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ON THE DIFFERENTIABLE PINCHING PROBLEM
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Introduction

Let M be a compact, connected, simply connected Riemannian manifold
with a metric d and denote by K the sectional curvature of M. Then it is known
that if K satisfies the following inequality:

1/4<K<1,

there exists a homeomorphism % of M onto S", the standard unit n-sphere
([1, 4, 6, 8]).

On the other hand, we also know that there is defined a positive [(%) (=1)
for a homeomorphism % between two compact Riemannian manifolds, such
that if [(4) is sufficiently near to unity, that is, (1<) [(A)<1+&(n) (§(n) is a
positive depending on n), then 4 is approximated arbitrarily by diffeomor-
phisms ([5]).

Our main aim in the note is to investigate a relation between [(%) and the
sectional curvature K to obtain an evaluation of [(%) as in the following Proposi-
tion,

Proposition 1. If K is 8-pinched, that is,
0=K<1
then with a constant c, L (h) satisfies the following:
0=) () —1=<cV1-56.
Therefore making (1—3) so small as to satisfy
eV1=8<¢,
we get a diffeomorphism between M and (the standard) S™.

Theorem 1. If a compact, connected, simply connected Riemannian mani-
fold M is 5-pinched with

1—(&leyr<d
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then M is diffeomorphic to the standard n-sphere.

Unfortunately, our evaluation itself is not as good as that of D. Gromoll
[2], though our method might allow to generalize the pinching problem and make
it possible to treat the problem from an interesting point of view.

1. Preliminary remarks

Lemmal. Leth be a homeomorphism between complete Riemannian manifolds
M(I=1, 2), with metrics d;(I=1, 2) and let {U;} be an open covering of M,.
Then if h satisfies on each open set U; the following inequality;

d\(%, y)lk=d,(h(x), h(y))<kd\(x, y) (x,yEU)),

we have

1(h)<k.

Proof. For two points p, g€ M,, take the minimizing geodesic g(¢) from p
to ¢. It is possible to choose ¢;(j=0,---, N) such that the geodesic segment
g([t;-,, t;]) lies completely in one of open sets U;.

Therefore we have,

d,(h(p), h(9))= Z} dy(h(g(t;-.)), h(g(t;)))
= Z kd,(g(t;-.), &(t,))
<kd(p, q) .-

Also we have in quite a similar way (just replacing % by 47") that

d(h(p), k(@)= d\(p, DIk,

finishing the proof.

The condition that U; is open may be replaced by an assurance that the
subdivision of a geodesic segment by U; consist only of finite segments.
Therefore we get the following version of Lemma 1:

Corollary 1. Let (K,, f), (K, g) be differentiable triangulations of M,, M,,
respectively, and assume that h satisfies the following 1), 2).

1) d,(h(p), h(q))=kd,(p, q), for any p, q of each n-simplex A, of K, .
2) d(h7(p), hT(q))<kd(p, q), for anyp, q of each n-simplex A, of K,.
Then we have

[(h)<k.

Lemma 2. Suppose that there exist coordinate systems {U;, f;}, {U;, g;} on
M,, M,, having the same Euclidean open sets U; as local parameter systems, and
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that the homeomorphism h is given by g;-f;”* on each open set f(U,). Then if
the line elements ds,, ds, (written in the parameter system of U,) satisfy that

ds,|k<ds,<kds, ,
we also have
[(B)<ZEk.

Corollary 2. If h is piecewise differentiable on differentiable triangulations
(K, f), (K, g) of M,, M,, then Lemma 2 holds when h is given by g-f~* on each
n-simplex A of K and the line elements ds,, ds, (written in the coordinate of A) satisfy

ds, (k< ds, < kds, on each A€K .

2. The computation of [ (k)

For a 1/4-pinched compact simply connected Riemannian manifold, the
following facts 1), ii) are known in [1, 4, 6, 8].
i) There are points p, gEM and a positive a, satisfying 7/2\/§ <a<= with
8=min K such that

1) The open sets U, VT M defined by

U= &M, p)<da}, V={yM/d(y, 9<a}

cover M, thatis, UU V=M.

2) The exponential maps defined at p, g=M send the open balls
(XeT,M)/|X|<a}, {YET(M)/|Y|<a} diffeomorphically onto U and V,
respectively.

ii) Let NN be a point set defined by

N = {x&M|d(x, p) = d(x, g)} ,

then N possesses the following properties:

1) N is a differentiable submanifold of M and lies in UN V.

2) For every x& N there are a unique minimizing geodesic from p to x and
a unique minimizing geodesic from ¢ to x, we denote the initial directions of
these geodesics by g.(x)E T ,(M), g_(x)E To(M), respectively.

3) Every geodesic segment of length a starting at p of initial direction X
cuts N exactly at one point which we denote by f.(X). Also every geodesic
segment of length a starting at ¢ of initial direction Y cuts NV exactly at one point
which we denote by f_(Y).

