ON THE SPACES OF GENERALIZED CURVATURE TENSOR FIELDS AND SECOND FUNDAMENTAL FORMS

Katsumi NOMIZU

(Received October 12, 1970)

For a Riemannian manifold M let $\mathfrak{X}(M)$ be the vector space of all tensor fields A of type $(1,1)$ that satisfy the following three conditions: (1) A is symmetric as an endomorphism of each tangent space $T_{x}(M), x \in M$; (2) Codazzi's equation holds, that is, $\left(\nabla_{X} A\right) Y=\left(\nabla_{Y} A\right)(X)$ for all vector fields X and Y; (3) trace A is constant on M. It is hardly necessary to note that an isometric immersion of M into a space of constant sectional curvature as a hypersurface with constant mean curvature gives rise to such a tensor field A (namely, the second fundamental form), which furthermore satisfies the equation of Gauss. Now Y. Matsushima has shown (unpublished) that if M is a compact Riemannian manifold, then $\mathfrak{U}(M)$ is finite-dimensional. This is obtained as an application of the theory of vector bundle-valued harmonic forms (see [2] for other applications to the study of isometric immersions).

The purpose of the present paper is to prove two results (Theorems 1 and 2) of a similar nature. Theorem 1 generalizes the above result of Matsushima to the space of generalized second fundamental forms, which, geometrically, arise from isometric immersions of higher codimension. Theorem 2 shows finite-dimensionality of the space of generalized curvature tensor fields, which, as a matter of fact, implies the above result of Matsushima as we show in [3].

1. Forms with values in a Riemannian vector bundle

By a Riemannian vector bundle we shall mean a (real) vector bundle E over a Riemannian manifold M which has a fiber metric and a mtric connection ([1], Vol. I. pp. 116-7). The Riemannian metric on M and the fiber metric in E are denoted by \langle,$\rangle , whereas the Riemannian connection on M$ is denoted by ∇ and the metric connection in E by ∇^{\prime}. If φ and ψ are sections of E and X is a vector field on M, then

$$
\mathrm{X}\langle\varphi, \psi\rangle=\left\langle\nabla_{X}^{\prime} \varphi, \psi\right\rangle+\left\langle\varphi, \nabla_{X}^{\prime} \psi\right\rangle .
$$

We denote by $\mathrm{C}^{p}(E)$ the real vector space of all E-valued p-forms on M. If $\omega \in \mathrm{C}^{p}(M)$, then, for each $x \in M, \omega_{x}$ is a skew-symmetric p-linear mapping of $T_{x}(M) \times \cdots \times \mathrm{T}_{x}(M)\left(p\right.$ times) into the fiber F_{x} over x. For $X \in T_{x}(M)$, the covariant derivative $\tilde{\nabla}_{X} \omega$ is defined as follows: if $X_{1}, \cdots, X_{p} \in T_{x}(M)$, then extending them to vector fields $\widetilde{X}_{1} \cdots \widetilde{X}_{p}$ on M we set

$$
\begin{aligned}
\left(\tilde{\nabla}_{X} \omega\right)\left(X_{1}, \cdots, X_{p}\right)= & \nabla_{X}^{\prime} \cdot \omega\left(\tilde{X}_{1}, \cdots, \tilde{X}_{p}\right) \\
& -\sum_{i=1}^{n} \omega\left(X_{1}, \cdots, \nabla_{X} \tilde{X}_{i}, \cdots, X_{p}\right),
\end{aligned}
$$

the right hand side being independent of the extensions of X_{1}, \cdots, X_{p}. We define the covariant differential $\tilde{\nabla} \omega$ of ω at x as a $(p+1)$-linear mapping

$$
\left(X_{1}, \cdots, X_{p+1}\right) \in T_{x}(M) \times \cdots \times T_{x}(M) \rightarrow\left(\tilde{\nabla}_{X_{1}} \omega\right)\left(X_{2}, \cdots, X_{p+1}\right) \in F_{x} .
$$

