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0. Introduction

In the theory of unitary representations of Lie groups, it seems important
to realize the representation spaces geometrically (cf. [9] (b)). We shall work
on this problem for some types of real semi-simple Lie groups in this paper.

In §1, we shall give a method to construct Hubert spaces for 9-cohomology
spaces associated with a hermitian vector bundle over a hermitian manifold.
This will be applied to the hermitian vector bundles constructed from the groups
in §3. In §4 we shall discuss the problem when the spaces do not vanish.
Theorem 4.3 is our main result in this paper, which is a non-vanishing theorem
for a certain type of representation spaces. This can be considered as a first
step to attack the Langlands' conjecture given in [10].

1. Generalities

Let M be a hermitian manifold of dimension n, and E a holomorphic vector
bundle over M. We denote by Cp'g(E) the space of all C°°-differentiable E-
valued forms of type (p,q) on M, and by Cp

c'
q(E) the subspace of Cp'q(E) composed

of forms with compact supports. The hermitian structure of M defines the real
operator * on forms on M as usual, and we extend this operator * complex linearly
to Cp>\E). Then * maps Cp>q(E) to CH-*-"-p(E) (cf. [1] 1.4 a) β) p. 86).

Now suppose that a hermitian metric is given on each fibre of E which
depends differentiably on the base space M (cf. [1] 1.2 a)). The hermitian
metric of M and the hermitian metric of the bundle E give a conjugate-linear
isomorphism

# : Cp'9(E) -> C9>P(E*)

where 2?* is the complex dual bundle of E (cf. [1] 1.4 1) β)).
Now we define a pre-Hilbert metric on C%'Q(E) by

{<P> Φ) = 1 Ψ

for ψ, ψ in Cf(E).
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The usual /̂''-operator maps Cp "{E) into C*'q+\E). We define

δ" : C* *(E) -* Cp'g-\E) by

Then, we have

(d'φ, ψ) = (φ, δ"ψ)

for φeC* q(E), ψtΞCp

c'
q+\E). Let Lψq{E) be the completion of C*'q(E) with

respect to the inner product ( , ). We denote by 30 the restriction of d" to
C* q(E) and by t?0 the restriction of δ" to Cp

c'
q(E). Define

and #

where ( )* denotes the adjoint operator of ( ) with respect to the inner product
( , ). Then 9 (resp. #) is a closed, densely defined operator of Lψq(E) into
Lψq+1(E) (resp. I$q-\E)). Let Dψ (resp. D$>q) be the domain of the operator
3 (resp. #) in Lψq(E). We put

Since 3 and ϋ are closed operators, Zψ(E) and Z$'9(E) are closed in Lψq(E).
Let B%\E) and B%q(E) be the closure of θ^f' 9" 1) and d{D%q+l\ respectively.
We define, finally, the square-integrable 3-cohomology spaces attached to the
hermitian vector bundle E by

m\E) = Zl'\E) θ Bψ{E)

where θ denotes the orthogonal complement of B\'q(E). It is easy to see that

Since Zψ(E) and Z%«(E) are closed in L%\E), Hl>q(E) has canonically the
structure of a Hubert space.

Now we have the following orthogonal decomposition theorem.

Theorem 1.1. Lψq(E)=Hψq(E) © B\>\E) 0 Bl>q{E).
For a proof, see [8] (1.1.5), p. 92.
And we have the following Serre's duality theorem for these cohomology

spaces.

Theorem 1.2. Hξ'q(E)=H2~p'n-q(E*) {isomorphic as Hilbert spaces).
In order to prove this theorem, we have only to notice that the following

diagram is commutative.

C»'q(E) — ί U cr""-g(£*)
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where ε=(-l)p+g.

2. A consequence of completeness of the hermitian metric on M

Put

m?{E) = {φ^C^(E); d"φ = 0}

Np?(E) = {<p^Cp'«(E); δ > = 0} .

Proposition 2.1. If the hermitian metric on M is complete, then we have

In order to prove the proposition, we need some results due to Andreotti-
Vesentini.

We assume that the hermitian metric on M is complete. We take a C°°-
differentiable function μ on R satisfying

2) μ(t)=lfort<l
3) μ(t)=0 for t>2.

We fix a point o in M, and for each point p in M, we denote by d(p) the distance
from o to p in Λf, and set

wk(p) = μ(d(p)lk) for Λ=l,2,3, - .

