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1. Introduction. Let Ao be the disk algebra, i.e., the uniform closure of
polynomials on the unit circumference in the complex plane, H°° the algebra of
bounded analytic functions on the open unit disk, and {zk}^=1 a sequence of
distinct points in the open unit disk. We shall call {#JT=i an interpolating
sequence if, for any bounded sequence {wk}^=1 of complex numbers, there exists
a function /ei/°° such that f(zk)=zvk for every k. Then the following two state-
ments are known to be equivalent (cf. Hoffman [6; p. 208]): (a) if g is any
continuous function on the closed unit disk, there exists φ^A0 such that φ^z^—
g(z^) for every k; (b) {#/.}Γ=i is an interpolating sequence for H°°, and the set of
accumulation points of {#,JΓ=i on the unit circumference has Lebesgue measure
zero. Recently, Wada [8; Theorem 3.2] observed a similar fact for some uniform
algebras generated by a single function. We know that such an algebra is
isometrically isomorphic to the uniform closure of polynomials on the boundary
dK of a compact set K with connected complement in the complex plane. As
the latter is one of the best known examples of so-called Dirichlet algebras (cf.
Wermer [9]), the question naturally arises as to whether this phenomenon is
common to general Dirichlet algebras. The answer is in a sense affirmative and
indeed we shall show in this paper that the theorem mentioned above can be
extended to arbitrary logmodular Banach algebras.

I wish to thank Professor O. Takenouchi for his careful reading of the
manuscript and valuable suggestions.

2. Statement of the theorem. Let X be a compact Hausdorff space.
A uniform algebra on X is a uniformly closed subalgebra A of the space C(X) of
continuous complex functions on X which contains the function 1 and separates
the points of X. A'1 denotes the set of all functions φ'vsxA such that φ~1=l/φ
is also in A and logl^ί"11 denotes the set of logarithms of moduli of elements of
A'1. A uniform algebra A is called logmodular if logl^ί"1! is uniformly dense
in the space CR(X) of continuous real functions on X. A detailed discussion
on logmodular algebras is given by Hoffman [7]. D\ί(A) denotes the maximal
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ideal space of A and A denotes the Gelfand representation of A. M(X) denotes

the space of Radon measures on X.

Let A be a logmodular Banach algebra on X. Then there exists, for each

m^JIL(A), a unique representing measure μm^M(X). μm is a probability

measure on Xsuch that m(φ)= I φ(x)dμm(x) for φe A. It is also known that
J x

μm is an Arens-Singer measure, meaning that

(1 ) log I m(φ) I = log I \ φ(x)dμm(x) I = I I log φ(x) I dμm(x)
J X J X

for each φEzA'1. Jϊί(A) is divided into so-called Gleason parts (Gleason [3],

Hoffman [7]). We denote by (P the set of all parts P contained in KL(A)~X.

For each part P G ( P , let μP be the representing measure for any point in P, that

is determined by P up to equivalence. So we choose one μP for each P e (P

once for all. L°° denotes the subspace of UP<=(PL°o(dμP) consisting of all vectors

(fP) such that ||(/p)|L :=supFeCp||/p||oo P < + oo, where 11 11̂  P denotes the norm

of L°°(dμP), and L1 denotes the subspace of HP^(pL\dμp) consisting of all vec-

tors (fP) such that ||(/p)||1=Σpe(pll/Flli fp< + 0 0 , where || | | l P denotes the norm

of Lι(dμP). If (P is empty, then U and L°° do not have any meaning so that we

may assume (p is non-empty. Then V is a Banach space and L°° is the dual

of L\ For any / e C(X), the vector (/F), with fP = / for all P e (P, belongs to L°°,

so that C(^Γ), or a homomorphic image of C(X), is contained in L°° as a subalgebra.