A differential operator $\partial: C^{p}(E) \rightarrow C^{p+1}(E)$ is defined essentially as an alternation of $\tilde{\nabla} \omega$. More precisely, we define

$$
\partial \omega=(p+1) A(\tilde{\nabla} \omega), \omega \in C^{p}(E)
$$

where A is the alternation operator (see [1], Vol. I, p. 28; the present definition of $\tilde{\nabla} \omega$ differs from that in [1], Vol. I, p. 124, only in the order of $\left.X_{1}, \cdots, X_{p+1}\right)$. For our applications we note the special cases:

If $\omega \in C^{1}(E)$, then

$$
(\partial \omega)(X, Y)=\left(\tilde{\nabla}_{X} \omega\right) Y-\left(\tilde{\nabla}_{Y} \omega\right) X
$$

If $\omega \in C^{2}(E)$, then

$$
(\partial \omega)(X, Y, Z)=\left(\tilde{\nabla}_{X} \omega\right)(Y, Z)+\left(\tilde{\nabla}_{Y} \omega\right)(Z, X)+\left(\tilde{\nabla}_{Z} \omega\right)(X, Y) .
$$

On the other hand, we define a differential operator $\partial^{*}: C^{p}(E) \rightarrow C^{p-1}(E)$ as follows. If $\omega \in C^{0}(E)$, then $\partial^{*} \omega=0$. If $\omega \in C^{p}(E), p \geqq 1$, and $x \in M$, let $\left\{e_{1}, \cdots, e_{n}\right\}$ be an orthonormal basis in $T_{x}(M)$ and set

$$
(\partial * \omega)_{x}\left(X_{1}, \cdots, X_{p-1}\right)=-\sum_{i=1}^{n}\left(\tilde{\nabla}_{e_{i}} \omega\right)\left(e_{i}, X_{1}, \cdots, X_{p-1}\right)
$$

the right hand side being independent of the choice of $\left\{e_{i}\right\}$.
The Laplacian \square of E-valued forms is defined by

$$
\square=\partial \partial^{*}+\partial * \partial
$$

The following two basic facts are classical in the case where E is a trivial line bundle.

Proposition 1. If M is compact, then $\square \omega=0$ if and only if $\partial \omega=0$ and $\partial^{*} \omega=0$.

Proposition 2. If M is compact, then \square is elliptic so that the vector space $\left\{\omega \in C^{p}(E) ; \square \omega=0\right\}$ is finite-dimensional.

For the proof of Proposition 1, we introduce (assuming that M is orientable) an inner product in $\mathrm{C}^{p}(E)$ by

$$
(\theta, \omega)=\int_{M}\langle\theta, \omega\rangle d v
$$

where $d v$ is the volume element of M and $\langle\theta, \omega\rangle_{x}$ is the natural inner product in the space of p-forms at x, that is,

$$
\langle\theta, \omega\rangle_{x}=\sum_{i_{1}<\cdots<i_{p}}\left\langle\theta\left(e_{i_{1}}, \cdots, e_{i_{p}}\right), \omega\left(e_{i_{1}}, \cdots, e_{i_{p}}\right)\right\rangle
$$

where $\left\{e_{1}, \cdots, e_{n}\right\}$ is an orthonormal basis in $T_{x}(M)$. Using this inner product we can show that ∂ and ∂^{*} are adjoint to each other:

$$
(\partial \theta, \omega)=\left(\theta, \partial^{*} \omega\right) \quad \text { for } \quad \theta \in C^{p-1}(E), \omega \in C^{p}(E)
$$

This fact readily implies Proposition 1.
In order to prove Proposition 2 it is sufficient to check the principal part of $\square \omega$. We shall here give the detail in the case of $\omega \in C^{1}(E)$; the general case is essential by similar.