We simply write | £> | instead of V

Lemma 2.1. (Andreotti-Vesentini) Under the above notations, there exists a

positive number c, depending only on μ, such that

1) \d"wkAφ\ < ±\φ\ ,
k

2) \d'wMA*φ\ < ±-\<p\
R

for allφ^C» q(E).
For a proof, see [1] 2.6 (13) and (14), p. 91.
Since the function wk has a compact support, we remark that wkφ^D%'q Π

? 9 for every φ<=Cp'q(E) and that

Now we come to the proof of Proposition 2.1. Let φ be in Nl$ (Ί lΆq By

above remarks

d(wkφ) = d"(wkφ)

= d"wk/\φ-\-wkd"φ

= d"wk/\φ .



98 K. OKAMOTO AND H. OZEKI

Hence, by Lemma 2.1, we have

Putting φk=Wk(P> w e know that dφk converges strongly to 0. On the other hand,
φk converges strongly to φ by the choice of wk. Since 3 is a closed operator,
we see that φ is in Z)£Q and dφ=0. This shows <p^.Z%'q(E). In the same way,
we have Nfy*(E) Π Lψq{E) c Zγq(E). This completes the proof of Proposition 2.1.

Now we need also the following result due to Andreotti-Vesentini.

Lemma 2.2. (Andreottί-Vesentini) Let the metric on M be complete. If
φ(ΞLψq(E)f)Cp'g(E) is such that 0 = 0 , then φ^N&,q(E)Γ[Np,q(E) where
U=d"δ"+δ"d".

For a proof, see [1] Proposition 7, p. 93.
From Proposition 2.1 and Lemma 2.2 we have the following proposition.

Proposition 2.2. Let the metric on M be complete. If φ^ Lψq{E) Π CptQ(E)
is such that •<?=(), then φ<=Hψq(E).

3. Definition of Hψq(Eκ)

Let G be a connected semisimple Lie group which has a faithful represen-
tation and K a maximal compact subgroup of G. We put M=GjK. In this
paper we shall be concerned with the case where M=GjK is a bounded symmetric
domain. We denote by g the Lie algebra of left invariant vector fields on G,
and by ϊ the subalgebra of cj corresponding to the subgroup K. Let gc be the
complexification of g. We put

p = {Yeg;£(X, Y) = 0 f o r a l l X e ϊ }

where B denotes the Killing form of the Lie algebra gc. Then we have

We denote by π the canonical projection mapping of G onto M=G/K. Put

π(e)=p0 where e is the identity element of G. We may identify p with the
tangent vector space TPQ of M at the point pQ by the mapping Y->dπeYe(Y^p).
Let T£ be the complexification of the tangent space Tp(p^M). For any subset
m of gc, we denote by m c the complex subspace of gc spanned by m. We
denote by T* (resp. T~) the set of all holomorphic (resp. anti-holomorphic)
tangent vectors in T£. Put

Then since we assumed that the complex structure on M is G-invariant, we have
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(resp. dπgYg^T~^) if Y^p_ (resp. Y<^p+). Moreover, it is
well known (see [6]) that

( 2 ί ) ft>+,P+] = (0), [U_, t>_] = (0).
1 ' ' [ ϊ c , P+] c ϊ>+ , [ ϊ c , p_] c p . .

We put g u = ! - ( - v / _ i p . Then gM is a compact real form of gc. We denote
by * the multiple of — 1 of the conjugation of gc with respect to gM. We define
the inner product ( , ) in gc by

{X, Y) = B(X, Y*) (X, Yeg c).

Now we know that I contains a Cartan subalgebra ί) of g. Let ]Γ] be the
system of all non-zero roots of gc with respect to the Cartan subalgebra § c . It
is easy to see that for each α G ^ w e can choose an eigenvector XΛ of the root
a such that (XΛ, XΛ)=1. Then we have XΛ=aaX_Λ for some aa^C where —
denotes the conjugation of gc with respect to g. Since [ί)c, f c ] c ϊ c and [ί)c, pc]
Cp c , it is clear that either Z Λ G ί c or J Λ G | D C ( « E Σ ) A root α G ^ i s called
compact or non-compact according to XΛ^lc or Xa^pc. Since ϊ) c CΪ c , it
follows from (2,1) that there exists a subset P n c Σ such that p+= Σ CXΛ.