(In general, the mapping /-> (/p) is norm-decreasing.) The algebra ^4, or its

homomorphic image, is also viewed as a subalgebra of L°°. We define H°° to

be the σ(L°°> L^-closure of the latter subalgebra in L°°. It is easy to see that

each function ψ=(ψP) in H°° has a definite value at each point

which we shall denote by ψ(m):

( 2 ) Ψ(«)

Consider the following two properties that generalize the properties (a)

and (b) in the introduction: for a subset FQ of JΪL(A),

(I) A\F0=C(F0),

(II) i | ( F o n l ) = C ( F o n l ) and ή°°\(F0~X) = Cb(F0~X), where
Cδ(F0~X) denotes the space of bounded continuous complex functions
on F0~X.

Then the theorem we wish to prove in the present paper is the following:

Theorem 1. Let A be logmodular on X and Fo a closed subset of D\l(A).

(i) If F0~X is discrete as a subspace of Dϊl(A), then (I) implies (II).

(ii) If Fo intersects at most countably many parts in 3K(A)~X, then (II)

implies (I).
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It can be shown that, under the hypothesis on Fo in (ii) of Theorem 1 and
the condition ή°° \ (F0~X)=Cb(F0<^X), F0~X is countable. We do not know
whether our countability hypothesis on Fo can be weakened or omitted at all.
We shall make a comment on this matter in the final section of this paper.

3. Lemmas. We collect here some results on uniform algebras that will
be needed in the proof of the theorem.

Lemma 1. If A is logmodular and F is closed in X, then the following are
equivalent:

(i) μ <= M(X) and μ±A imply μ\F=0y

(ii) A\F=C(F).

Proof. Let g be any positive continuous function on X and let £>0.
Then there exists an h^C(X) such that g-\-8=eh. Since A is logmodular,
there exists, for any £'>0, φ^A"1 such that \h—\og\φ\ | <£ ' . We can take
£'>0 so small that |eΛ— \φ\ \ < £ and therefore \g—\φ\ \ <2£. So the lemma
follows from Theorem 4.10 of Glicksberg [4]. Q.E.D.

Lemma 2. If A is logmodular, F is closed in X and A \ F= C(F), then we

have μm\F=0 for the representing measure μmfor any point

Proof. Let x be any point in X. Since m is outside of X, there exists a
function φ^A such that φ(x)^zθ but φ(m)=0. Since φμm is orthogonal to A,
we have <pμm\F=0 by Lemma 1. As x is arbitrary, we see that μm\F=Q.
Q.E.D.

Lemma 3. If A is logmodular, then the correspondence m-^μm is a con-

tinuous function from JΪL(A) into M(X)y where M(X) is equipped with the weak*

topology σ(M(X\ C(X)).

Proof. Let g be any function in CR(X) and let £>0. Since A is log-
modular, there exists a function φ^A~x such that |^—log|£>| | < £ on X. If
a net {ma} converges to m in JK(A) and μΛ (resp. μ) denote the representing
measures of ma (resp. m), then

|[ g(dμa-dμ)\<\\ (g-lθg\φ\)(dμa-dμ)\ + \\ lθg\φ\(dμa-dμ)\
J X J X J X

<2S+\\og\ma{φ)\-\og\m(φ)\\

because of the equality (1). As φ^A'1, we have log | ma(φ) \ ->log| m(φ) \.

Hence \ g(dμa—dμ)-^0. It follows immediately that I g(dμa—dμ)->0 for

any g^C(X). Q.E.D.
The following lemma tells us the structure of a measure τ€ΞM(X) which
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is orthogonal to a logmodular algebra A on X. This was first proved by
Glicksberg and Wermer [5] for a Dirichlet algebra on X, but a close inspection of
their proof reveals that the same is still valid for a logmodular algebra.

Lemma 4. If A is logmodular and τ^M(X) is orthogonal to A, then
there exists an at most countable set of parts P, in (P,for each i some k{ in H\(dμi)
with μi=μP., and a measure σGM(Z) which is orthogonal to A and is singular
with respect to all μm with m^D\L(A) such that, with the series converging in total
variation, we have

( 3 ) T = ΣΓ-i kiμi+σ .

We omit the proof because it is similar to Glicksberg and Wermer's. We
also need the following result due to Glicksberg [4; Corollary 3.2].