At $x \in M$, let $\left\{e_{1}, \cdots, e_{n}\right\}$ be an orthonormal basis in $T_{x}(M)$ and extend to them to vector fields E_{1}, \cdots, E_{n} such that $\nabla_{e_{i}} E_{j}=0$ for all $i . j$. Also let $X \in$ $T_{x}(M)$ be extended to a vector field \tilde{X} such that $\nabla_{e_{i}} \tilde{X}=0$ for all i. At x we find

$$
(\partial * \partial \omega)(X)=-\sum_{i=1}^{n}\left(\tilde{\nabla}_{e_{i}} \tilde{\nabla}_{E_{i}} \omega\right) X+\sum_{i=1}^{n}\left(\tilde{\nabla}_{e_{i}} \tilde{\nabla}_{\tilde{X}} \omega\right) e_{i}
$$

and

$$
(\partial \partial * \omega)(X)=-\sum_{i=1}^{n}\left(\tilde{\nabla}_{X} \tilde{\nabla}_{E_{i}} \omega\right) e_{i}
$$

so that

$$
\begin{aligned}
(\square \omega)(X)=-\sum_{i=1}^{n}\left(\tilde{\nabla}_{e_{i}} \tilde{\nabla}_{E_{i}} \omega\right)(X) & +\sum_{i=1}^{n}\left(\tilde{\nabla}_{e_{i}} \tilde{\nabla}_{\tilde{X}} \omega\right) e_{i} \\
& -\sum_{i=1}^{n}\left(\tilde{\nabla}_{X} \tilde{\nabla}_{E_{i}} \omega\right) e_{i}
\end{aligned}
$$

We have
Lemma. For $\omega \in C^{1}(E)$ and for any vector fields X, Y and Z on M, we have

$$
\begin{gathered}
\quad\left(\left(\left[\tilde{\nabla}_{X}, \tilde{\nabla}_{Y}\right]-\tilde{\nabla}_{[X, Y]}\right) \omega\right) Z \\
=R^{\prime}(X, Y) \cdot \omega(Z)-\omega(R(X, Y) Z)
\end{gathered}
$$

where $R^{\prime}(X, Y)$ is the curvature transformation for the connection ∇^{\prime} in E defined by

$$
R^{\prime}(X, Y) \varphi=\left[\nabla_{X}^{\prime}, \nabla_{Y}^{\prime}\right] \varphi-\nabla_{[X, Y]}^{\prime} \varphi, \quad \varphi \in C^{0}(E)
$$

Using this lemma, whose proof is straightforward, and noting that $\left[E_{i}, \tilde{X}\right]=0$ at x, we obtain at x

$$
\begin{aligned}
(\square \omega) X=-\sum_{i=1}^{n}\left(\tilde{\nabla}_{e_{i}} \tilde{\nabla}_{E_{i}} \omega\right) & X+\sum_{i=1}^{n} R^{\prime}\left(\mathrm{e}_{i}, X\right) \cdot \omega\left(e_{i}\right) \\
& -\omega\left(\sum_{i=1}^{n} R\left(e_{i}, X\right) e_{i}\right)
\end{aligned}
$$

(We note that $\sum_{i=1}^{n} R\left(\mathrm{e}_{i}, X\right) e_{i}$ is equal to $-S(X)$, where S is the Ricci tensor of type $(1,1)$ of $M)$.
Now if $\varphi_{1}, \cdots, \varphi_{p}$ are linearly independent sections of E such that $\nabla_{X}^{\prime} \varphi_{m}=0$ $\mathrm{X} \in \mathrm{T}_{x}(M)$, for all then writing $\omega=\sum_{m=1}^{n} \omega^{m} \varphi_{m}$ we get

$$
\tilde{\nabla}_{E_{i}} \omega=\sum_{m=1}^{p}\left(\nabla_{E_{i}} \omega^{m}\right) \varphi_{m}+\sum_{m=1}^{p} \omega^{m}\left(\nabla_{E}^{\prime} \varphi_{m}\right)
$$

and

$$
\sum_{i=1}^{n} \tilde{\nabla}_{e_{i}} \tilde{\nabla}_{E_{i}} \omega=\sum_{m=1}^{p} \sum_{i=1}^{n}\left\{\left(\nabla_{e_{i}} \nabla_{E_{i}} \omega^{m}\right) \varphi_{m}+\omega^{m}\left(\nabla_{e_{i}}^{\prime} \nabla_{E_{i}}^{\prime} \varphi_{m}\right)\right\} .
$$

