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The study of non commutative (associative) principal ideal rings
and its unique factorization has been carried out extensively by Asano
[1] and others and was almost completely summarized by Jacobson in [3]
(Ch. 3). The motivation to this study was the factorization of differential
polynomials which constitute a non-commutative principal ideal ring (Ore
[4]) and the factorization of elements in algebras, in particular in ma-
trices with integral elements, or in general commutative principal ideal
rings (e.g. Dickson, "Algebras and their arithmetics", Chicago 1923). The
latter is closely connected with the subject of elementary divisors and
invariant factors.

The present paper contains two additional notes to this subject and
a generalization of a notion of local rings, which appears in arith-
metical considerations of commutative rings. The first section deals with
modules over locally principal ideal rings and applies the result to obtain
some consequences in the direction of Hermite-ring which are stronger
than obtained in [2]. In the second section, it is shown that the unique
factorization theorem, in the sense of [4] or [5] (Ch. 3) holds in some
more general principal ideal rings and this is applied to obtain a straight-
forward proof of Nakayama's theorem ([5]) on the uniqueness of the
elementary divisors of matrices over principal ideal rings. The last part
deals with a generalized notion of local rings of principal ideals ring at
a prime p> and it is shown that such a ring exists if one takes into con-
sideration all the primes equivalent to p.

1. Matrices and modules over principal ideal rings

Let R be an associative (not necessarily commutative) ring with a
unit 1, and Rn be the ring of all nxn matrices over R.

We shall deal with rings R satisfying the following :

(Rl) Every finitely generated right ideal is a principal right ideal.
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(R2) For a left zero divisor a£R, the right ideal (0 : ά)= {x\ax = 0} is a
finitely generated ideal.

Our first result i s :

Theorem 1.1. Let R satisfy the conditions (Rl) and (R2), then every
finitely generated right ideal in the matrix ring Rn is a principal right
ideal {i.e. Rn satisfies (Rl)) furthermore, these ideals are generated by
triangular matrices.

To prove the theorem we begin with a lemma which is interesting
by itself.

Lemma 1.2. Let V=vλRλ \-vnR be a free right R-module generat-
ed by n elements vly ~-,vn; and R be satisfying (Rl) and (R2)-then every
finitely generated submodules W^V is generated by at most n element.
Moreover, the generators of W can be chosen to be of the form: wk=

Proof. Put Vck:>=vkR+ — +vnR, and let /c*> be the right ideal in R
consisting of all rk e R for which there exist v 6 FC A 0 f| W of the form
v = vkrkΛ Vvnrn. Clearly, /CA0 is a right ideal.

First we note that if W is generated by the elements uly •••, um then
/ c υ is a right ideal generated by the m coefficients of v1 in the expression
of {uj}. Thus, it follows by (Rl) that ΓΌ = rnR, and that there exists
wxeW for which w1 = v1r11-\ Vvnrln. The definition of / c υ yields im-
mediately that for every v 6 W there exists x € R such that v — wxx e VC2\

Next we assert that V°° f ] W is also finitely generated. Indeed, let
w£ yc2)f] W and choose x££R for which % — MV^ G VC2\ Then, since {%}
generates Wy we have:

w = Σ «, Λ = Σ («ί-«>Λ )Λ + Wi Σ Wi

Since w G FC 2 ) the coefficient of ^x in the w is zero, and thus the coef-
ficient of vx in the right side is rn^xiyi = 0f i.e. 2 #,•# e (0 : r n ) . Fur-
thermore, if β € ( 0 : r n ) then wa€ V^IΛW. Hence, VC2)r\W is generated
by the finite set {u1 — w1xly "*yum — w1xmyw1mly --ywλmt} where mly ~ ymt

are the finite set of generators (by (R2)) of (0: rn).
The rest of the proof follows now easily by induction on n.
We turn now to the proof of the theorem let / be a finitely generat-

ed ideal in Rn. Let F b e the free module generated by all lxn columns
and W= W(J) be the submodule of V generated by all columns of the
matrices appearing in /. Since / is finitely generated so is W9 and thus
if ^ = (1, 0, ..., 0)*, —, ^ = ( 0 , 0, - , 0, 1)* x\ then it follows by the pre-

1) A* denotes the transpose matrix of A.
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vious lemma that W is generated by: w1 = (ru, •••, O*> "> wk =
(0, •••, rkk9 .-, rn A)*, •••, 10* = (0, •-., 0, O * . Let P=(w19 w29 —, wM)* the
triangular matrix formed by the columns wy. We wish to show that
/ = PRn let Z?ίife be the matrix of Rn containing 1 in i-th row and &-th
column and zero elsewhere. As ws € TF it follows that for some matrix
P y e / M y appears in the k = k(j) row of JPy then, clearly, P=ΣPjEkjeL
Now for every Q 6 /, the '-th column of 0 is a linear combination
Σ Wffί/ hence, QEjj = P(r)j where (r)y is the matrix containing (r iy, •••, rw y)*
as the y-th column and zero elsewhere. Consequently £? = Σ QEjj = P(riJ)9

and the proof is completed.
Notice that the preceding proof actually yields

Corollary 1. 3. Let A be an nxm matrix over a ring R satisfying
(Rl) and (R2), then there exists a triangular nxm matrix D and two
matrices Py Q such that AP=D and DQ = A.