Lemma 5. Let C be a closed subalgebra of C( Y) on a compact Hausdorff
space Y and let F be a closed subset of Y. Then C\F=C(F) if and only if, for
some

(4) \\μ\F\\<c\\μ\(Y~F)\\

for all μ<=M(Y), μ±C.

4. Proof of Theorem 1.

The case (z). Since any continuous function on Fo Π X can be extended to
a continuous function on FQy A \ (Fo Π X)=C(F0 Π X) is a direct consequence of (I).

We put B=C(F0)\(F0~X). Then it is easy to see that B is closed in
Cb(F0<—X) with respect to the supremum norm. If π denotes the restriction
map of A to F0~X, then (I) implies that π maps A onto B. π is clearly con-
tinuous so that it is a homomorphism by a theorem of Banach [1; Chap. Ill],
i.e., we can find a constant c>0 such that, for any f^B> there exists a φ^A
which satisfies π(φ)=f and | \φ\ \ < c\ \f\ \. Take any ge Cb(F0~X). Then there
exists a bounded net {fa} in B which converges to g pointwise on For^>X. For
each a, we can find φa^A such that π{φΛ)=fΛ and | | 9 > J K C | | / Λ | | . {φ*} can
be regarded as a bounded net in L°°. Since L°° is the dual of L1, there exists a
subnet {φa'} of {φ^} which converges to some ψEΞH00 with respect to the weak*
topology σ(L°°, L1). Let m^F0~X. If m belongs to a part P, then the repre-
senting measure μm for m is absolutely continuous with respect to μP and indeed
there exists a positive function ΛwGL°°(rf^P) such that μm=kmμP. Then

fΛm) = <pAm) = \ <pAx)dVnkx) = \ <pAχ)kUx

J X J X

-> I ψP(x)km(x)dμP(x) = I ΛlrP(x)dμm(x) =
J X J X



INTERPOLATION SETS FOR LOGMODULAR BANACH ALGEBRAS 307

where ψ = (ψp). Hence ,jr\(F0~X)=g. This shows that

ή°° I (F0~X). Since F0~X is discrete, the converse inclusion is obvious. This

proves the case (i).

The case (it). We now suppose the property (II). We first consider the

property

(5) fi-\(F0~X) = C*(F0~X).

The topology of F0~X induced from that of JK(H°°) is the weakest topology of

Fo>—'X that makes each function in H°° continuous. Similarly, the original

topology of F0~X as a subset of JK(A) is the weakest topology of F0~X that

makes each function in Cb(F0^X) continuous. Thus the equality (5) implies

that these two topologies on F0~X coincide. Therefore the relation (2) defines

a topological imbedding of F0~X into JR(H°°).

We know that L°° is isometrically and algebraically isomorphic to the Banach

algebra C(Ω) for some compact Hausdorff space Ω. We have the natural

mappings A^C(X)^>L°°=C{Ω) and A^HCO->LOO=C(Ω), where the mappings

are bounded. Therefore we have the natural mappings, among their maximal

ideal spaces, that are continuous: n-+X-*3ϊl(A) and a-^J\i{H°°)-^d\i{A). It

follows immediately that π2°π1(Ω)<^X.

Let Ωj = 7̂ (11). Then we have ^ ( Ω J c I , On the other hand, the set

J\L(A)~X can be identified as a subset of DK(H°°) by means of the formula (2).

It follows from the fact π2(0\l(A)~X) = J\l(A)~X that we have (DΪL(A)~

X) Π Ωt=0 in JΪL(H°°) and in particular (F0~X) Π 1^=0.

Now let Y=F0 U X. Then A \ Y is a uniformly closed subalgebra of C( Y),

because Y contains the Silov boundary X of the algebra A. We suppose that a

measure v^M(Y) is orthogonal to A\ Y. It follows from Lemma 3 that

T = I μmdv(m)
v Y

is well-defined and belongs to M(X). Then, for any φ^A,

( ^ , φ)dv(m)= ^γφ(m)dv(m) = 0 .
γ

So τJ_A. By Lemma 4, r is expressed as a series converging in total variation:

( 3 ) τ = ΣΓ-i kφi+σ = ξ+σ , say,

where μ, come from distinct parts in 3lί(A)~Xy k^Hlζdμi), and σ is com-

pletely singular. For later convenience, we admit here those μ{ with ki=0.