<*<=Pn

Moreover, it is obvious that we can introduce a linear order on ]Γ] such that the

set P of all positive roots contains Pn. Since p+=p_ and Xcύ=acύX_a (tf£ΞΣ)>

we see that p_= 2 CX_Λ. Since G is assumed to have a faithful representa-

tion, there exists a complex form Gc of G, that is, a complex Lie group with the

Lie algebra gc which has G as a real analytic subgroup corresponding to gcg c .

We denote by Kc (resp. P + , P_) the complex analytic subgroup of Gc corre-

sponding to ϊ c (resp. p+,p_). Put U=KCP+. Then U is a complex analytic

group of Gc with the Lie algebra tc+p+ and P+ is a normal subgroup of U.

Consider the complex homogeneous space GC\U. Then we know (see [3]) that

the G-orbit of U is open in Gc/U and can be identified with M=G/K, for U Π G

=K. Moreover, we can show that the identification is compatible with both

complex structures of Gc/U and GjK\ i.e. the above complex structure of GjK

coincides with the one as the open submanifold of GcjU.

For a linear form λ on ijc, we shall denote by Hλ the element of ίjc such

that B(Hλy H)=\(H) for all H^ψ\ the inner product (λ, μ) of two linear

forms λ, μ means the value (Hλ, Hμ). Let % denote the set of all integral

forms on ί)c, i.e. % is the set of all linear forms λ on ξ)c such that ^ ' ' are

integers for all α G ^ - We put

g ' = { λ e g (λ+p, tf)Φθ for all

for all
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where P=^r^a a n d Pk i s the set of all compact positive roots. For any

we denote by τ Λ the irreducible unitary representation of K with the
highest weight Λ on the representation space V A. Then one knows that τΛ is
uniquely extended to a holomorphic representation of Kc. Since P+ is normal
in Uy we can extend τΛ uniquely to a holomorphic representation of U such that
τA(g)=l for all g^P+. In the following, we denote by the same notation τΛ

this extended representation. Let T* denote the contragradient representation
to τΛ on the dual space V% of V A. Gc is the principal fibre bundle over the
base space GC\U with the structure group U. Let EA denote the associated
holomorphic vector bundle with the holomorphic representation r*. We denote
by EA the portion of EA over the open submanifold G/K; i.e. EA is the induced
bundle by the injection mapping of GjK into Gc/U. Since we started from
the unitary representation of K, we have the canonical reduction of the structure
group of the vector bundle EA to the unitary subgroup T%(K). SO we have the
canonical hermitian metrics on the fibers of EA. Making use of the linear iso-
morphism of p onto T^gy induced by the projection mapping π, we can introduce
an inner product ( , ) in T ^ by

(dπgXgy dπgYg) = (X, Y) X

Then it is easy to see that the inner products thus introduced on the tangent
space Tp (p<=M) are invariant by the actions by G and that it defines the
Kahler metric on M= GjK. Thus we have constructed a hermitian vector bundle
£"Λon M for each Λ e g ζ . Finally we denote by Hψq(EA) the square-integrable
3-cohomology spaces attached to EA.

4. Main theorem

In this section we shall discuss "the non-vanishing theorem" of the coho-
mology spaces Hl'q(EA) defined in the previous section. Fix a Λego, once
for all. Define τΛ, VA, r* as in Section 3. Let C°(G, F*) denote the set of all
FJ-valued functions on G. For any/eC°(G, V%) and ί)GF Λ , we denote by

fυ(x) {x^G) the value of f(x) at v. Then x->fv(x) (x^G) defines a complex
valued function on G. We put

C~(G, V*) = {feC(G, V*)

Fix an orthonormal base (vly •••, vr) of VA where r = d i m F Λ . Let (vfy •••, v*)
be its dual base of V%. In the following we shall use the notation defined in
Section 3 without further comment. Let Pk be the set of all compact roots
with respect to the linear order that is introduced in Section 3. Fix an ortho-
normal base (H19 ••-,#,) of ΐ)c where / = d i m c ΐ ) c = r a n k G. Let Pn={a19 ••-,«„}
and Pjg={(Xm+19 •••, am+k}' To simplify the notation, we put henceforth
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Then we have

Ξ ΐc (i=w-

Ξ ψ (i=m-

Now we define an injection mapping

by putting

= Σ Σ

We denote by Ad^ (resp. adq) the representation of K (resp. fc) in Λ*p_ induced

by the adjoint action of K (resp. fc) in gc. We define a representation R of G

on C~ (G) by

for eachg^G. We denote by R\K the restriction of R to i£. Let <r^=Ad*®

i? IX" denote the representation obtained by the tensor product of Ad* and R \ K.