Thus the φ_{m}-component of the principal part of $\square \omega$ is given by $\sum_{i=1}^{n} \nabla_{e_{i}} \nabla_{E_{i}} \omega^{m}$. This proves that \square is an elliptic operator.

2. Generalized second fundamental forms

Let N be a Riemannian vector bundle (whose connection is denoted by ∇^{\prime}) over a Riemannian manifold M. For the tangent bundle $T(M)$ and its dual bundle T^{*}, the vector bundle $\operatorname{Hom}\left(N, T^{*} \otimes T\right)$ is a Riemannian vector bundle over M in the natural way. For a section A of $\operatorname{Hom}\left(N, T^{*} \otimes T\right)$, which is expressed by $\xi \in N_{x} \rightarrow A_{\xi} \in T_{x}^{*} \otimes T_{x}$ at each $x \in M$, and for any vector field X on M, the covariant derivative $\tilde{\nabla}_{X} A$ is a section such that

$$
\left(\tilde{\nabla}_{X} A\right)_{\xi}=\nabla_{X}\left(A_{\xi}\right)-A_{\nabla_{x}^{\prime} \xi}
$$

where ξ is any section of N. We shall call A a generalized second fundamental form if A_{ξ} is a symmetric endomorphism of $T_{x}(M)$ for every $\xi \in N_{x}, x \in M$, and if A satisfies Codazzi's equation, that is,

$$
\left(\tilde{\nabla}_{X} A\right)_{\xi} Y=\left(\tilde{\nabla}_{Y} A\right)_{\xi} X
$$

for every section ξ of N and for all vector fields X and Y on M. Actually, each side of the equation makes sense for $\xi \in N_{x}$ and $X, Y \in T_{x}(M)$. Geometrically, an isometric immersion of M into a space of constant sectional curvature gives
rise to the normal bundle N and the seond fundamental form A which satisfies the equations of Gauss and Codazzi (for example, see [1], Vol. II, p. 14, p. 2325).

For a section A of $\operatorname{Hom}\left(N, T^{*} \otimes T\right)$ we define the mean curvature section η of A as follows. If $\left\{\xi_{1} \cdots, \xi_{p}\right\}$ is an orthonormal basis of $N_{x}, \mathrm{x} \in M$, then

$$
\eta_{x}=\frac{1}{n} \sum_{i=1}^{p}\left(\operatorname{trace} A_{\xi_{i}}\right) \xi_{i}, n=\operatorname{dim} M
$$

We say that A has constant mean curvature if the mean curvature section η of A is parallel with respect to the connection ∇^{\prime} in N.

For a Riemannian vector bundle N over M, let $\mathfrak{A}(M, N)$ be the set of generalized second fundamental forms A with constant mean curvature. It is a real vector space in the natural fashion. We have

Theorem 1. If M is compact, then $\mathfrak{Y}(M, N)$ is finite-dimensional.

