & is also surjec-
tive. Let F be a function in S(D). Then the series

(3-5) 2 A0 TH(FM U )

converges uniformly on G, because the function F satisfies the condition (2) in
Theorem 1. Let f(g) be the sum of the series (3.5). Then fis a continuous func-
tion on G and the Fourier transform & f of f coincides with the original function
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F by the orthogonality relations. Since F(A) = Ff(\) is rapidly decreasing,
the function f is a C~—function on G by Theorem 3. Thus we have proved that
the Fourier transform & is a linear isomorphism of C~(G) onto S(D).

Now we shall prove that the Fourier transform & is a homeomorphism.
First we show that & is continuous. Since (A*f)(A) = o(A\)*Ff(1) (Lemma
1.2), we have

(36 @WHIFAVI = IFAAMI < | 184701 110%™ g
=< A\ || A*S] .
Since [M|*<w(\) and there exists a constant M >0 such that d(\ )2 <M |n|™/?
for all ne D,, we have
(3.7) In 2R F NI = M| Ak
by (3.6). Therefore we have
(3.8) Goa-mro( L) = M| AFS]].,

for all fin C*~ (G) and all k>%m. Since £ can be taken arbitrarily large, we

have proved by (3,4) and (3,8) that for any s>0 there exists an integer 2>0 such
that the inequality

(3.9) 9(Ff) = M||Akf|l..

is valid. On the other hand, since ||Ff(0)[|<(|f||. by the definition of Ff, we

have

(3.10) WTf= ||£7"f(0)l!+1§£g;:119'f(7\)|l SN Allet+MI|A*Sf]

for k>i‘m by (3.3) and (3.7). The inequalities (3.8) and (3.10) prove that

the Fourier transform & is a continuous mapping of C*(G) into S(D).
Next we shall prove that the inverse Fourier transform ¥ ~*: f— f is con-
tinuous. Since |[A|? < w(\) and there exists a constant M >0 such that d(\) =

M?|\|™, the series
(3.11) SV d(N)EFP (M)

XED,

converges to a positive real number K if s>27'/447'(k+3)m by Lemma 1.3.
Let % be a positive integer and X, ---, X, be & elements in g. Then by (2.15)
and Theorem 2, we have the inequality

(3.12) 1 Xs Xifll = 23 d)ERZINHILSON X ] ] X
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= | X[ | X, |A§ A\ RN | M H | F (A V)]

< K| X, |- | X, g F(A°S))
= K| X, |-+ | Xy Max o(0) XSO

if s>%l+ %(k—l—f%)m. Since o(A) = (A, A128) < |A|*+2| 0] 5]

and w(\)' < 3V,C, [0 [*(2]8]) 7,
7=0

we have

(313) ”Xl'”ka”w = Klel oo |Xk| ';o sCr(zlsl)s_'qs+n+r(gf)‘

Similarly we have the inequality

(3.14) 1fll. = NFAOI+ T dO) I THE V)]
< W@+ 3, dOVFFO)
= W(EN+ T, 400 ) IFA N
< (FN+KMax a(\) I FO)|

= @W(FNFHK L CAZIB )7 AT S)-
1 3m
f I+ ==,
or s> 5 I+ 4

The inequalities (3.13) and (3.14) prove that the inverse Fourier transform &~':
Ff—f is a continuous mapping from S(D) into C=(G). q.e.d.

Corollary to Theorem 4. The topology of C=(G) defined by the family of
seminorms (3.0) (or (3.1)) coincides with the topology defined by the family of

seminorms

{ra(f) = 1A"fllo;m = 0, 1, 2,--+}.

Proof. This Corollary is clear from the inequalities (3.10) and (3.9) and
Theorem 4.
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Added in proof

The Fourier series in Theorem 1 is obtained from the series (1.1) by first taking

1@
the partial sum >} . However we can prove that the original series(1.1) converges
£ 7=1

absolutely and uniformly if f belongs to C**(G) and 2k> %

This fact can be seen from the following inequalities:
d(A) d(A) _
ST ST A1) ()| = 5 33 d(n) 0] 541 (A%, udy) | ()]
Eot,]=l EO”JE

= (3 S IR PSS - (g) )
< IARFILCS) OV N4 < IARFILNCE) [ [omshy