We put

C?(G)Λ - Λ*ί)_ ® C7(G) ® F * and

L?(G)Δ = Λ * t ) _ ® L 2 ( G ) ® n .
Define

Cq{G)\ = {UΪΞC«(G)A; {σq®τ*){k)u = u for all

Cq

c(G)l = {z/eC?(G)Λ; (σ*®τ*)(yfe)w = if for all *e i^} and

Ll(G)°A = {UΪΞLI(G)K\ {σq®τl){k)u = u for all keίK} .

Then it is easy to see that η maps C°'g(EA) isomorphically onto Cg(G)A. More-

over, we see that the mapping η induces the isometry of L2>g(EA) onto Ll(G)A.

There we define the metric in L\{G)A by

(«,«') = Σ

where u = Σ Y\ztΛ

«'= Σ Σ-
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For any i G g w e define v{X) by

v{X)f=Xf (/eC-(G))
where

{Xf)(g) = \-γJig e xP tX)λ
L at Λt=o

Then X-^v(X) (ZGg) is a representation of g on C°°(G). This representation
v is complex linearly extended to a representation of gc on C°°(G). Let 0 denote
the representation of gc in Λgc induced by the adjoint representation of gc.
We put

θ,(z) = θ{z)®1 + 1® v{z) (z(ΞQc) .

Then θv is a representation of gc on Λgc ® C°°(G).

Theorem 4.1. Under the above defined notations, we have

= y {(Λ+2p, Λ ) - l ®i^v(

A proof of this theorem will be given in the next section.
Let r be the right regular representation of G on L2(G) i.e.

(r(g)f)(x)=f(xg) (*eG)

for any £<=G and/eL 2 (G).
Owing to the profound result of Harish-Chandra ([5] (c), Theorem 16), for

any λef5' , we can find a closed subspace ξ>λ of L2(G) invariant by r such that
the restriction πλ of r to ξ>λ is irreducible and %λ(Ω)=(λ+2p, λ) where %λ

is the infinitesimal character of the irreducible unitary representation πλ and fl
denotes the Casimir operator of g.

Now we consider the irreducible unitary representation πA of G on ξ>Λ

defined above. We denote by πA\K the restriction of πA to the subgroup K.
Put

Then we have the following ''non-vanishing theorem" for H2tQ(EA).

Theorem 4.2. Let Λe^o If o q

A contains the irreducible representation of

K with the highest weight Λ, then H°2'
q(EΛ)Φ(0).

Proof. Let ξA denote the character of the representation τ Λ . Define a

projection operator eA by

e Λ = ,κ-
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where dk denotes the normalized Haar-measure of K. We assume that σA con-
tains the irreducible representation of K with the highest weight Λ.
Then we have

For each λ ^ § o we define a projection operator eλ(πA) by

Then it is clear that there exists a finite numbers of element, λx •••, λ5 of %Ό

such that *A(Λ*t>-® &A)cΛ*t>_® Σ ^ ( ^ Λ ^ Λ It follows from the result of

Harish-Chandra (see [5] (b) Lemma 33, p. 108) that

It is easy to see that

forall/eC"(G)n£>Λ .
It follows from Theorem 4.1 that

Ov'1u = 0 for all u(Ξ(eA(Λ9

where (eA(Λ*ϊ>_® ξ>Λ) ® F*)°=(*Δ(Λ*Ϊ>-® ©A) ® ^ ί ) Π C\G)\ .
We notice that v-\eκ{/\qp_®§κ)®V*)°(Z.C0>\EA)nLl>\EAy It follows from
Proposition 2.2 that

Since (βΔ(Λ^_® ©Δ)®^ί)°Φ(0), we see that
This proves the theorem.

We put

And we denote by qA the number of elements of the set QA. Let

Φ Λ =

Proposition 4.1. ΦA is a weight vector belonging to the weight which is one
of the lowest weight with respect to the representation adq& of ϊ c .