Proof. We consider one more vector bundle $E=\operatorname{Hom}(N, T)$, which is a Riemannian vector bundle over M in the natural way, For a section φ of E and a vector field X on M, the covariant derivative $\nabla_{X}^{*} \varphi$ is defined by

$$
\left(\nabla_{X}^{*} \varphi\right) \xi=\nabla_{X}(\varphi(\xi))-\varphi\left(\nabla_{X}^{\prime} \xi\right),
$$

where ξ is any section of N.
We consider $A \in \mathfrak{A}(M, N)$, which is a section of $\operatorname{Hom}\left(N, T^{*} \otimes T\right)$, as an E valued 1-form ω as follows: for any $X \in T_{x}(M), x \in M, \omega(X)$ is the element of Hom (N_{x}, T_{x}) such that

$$
\omega(X) \cdot \xi=A_{\xi}(X)
$$

The covariant derivative $\tilde{\nabla}_{X} \omega$ of ω is the E-valued 1 -form such that

$$
\begin{aligned}
\left(\tilde{\nabla}_{X} \omega\right)(Y) \cdot \xi & =\left(\nabla_{X}^{*}(\omega(Y))\right) \xi-\omega\left(\nabla_{X} Y\right) \xi \\
& =\nabla_{X}(\omega(Y) \cdot \xi)-\omega(Y)\left(\nabla_{X}^{\prime} \xi\right)-\omega\left(\nabla_{X} Y\right) \xi \\
& =\nabla_{X}\left(A_{\xi} Y\right)-A_{\nabla_{X}^{\prime} \xi}^{\prime} Y-A_{\xi}\left(\nabla_{X} Y\right) \\
& =\left(\nabla_{X} A_{\xi}\right) Y-A_{\nabla_{X}^{\prime}} Y \\
& =\left(\tilde{\nabla}_{X} A\right)_{\xi} Y,
\end{aligned}
$$

where Y is a vector field on M and ξ is a section of N. Thus Codazzi's equation for A is equivalent to

$$
\left(\tilde{\nabla}_{X} \omega\right) Y=\left(\tilde{\nabla}_{Y} \omega\right) X
$$

that is,

$$
\partial \omega=0
$$

On the other hand, $\partial^{*} \omega$ is an E-valued 0 -form (i.e. a section of E) defined by

$$
(\partial * \omega)_{x}=-\sum_{i=1}^{n}\left(\tilde{\nabla}_{e_{i}} \omega\right)(e)_{i}, \quad x \in M
$$

where $\left\{e_{1}, \cdots, e_{n}\right\}$ is an orthonormal basis in $T_{x}(M)$. For any $\xi \in N_{x}$, we extend it to a section of N such that $\nabla_{x}^{\prime} \xi=0$ for every $X \in T_{x}(M)$. Then $\left(\tilde{\nabla}_{e_{i}} A\right)_{\xi}=$ $\nabla_{e_{i}}\left(A_{\xi}\right)$ at x. Also, Codazzi's equation in this case gives $\left(\nabla_{e_{i}} A_{\xi}\right) Y=\left(\nabla_{Y} A_{\xi}\right) e_{i}$ for any $Y \in T_{x}(M)$. Also noting that $\nabla_{e_{i}} A_{\xi}$ is symmetric together with A_{ξ}, we have

$$
\begin{aligned}
& -\langle(\partial * \omega) \cdot \xi, Y\rangle=\sum_{i=1}^{n}\left\langle\left(\tilde{\nabla}_{e_{i}} \omega\right)\left(e_{i}\right) \cdot \xi, Y\right\rangle \\
= & \sum_{i=1}^{n}\left\langle\left(\tilde{\nabla}_{e_{i}} A\right)_{\xi} e_{i}, Y\right\rangle=\sum_{i=1}^{n}\left\langle\left(\nabla_{e_{i}} A_{\xi}\right) e_{i}, Y\right\rangle \\
= & \sum_{i=1}^{n}\left\langle e_{i},\left(\nabla_{e_{i}} A_{\xi}\right) Y\right\rangle=\sum_{i=1}^{n}\left\langle e_{i},\left(\nabla_{Y} A_{\xi}\right) e_{i}\right\rangle \\
= & \operatorname{trace}\left(\nabla_{Y} A_{\xi}\right)=Y \cdot \operatorname{trace} A_{\xi} .
\end{aligned}
$$

As in the following lemma, this is 0 if and only if A has constant mean curvature.
Lemma. If A has constant mean curvature, then, for a section ξ of N of unit length such that $\nabla_{x}^{\prime} \xi=0$ for every $X \in T_{x}(M)$, we have $X \cdot \operatorname{trace} A_{\xi}=0$ for every $X \in T_{x}(M)$. The converse also holds.