Using the facts i), ii), a homeomorphism % of the standard unit #-sphere S”
onto M is constructed through following steps a)-e):

a) Let P, O be the north pole and the south pole of S” and express a point
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x of the northern hemi-sphere E, by the standard polar coordinate system at P:
x = (G (x), R (x)), G (x)ETp(S™), 0ZR, (x)=<m/2.

Also write a point y in the southern hemi-sphere E_ by the polar coordinate
system at Q:

¥ = (G(9), R(9)), G(9)ETo(S™), 0=R_(y)=x/2.

b) For a direction X& T',(S”), denote by F,(X) the point in the equator
E at which the geodesic segment of initial direction X crosses E:

Fo(X) = (X, z/2).

Also define F_(Y) (Y& T¢(S™)) to be the point in E at which the geodesic
segment of initial direction y cuts E:

F (Y)= (Y, =/2).
c) Take a linear isometry a of Tp(S™) onto Tp(M) and define an one to
one map B of To(S™) onto T'((M) by
B(Y)= {g_of+oa0G+0F_(Y), if |Y|=1
Y |B(Y/IY]) otherwise.
d) Define an one to one map v, of T,(M) onto itself by
7.(X) = 2 dist (p, £,(X]| X 1) X/rr .
also define v_(Y) on T (M) by
vy (Y)=2dist (p, f(Y/|Y])Y|x.
e) Now the homeomorphism % of S” onto M is given by

h(x) = { exp (p)ov.oao exp (P)(x), i x<E,
exp (g)ov-oBoexp (Q)7'(x), if x€E_.

In order to prove that A is approximated by diffeomorphisms if the
sectional curvature K of M is sufficiently pinched, we evaluate [(%) relative to
the standard metric on S” and the given Riemannian metric on M. The evalu-
ation is done through the three steps: first we evaluate I(exp (p)oaoexp (P)™),
next [(exp (p)oy.,oexp (p)?) and I (exp (g)oy_cexp (¢)7"), and finally we evaluate
I(exp (¢9)oBoexp (0)™"). Since in general we know that

1(4-B)<I(4) (B)

for any maps A4, B, these three steps complete our evaluation.
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2.1 First step, on [(exp (p)oacexp (P)7)*.
Take orthogonal directions X, Y& T (M), then because of i) 2), we may

apply Rauch’s comparison theorem to the arc ¢(d)=r(X cos 84 Y sin §) (t,<60
<t,, 0<r=<~z/2) and to S", M, a. We get that

L{exp (P)ocr™ o) S L(exp (p)oc)

where L(@) denotes the length of the arc o.

Let S™(3) be the sphere of constant curvature §(8 is the positive pinching of
the sectional curvature K of M from below; 6<K<1), then we also can
apply Rauch’s theorem to ¢(@), M, S™(8) and a linear isometry a’ of Tp(S"(3))
onto T',(M), to get that

L{exp (p)ec) <L(exp (P)oa’"oc)
Since it is elementary to show that
L(exp (P)oac™oc) = (t,—t,) sinr
L(exp(P)oat' toc) = (&—1) sin\/§ 7,
(exp(P) )= NG

we deduce that

sinr< (exlzfi)”)s N3 sin\/§ r.
In order to have an evaluation of the ratio of the line elements on S” and
M, consider the submanifold M(X, Y) of M consisting of elements of the form
exp (p) (rX cos 0+7Y sin f) and parametrize the plane of X, Y by (7, ). The
line element of M restricted on M(X, Y), then, is written in the form dr*-p?
(r, 0)d6®. Since the function u(r, 8) is nothing but the limit of L(exp (p)oc)/t,—8
when #,—0, the above inequality yields that

drtsin® rd§* < dr*+ p(r, 0) dezgdrur% sin? /5 rd0” .
Therefore we get that for any X, Y& TP(M) it holds that
dr*+-sin’ rd@* < dr*+ u(r, 6) d02< (dr’—{—sm rdd?%),
on M(X, Y). Thus we may conclude that

I(exp (p)eacexp (P))=<1/V5 ,

by virtue of Lemma 2.

* The description in section 2.1, is due to professor Y. Tsukamoto and improves the
author’s original (less complete) one.
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2.2 Second step, on I(exp (g)oy.cexp (¢)7")

The following fact iii) also is known for a compact connected 8-pinched
simply connected manifold M(5>1/4),

i) 1) 7= diam (M)<r/\/§
2) Let p, g be the points in i) 2), then for any x& M,
d(p, x)<n[2/§ or d(q, x)<z[2\/§ .

In order to evaluate I(exp (g)o, cexp (¢)7*), we first consider the differential
in X of the function A defined by

MX) = [v(X)I/1X].
Take x, yEN and let APAB, AQA'B’ be triangles in euclidean space such that
d(p, x) = d(P, 4), d(p,y)=d(P, B), d(x y)=d(4,B)
d(q, x) = d(Q, AI)’ d(g, y) = d(Q, B'), d(x, y) = d(4', B).