Proof. Since [ϊc, p + ] c p + , for any a^Pn and β^Pk we have a+β^Pn if
is a root. On the other hand, for any 7 ^ £ ) Λ and αGP^we have

(Λ+P, 7+a) = (Λ+p, γ)+(Λ+p, α)>0 .

This shows that



104 K. OKAMOTO AND H. OZEKI

It follows immediately that

adq*{X_(ύ)ΦA = 0 for all a£ΞPk.

This proves the proposition.

Theorem 4.3. Let Λe^o If πA\K contains the irreducible representation
of K with the highest weight Λ+ Σ a> then Hl>qME

Proof. Assume that πA\K contains the irreducible representation of K
with the highest weight Λ+ Σ «• P u t \= Σ a- Then we have eA+λ (πA)ξ)A

Φ(0). On the other hand, we know from Proposition 4.1 that — λ0 is the
lowest weight of the representation adq&. Then it is clear that we can choose
an irreducible component of AqAP-®VA

i with the lowest weight —Λ—λ0 which
is the contragredient representation to the irreducible representation with the
highest weight Λ+λ 0 . It follows immediately that

This means that AqAp-®eA+λo(πA) contains an irreducible component with the
highest weight Λ. Therefore, from Theorem 4.2 we have i/2'*Δ(2?Δ)φ(0).
This completes the proof of the theorem.

REMARK. G=SU(m, 1) (for the notation, see [6] p. 340) satisfies all the
conditions in §3. It is not difficult to verify that the assumption in Theorem
4.3 is always satisfied for SU(m> 1), using a result of GeΓfand-Graev [4]. We
conjecture that it holds in general.

5. Proof of Theorem 4.1

In this section we shall give a proof of Theorem 4.1. We just follow the
Kostant's method given in [9] (a). We shall use the notations given in Section
3 and 4 without further comment.

First we shall summarize some notions and the known results about the
cohomology theory of Lie algebras.

For any Z 6 g c we denote by 6(X) the operator of the exterior multiplication
by X and by i(X) the operator on Λgc defined as usual by the formula

for Xiy •••, Xq^Qc. Then it is easy to check that

i(X)* = £(X*) for all

where i(X)* denotes the adjoint operator of i(X) with respect to the inner
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product in g c defined in the previous section.
Now we define the inner product ( , ) in AQC®C~(G) by

where u=j^ 2 Sf.Λ ΛSίJEJ/a n a n d

κ'=2 2 ^ Λ - Λzig®f'h...ig. Let Z-^X (^^9 C ) denote the conjuga-
?=0 I<ί 1 < <ί<r<»

tion of gc with respect to g. Consider the representation ^ of cjc on C°°(G)
defined in the previous section. For any l G g c we define the "formal adjoint"
operator v{X)* of v{X) by

v(X)* = -v{X) .

Then we have

(y(X)fυ /2) = (Λ, v(X)*f2)

for a l l / ! , / 2 G C Γ ( G ) where the inner product ( , ) is that of L2(G). We
define operators d1 and d2 on Λgc®C~(G) by the formulas

We put

, =m + l

And define the "formal adjoint" operators df, d$ and d$ by the formulas

I = m + 1

Then it is easy to see that

(d,u,u') = (u,d*u') (ί=l,2,3)

for all M, u'(=ΛQc®C7(G).
We notice that the operators * and — commute. For any Z G g c w e define

σ{X) = - Z * .

Then it is easy to see that σ is an involutive automorphism of gc. Obviously

we have

for all
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Now we shall prove some lemmas which will be used in the sequel.

Lemma 5.1. For any # e g c we have

n

[l®v(z)y df] = Σ i(σ[zf, z])®v(Zi).
n

Proof. Since rf?=Σ Kzi)®v{σZ*\ w e n a v e

n

[\®v(z), df] = Σ t(zΛ®v([z, σzf]).
» =-l

n

We notice that X] Zi®zf e g c ® g c is invariant under the adjoint representation

of gc on g c®g c, i.e.

ί = l

for any #^g c . By operating l®σ on both sides, we have

n n

Σ ^»® [̂ > σ ^ * ] = Σ [%i> <rz](g>azf
ι = l i = l

after replacing z by σz. Since az{=z{ or — # f ( / = 1 , •••, w), it follows that

[\®v{z\ df] = Σ i{[*i, σz\)®v{σzt)
ί = l

= Σ i(<r[zt, z])®v(zf).
« = 1

This proves the lemma.