To prove the lemma, let $\xi_{1}=\xi$ and choose sections ξ_{2}, \cdots, ξ_{p} such that they are orthonormal at each point and $\nabla_{x}^{\prime} \xi_{i}=0$ for every $X \in T_{x}(M)$. Then

$$
\nabla_{X}^{\prime} \eta=\frac{1}{n} \sum_{i=1}^{n} X \cdot\left(\operatorname{trace} A_{\xi_{i}}\right) \xi_{i} \quad \text { at } x
$$

Thus $\nabla_{X}^{\prime} \eta=0$ at x if and only if $X \cdot$ trace $A_{\xi_{i}}=0,1 \leq i \leq p$.
We have thus shown that, for the E-valued 1 -form ω corresponding to a generalized second fundamental form $A, \partial * \omega=0$ if and only if A has constant mean curvature.

The mapping $\omega \rightarrow A$ is clearly a linear isomorphism of $\mathfrak{2}(M, N)$ into the vector space $\left\{\omega \in C^{1}(E) ; \square \omega=0\right\}$. By Proposition 2 we see that $\mathfrak{Y}(M, N)$ is finite-dimensional. This completes the proof of Theorem 1.

3. Generalized curvature tensor fields

Let M be a Riemannian manifold. A tensor field L of type (1,3) defines at each $x \in M$ a bilinear mapping

$$
(X, Y) \in T_{x}(M) \times T_{x}(M) \rightarrow L(X, Y) \in \operatorname{Hom}\left(T_{x}(M), T_{x}(M)\right)
$$

We say that L is a generalized curvature tensor field if it has the following properties for all vector fields X, Y and Z :
(1) $L(Y, X)=-L(X, Y)$;
(2) $L(X, Y)$ is a skew-symmetric endomorphism of $T_{x}(M)$;
(3) $\mathfrak{S} L(X, Y) Z=0$, where \mathfrak{S} denotes the cyclic sum over X, Y, and Z (first Bianchi identity).

We shall say that L is proper if it satisfies the second Bianchi identity: $\mathfrak{S}\left(\nabla_{X} L\right)(Y, Z)=0$.

For a generalized curvature tensor field L, we define its Ricci tensor field $K=K_{L}$ by

$$
K(X)=\sum_{i=1}^{n} L\left(X, e_{i}\right) e_{i} \quad \text { for } X \in T_{x}(M)
$$

where $\left\{e_{1}, \cdots, e_{n}\right\}$ is an orthonormal basis in $T_{x}(M)$. It follows from the first Bianchi identity that K is then a symmetric endomorphism of $T_{x}(M)$.

We shall denote by $\mathfrak{Z}(M)$ the vector space of all proper generalized curvature tensor fields L whose Ricci tensor fields K satisfy Codazzi's equation: $\left(\nabla_{X} K\right) Y=\left(\nabla_{Y} K\right) X$ for all vector fields X and Y.

We shall prove
Theorem 2. If M is a compact Riemannian manifold, then $\mathfrak{R}(M)$ is finitedimensional.

Proof. Let $O(M)$ be the bundle of orthonormal frames of M. The structure group $O(n)$ acts on its Lie algebra $\mathfrak{o}(n)$ of all skew-symmetric matrices of degree n through its adjoint representation. Let E be the vector bundle associated to $O(M)$ with the standard fiber $\mathfrak{o}(n)$. The Riemannian connection in $O(M)$ and the $a d(O(n))$-invariant inner product in $\mathfrak{o}(n)$ make E a Riemannian vector bundle over M. For each $x \in M$, the fiber over x can be considered as the vector space of all skew-symmetric endomorphisms of $T_{x}(M)$.