Suppose A'< /B’ for instance, in AQA'B’, we then have by
Toponogov’s comparison theorem that

r—/Q= A"+ /B <2/B'<2/qyx.
Since, in general, it holds that

Zqyx+ Lxyp+ £ pyq=2m ,
we get that

7|2— /P|2< / PBA< /pyx=n[2+4 L P24+ (x— L pyq) ,
hence we see that in A PB4
7|2—3 L P]2—(x— /pyq)< L/ PAB = /QA'B'<r[2— /P|2.
Therefore we have that

2sin /P[2sin (£ PABJ2— /PBAJ2)
sin / PBA

<n|sin £P[2tan (LP+(z— Lpy)I/\V/§ -
Let now x=f,(X), y=f.(X+dX), then the inequality above yields that
v (X)| < tan Zpyq/\/§

On the other hand, Toponogov’s theorem applied to the geodesic triangle
A\ pyg, on which

<d(P, A)
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z<d(p, q), d(p,y)=d(g, y)=72\/5 ,
yields that
cos Zpyg=1—d*(p, 9)/2d*(p, y)=1-25.
Thus we get that
ly'(X)| <4V1-3.

Since the homeomorphism exp (p)oy.cexp (p)”' leaves the submanifold
M(X, Y) of (2, 1) for orthogonal directions X, Y invariant, we may evaluate the
effect of (exp (p)oy.oexp (p)*)* on the line element ds of M(X, Y), in order to
get an evaluation of [(exp (p)oy,cexp (p)™'). We compare two quadratic forms
I(x, ), I,(x, y) given by

I(x, y) = (M0) %)+ 20" (@) MO)rxy+{u*(6, MO)r)+(N'(0) 7))} »*,
I(%, y) = 44’0, 1)y,

to get the following: If a positive & satisfies that
1) M) =k=4

) 4N(0)7) = u6, r)(k_(%)j(k_v),

then the quadratic form kI (x, y) dominates I(x, y), that is,
I(x, y)<kI(x,y)  foranyx,y.

Since we have that

§ sin 7= pu(r, 0)g% sinr, 1=A=1VE

from (2. 1) and from iii) 1), 2), we see that the condition 2) above is fulfilled
with % such that
k=(14+475*/1-9)/8°

Thus we have that, if §=99/100 e.g., then with k=(1+44z8/1-7§)/8°, it
holds that

(exp (p)ov-oexp (p)) ) * ds<kids .
Quite similarly, we also have that with k,=8(1—4xz+/1—§), it holds that

(exp (p)oy,oexp (p) V¥ ds=k,ds .



286 Y. SHIKATA

Thus we may conclude that

L(exp (p)ov.oexp (p) )=k,
where k,=max (k,, 1/k,).
As in the same way above, we get that
L(exp (g)ov-oexp (9) )<k, -

2.3 Third step, on [(exp (g)oBoexp (Q)™).

We take two points x, y in E_ with polar coordinates (X, r) (¥, 7r) (X, Y
ETo(S™), 0=r==/2). Apply the evaluation in 2. 1 and 2. 2 to points F_(X),
F_(Y)EE, where two maps A, =exp (p)ov oacexp (P)™* and h_=exp (g)oy_oBo
exp (0)™* coincide, to get that

Bt Ao FLX), B (V) s
- dF(X), F(Y)

On the other hand, Rauch’s theorem applied to a linear isometry B of
To(S™) onto T (M) and to S™(or S"(8)), M yields that

1 <4(exp (9)°Boexp (Q)*(a), exp (9)oBoexp (Q)'(B) . _1
= d(a, b) =3
for a, b€ E_. Let #=B"'B(X), n=B"'B(Y), then we have that

1 < 4 exp(Q)(sX), exp HO)sY) . 1
~ d(exp (Q)(sE), exp (Q)sm)) T V'S

where hA=exp (g)oBoexp (Q)™". Substitute s by z/2 and by r in the inequality
above to have that

5 < dexp (Q)rE), exp (Q)(rm)), dlhoF_(X), hoF (V) 1
=T d(F-(), F-@) dh), W) VS

IA

Since the ratio

d(exp (O)(rE), exp (O)(r(E+4E)) _ .,
d(F_(¢), F_(¢-+dE))

depends only on 7, we get that if Y is sufficiently near to X, then

8 ___ d(h(x), y)) _ d(HohoF_(X), HohoF.(Y)) _k

k, ~d(hoF_(X), hoF_(Y)) d(x, y) ’

where H=exp (¢)oy_cexp (¢)”'. Combining this with the result of 2.2, we
have that
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5 _d(ilx), F(y) ks
kR:— dx,y)y T8
Thus we conclude that
L(h)<k,[8

because % preserves length along longitude.
Consequently we get that

L(h)<U(H)-L(R) <k;[8
Therefore we finally have that

[(hy<kIS ,

from Corollary 1, finishing the proof of Proposition 1 at the beginning.
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