Lemma 5.2. For any u^Ap_ we have

0 if z<=pcΓ 0 i)
i(<r[z,zi])u=\ J.

[θ(z)u i)
if ZΪΞlc.

Proof. Since both sides of the equation are obviously derivations of degree
0, it suffices to verify the equality for «Gj3_. First assume t h a t # e p c . Then
for any u^p_ we have [z, σu]^lc. Since (pc, ϊc)—(0), it follows that

Σ 6(zϊ)i(σ[z9 Zt])u = Σ B(σ[z, z,], u)z*
ί = l ί = l

= -Σ3 («f, [*, «*])«?
ι = l

= 0.

We now assume that 2Gt c . In the same way we can show that

for all κe:p_.
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Lemma 5.3. For any Z^QC we have

d*{S{z*)®l)+(S(z*)®l)d* = \®v{zf .

Proof. For any #Gg c we have

(i(z)® 1) d^d^z)® 1)

- Σ (i(z)S(zt)+S(zf)i"(*))®

On the other hand, one has the following equality;

i(x)£(y)+€(y)i(x) = B(x, y) = (*, y*)

for any x,y^Qc. It follows that

Taking the adjoint operator of both sides, we obtain the equality in Lemma 5.3.

Lemma 5.4. For any weΛp_ we have

( Σ θ(z*)θ(z{)+± θ([z{, «*]))« = 0 .
, =r»! + l , = 1

For a proof, see [11] Lemma 4.1.

Lemma 5.5. For any u^Λp-®C°°(G) we have dfu=0.

Proof. By the definition of d3 we have

dt = Σ iW®K^)*
- »! 1

We notice that z{ (/=m+l, •••, w) is orthogonal to p+. For any j G p . we have
+ Hence, /(j8r/)iy=(arί,y

|β)=0(ί=ιif+l, •••, w). This proves the lemma.

Proposition 5.1. For any ttGΛp_®C°°(G) we have

?̂ v denotes the Casimir operator of the restriction of 0V to lc and

Proof. First we notice that d2 and J? both map Λp-®C°°(G) into itself.
This is an immediate consequence of the definition of d2, and df. It follows
from Lemma 5.5 that
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(didt+dfd^u = (d2df+dfd2)u

for all u^A$-®C~(G).

Making use of Lemma 5.1'—'5.3 we have

(d2d*+d*d2)u = f ] (S(zf)®ί) [1®K*,)> d*]u
1 = 1

ί = l
n m

— 2-1 2 J fcV#i ) ι \

+Σ
n—m

= Σ θ(zf)®p(zi)u

m

»=i

We consider the first term. Owing to the choice of the base (zf •••, zn), we have

n—m,

- Σ 0(*?)0(*, )®i

- Σ

where RQf (resp. Rp R^) denotes the Casimir operator of the restriction of

(resp. θ, v) to ϊ c .
Now we consider the second term.

Σ

\p)-2®v(HPk).

It follows from (A) and Lemma 5.4 that

2(d2d*+d*d2)u = (i?Jv-l®i? v02^(// p)-2^(// pJ)w .

This completes the proof of the proposition.

Now we come to the proof of Theorem 4.1. First we observe that the
diagram
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σ (EA) - ^ Λ9t>-<8)C~(G)®V*

d'\U"

is commutative. It follows from Proposition 5.1 that

v(Πφ) = — {R\»+WJH?)—W.
2 .

We know that vC°'9(EA)=Cq(G)°A.
Consider the the projection operator e\ defined by

e\ = r [ fJkϊσ1

JK

Then it is easy to see that

Therefore, since η(φ)^Cg(G)Ay we have

Rθf®lv(φ) = (A+2Pv A)v(φ).

Since H2P_2PJg is contained in the center of ϊ c (see [9] (a) Lemma 5.5), θ^(H2P_2Pk)
reduces to a scalar operator on eA(Agp-®C°°(G)). To determine the scalar it
suffices to compute θv(H2P_2Pk) on a highest weight vector uA^eq

A(Agp-® Coa(G)).
Clearly we have

θ,{H2P_2Pk)uA = (Λ, 2p-2pk)uΆ .

Hence

(^(^2P-2P*)®1)^) = (Λ, 2p-2pk)V(φ)

It follows that

V(Π<P) = y {(Λ+2p, A)-l®Rv}®lv(φ).

This completes the proof of Theorem 4.1.
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