We set vo=v—τ> where we regard r as a measure on Y. Then we have

( 6 )
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In fact, as we know that μx for x^X is the evaluation measure Sx at xy

I μnAvJjri) = μmdv(m)— 1 μxdτ(x) = r— \ δxdτ(x) = τ—τ = 0 .
J Y J Y J X J X

We transfer v0 and ξ to 3\l(H°°) as follows. As F0~X is topologically
imbedded in Jll(Hoo)~Ω1, the measure IΌ I (J^o'—'̂ ) ίS directly transferred to
0flΐ(i/oo)~Ω1. We denote it by v'. In order to transfer vo\X, we use the
following immediate consequence of (6):

vo\X= — \

Now, Fo intersects at most countably many parts in Dlί(A)<—X. By the con-
vention we adopted before, we may suppose that these parts are already in the
set of parts used in the expression (3). Thus,

( 7 ) v01X = — ΣΓ-i \

where ui^U{dμi) for ί = l , 2, •••. The first equality in (7) is obvious. The
second equality can be seen as follows. It is enough to show that Fo Π P, is at
most countable for each /. This is trivial if P f consists of a single point. So we
may assume that P{ contains more than one point. It follows from the con-
struction of our H°° that ή°° \ Pi^=ίϊ00(dμi) \ P{ where Hoo(dμi) denotes the weak*
closure of A in the space L°°(dμi). It is also known (cf. Hoffman [7; Section
7]) that there exists a continuous univalent mapping K of the open unit disk D
onto Pi such that ψoκ is an analytic function on D for every Λ]r^Hoo(dμi). We
now suppose, on the contrary, that Fo Π P, is uncountable. Then we can find
disjoint compact subsets Kλ and K2 of D in such a way that Fo ΓU(i£i)Φ0 and
Fo Π fc(K2) is uncountable. As both Fo Π κ{K^) and Fo Π κ(K2) are also disjoint
compact sets in P, (and therefore in JK,(A))> we can find a function g^Cb(F0~X)
such that

^ | ( F o n ^ ( l i : i ) ) = l and g\(F0Γίκ(K2)) = 0.

By (5) and ίϊ°° \ P^ίϊ^dμi) \ P, , there exists a ψeH~(dμi) such that ψ \ (Fo Π P f )

= ^ I (̂ o Π P4). This ψ then satisfies

( ^ 0 ^ ) 1 ^ = 1 and ( ^ 0 ^ ) 1 ^ = 0 .

But, ψoκ is a non-constant analytic function on D and has uncountably many
zeros. This contradition shows that Fo Π P, is at most countable.

We now define a functional

= ΣΓ-l \χ{ki+Ut){x)fi{x)dμi{x)
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on L°° where/f denotes the Pt-th component of the vector/^//0. Φ is a bounded

linear functional on L°° and thus defines a measure ??eM(Ω). Since π maps Ω

onto Ωx continuously, there exists a measure v" on Ωx so that 7 (̂17)=zΛ We

finally define a measure P" on Jϊί(H°°) by putting

1/ on ;)]l(i/~)~ Ω x,

v" on Ωj.

From our construction of V follows easily that V_\_H°°. If we denote by

Go the closure of F 0 ~ X i n the space Jlί(H°°), then our assumption on H°° implies

that H°° I G0=C(G0). Thus, by Lemma 5 with C=#°°, Y=DK(H~), and F = G 0 ,

there exists a constant c > l such that

\\v\Gβ\\<φ\(3K.(H")~G0)\\,

where c does not depend on V. Consequently, we have

(8) \\v\{Ft~X)\\ = \\vo\{F,~X)\\ = | |? |(F 0~Z)| | < | | P | G 0 | |

< c{\\{vo\X)+ξ\\+\W\\) = c\\{v9\X)+l-+σ\\

= c\\v\X\\,

because (vo\X)-\-ξ and σ are mutually singular on X.