This being said, we consider a generalized curvature tensor field L as an E-valued 2-form: for $X, Y \in T_{x}(M), L(X, Y)$ is an element of the fiber of E over x. In order to prove Theorem 2 we shall show that $\partial L=0$ and $\partial^{*} L=0$ for $L \in \mathfrak{R}(M)$. We note that for the natural connection in E the covariant derivative of a section φ of E is nothing but the covariant derivative with respect to the Riemannian connection ∇ on M of the corresponding tensor field of type (1,1). With this remark, we have

$$
(\partial L)(X, Y, Z)=\Im_{(}\left(\nabla_{X} L\right)(Y, Z)
$$

Hence $\partial L=0$ if an only if L is proper.
As for $\partial * L$, we have at $x \in M$

$$
\left(\partial^{*} L\right)(X)=-\sum_{i=1}^{n}\left(\nabla_{e_{i}} L\right)\left(e_{i}, X\right), \quad X \in T_{x}(M)
$$

where $\left\{e_{1}, \cdots, e_{n}\right\}$ is an orthonormal basis in $T_{x}(M)$. For the Ricci tensor field K of L we have

$$
\left(\nabla_{X} K\right) Y=\sum_{i=1}^{n}\left(\nabla_{X} L\right)\left(Y, e_{i}\right) e_{i}
$$

If L is proper, this is equal to

$$
-\sum_{i=1}^{n}\left(\nabla_{Y} L\right)\left(e_{i}, X\right) e_{i}-\sum_{i=1}^{n}\left(\nabla_{e_{i}} L\right)(X, Y) e_{i}
$$

The first term is equal to $\left(\nabla_{Y} K\right) X$. Since $\nabla_{e_{i}} L$ satisfies the first Bianchi identity, the second term is equal to

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(\nabla_{e_{i}} L\right)\left(Y, e_{i}\right) X+\sum_{i=1}^{n}\left(\nabla_{e_{i}} L\right)\left(e_{i}, X\right) Y \\
= & (\partial * L)(Y) X-(\partial * L)(X) Y .
\end{aligned}
$$

Thus we obtain

$$
\left(\partial^{*} L\right)(X) Y-\left(\partial^{*} L\right)(Y) X=\left(\nabla_{X} K\right) Y-\left(\nabla_{Y} K\right) X
$$

If K satisfies Codazzi's equation, the E-valued 1 -form $l=\partial^{*} L$ satisfies

$$
\begin{equation*}
l(X) Y=l(Y) X \tag{*}
\end{equation*}
$$

We shall show that $l=0$. (Conversely, if $l=0$, then K obviously satisfies Codazzi's equation.) Using skew-symmetry of $l(X)$ and $l(Y)$ and the property (*), we get

$$
\langle l(Y) Y, X\rangle=-\langle Y, l(Y) X\rangle=-\langle Y, l(X) Y\rangle=0
$$

Thus $l(Y) Y=0$ for all $Y \in T_{x}(M)$. By polarization we get $l(X) Y+l(Y) X=0$. This together with (*) implies $l(X) Y=0$ for all X and Y, that is, $l=0$. Hence $\partial^{*} L=0$ for $L \in \mathfrak{Z}(M)$. We have thus proved Theorem 2 .

The significance of Codazzi's equation for the Ricci tensor field K as well as the relationship of Theorem 2 to the result of Matsushima (Theorem 1 for the case where N is a trivial line bundle) are discussed in [3].

Brown University

Bibliography

[1] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry, Volumes I and II, Wiley-Interscience, 1963, 1969.
[2] Y. Matsushima: Vector bundle valued harmonic forms and immersions of Riemannian manifolds, Osaka J. Math. 8 (1971), 1-13.
[3] K. Nomizu: On the decomposition of generalized curvature tensor fields, to appear.