Now we use the assumption A \ (Fo Π X ) = C ( J F 0 Π X). By Lemma 2 and the

expression (7), we have v0 \ (Fo Π X) = 0. As f and cr are orthogonal to ^4,

Lemma 1 implies that ξ\{F,(\X)=0 as well as σ\(FoΠX) = 0. Hence

* I (Fo Π -SΓ)=O. It follows therefore from (8) that

\\v\Ft\\ < c\\v\{X~F.)\\ ,

where c is a constant independent of v. Thus by Lemma 5, A\F0=C(F0).

This proves the case (ii) and the theorem is established.

5. Uniform algebras with a single generator. In this section we
shall be concerned with uniform algebras generated by a single function, which

were previously discussed by Wada [8].

Let A be a uniform algebra on a compact Hausdorff space X such that A

is generated by a single function/0. Then, denoting by P{Z) the uniform closure

of polynomials on a compact set Z in the complex plane, we know that A is

isometrically isomorphic to the algebra P(dK), where dK denotes the boundary
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of some compact set K with connected complement in the complex plane (and
trivially conversely). Such a P(dK) is known to be a Dirichlet algebra, meaning
that real parts of functions in P(dK) are uniformly dense in CR(dK) (cf. Wermer
[9; Theorem 5.1]). So Theorem 1 can be applied to P{dK). It is also
known (Hoffman [7]) that a part of a logmodular algebra (or, a fortiori, a Dirichlet
algebra) is either a one-point set or equivalent (but not necessarily homeo-
morphic) to the open unit disk, as was mentioned in the proof of Theorem 1. A
part which is equivalent to the open unit disk is usually called a disk part.
Clearly, our P(dK) has an at most countable set of disk parts. If a single point
# e A'forms a part of P(dK)y then z cannot be in the interior of K and so z^dK.
This means that K~dK consists of at most countably many disk parts and so
does Jll(A)~dAy where dA denotes the Silov boundary of A. The algebra
P(dK) is completely characterized by Mergelyan's well known theorem as
follows (cf. Wermer [9; Theorem 7.6]): P(dK) consists of all functions in C(K)
that are analytic at all interior points of K. It then follows that the space H°°
for P(dK) consists of all bounded continuous functions on K~dK that are
analytic on every disk part. So Theorem 1 implies the following:

Theorem 2. Let A be a uniform algebra with a single generator on X, such

that X is the Silov boundary of A, and FQ a closed subset of Jϊί(A). Then, (I)

and (II) are equivalent.

Proof. As we have seen above, we may assume A=P(dK) with a compact
set K having connected complement in the complex plane. Then we have
Jϊί(A)=K and the topology of Dϊί(A)= K as the maximal ideal space of A
is equivalent to the usual topology of the plane. If (I) holds, then Fo Π P is
discrete for any part P c K~dK and consequently F0~dK is discrete. So,
by Theorem 1, (i), we have (II). Conversely, if (II) holds, then (I) is also valid,
because K~dK has at most countably many parts so that the hypothesis in
Theorem 1, (ii) is automatically satisfied. This proves Theorem 2.

Theorem 2 extends a theorem of Wada mentioned earlier [8; Theorem 3.2],
although our formulation is a little different from his. Of course, the equivalence
of the statements (a) and (b) in the introduction is a special case of Theorem 2.

6. A remark. We wish to make a comment on the countability hypo-
thesis in Theorem 1, (ii). Let A be logmodular on X and Fo a closed subset of
Jϊί(A) such that ή°°\(F0~X)=Cb(F0~X). Let F be any compact subset of
For^X. By means of the mapping nι->μM, F can be viewed as a weakly* com-
pact subset of M(X), so that we can define the weakly* closed convex envelope
co(F) of F in M(X). We ask the question: Does co(F) contain a non-zero
measure which is singular with respect to all μm, m^Jϊί(A)} If the answer is
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negative for any compact subset F of F0~Xy then we can remove the countability
assumption from Theorem 1, (ii). If this is not the case, then the situation may
probably be more delicate.
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