REMARK. It is probable that (R2) need not hold in the matrix ring
Rn even if R satisfies both (Rl) and (R2). In order to get conditions for
R which would be inherited to Rn one needs to require a stronger con-
dition about finiteness of the generation of more general of ideal quo-
tients.

We turn now to apply the preceding result to the case of Hermite-
rings (Kaplansky [2]):

A ring R is called a right-Hermite ring if every 1x2 matrix (a9 b)
admits a diagonal reduction. Namely, there exists a 2 x 2 unimodular matrix
Q such that (ab)Q= (cfO), and in this case every matrix has a triangular
reduction. In view of corollary 1. 3, we prove:

Theorem 1.4. A ring R without zero divisors is a right-Hermite ring
if and only if every finitely generated right ideal is principal.

Proof. If R is right-Hermite, then it was already pointed out in
[2, p. 465] that aR+bR=dR where (ab)Q = (dO).

To prove the converse, we first note that the assumpition of the
theorem yields that any two non zero elements a, b G i? have a common
right multiple. Indeed, let aR+bR=dR then ax-\-by=d and a = du, b = dv
thus byu = a(l — xu), and if ^ = 0 the proof is evident. Consequently, R
satisfies the Ore-condition for the embeddability of R in a division ring
Όy and hence Rn^Dn. From which we deduce that if PQ = 1 in Rn then
QP=1, since it holds in Dn.

Clearly, R satisfies the conditions of corollary 1. 3, hence considering

the matrix A= (Q Λ we obtain P,Q ei?2 for which
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(ab\p__(d0\, (dO\Q_(ab\
\0 l ) F ~ \ u υ)> U v ) Q " VO l ) .

To prove that (ab) admits the reduction to (rfO), it remains to prove
that P is unimodular, since it also holds that (ab)P=(dO). Indeed, we
readily obtain that APQ = A and if αφO, 4̂ is not a zero divisor so PQ = 1
and, consequently, QP=1 i.e. P is unimodular. The case a = 0 is self
evident.

In view of [2] lemma 3. 3, it follows now that:

Corollary 1.5. // in a ring R without zero divisors, the union of
two principal right ideals is principal then the intersection of two prin-
cipal right ideals is principal.

This strengthen theorem 3. 4 of [2].

2. Unique factorization

For reasons of adhering to certain relations between the ring R and
the matrix ring Rn — we use the following notations:

1) Two elements a,b£R are (right) equivalent if R—aR^R—bR
as right 7?-modules2). This is equivalent to the existence of elements
x, y, ••• satisfying

xa = by , xu + bυ = 1

ub — aw , ux -f at = 1

The relation of equivalency between elements will be denoted
by

2) An element a € R is regular if it is neither right nor left zero
divisor in R.

In the present section we deal with rings which satisfy some more
restricted conditions than those of the preceding section. Namely,

(R3) a) Every right ideal which contains a regular element is a prin-
cipal right ideal.

b) If a£R is regular and beR arbitrary, then there exists ax = by
with y regular3).

2) This relation is called 'similarity' in ([4], [3] ch 3). This has its origin in the
theory of differential polynomials. Since similarity is used in matrix ring for the relation
a = ubu~1, we prefer to call the present relation by 'equivalency' which is the natural gener-
alization of classical equivalency i.e. a=pbq With p, q invertible.

3) The existence of a right common multiple follows as in the preceding section, the
present condition emphasizes the regularity of y.
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c) The right invertible elements of R form a group: the regular
elements form a multiplicative semigroup and the factors of regular
elements are regular.

The last condition will always be in the case :

Lemma 2.1. // R can be embedded in a ring D with the same unit
such that the {left) right zero divisors of R are also {right) left zero
divisor in D, and such that the regular elements of R are also regular in
D, then R satisfies (R3c).

Indeed, if ab = l then b is not a left zero divisor, since bx = 0 implies
0 = abx = x. Thus b is not also a right zero divisor. Hence, {ba — l)b = 0
implies that ba=l. This proves the first part of (R3c). The rest follows
from the fact that our condition implies that all multiples of zero divisors
are also zero divisors at least in D hence cannot be regular in R.

A simple example of rings R satisfying lemma 2.1 are rings with a
quotient ring in a matrix ring over division rings.

Condition (R3a) is less restrictive than the principal ideal requirement
and we shall call a ring R a regular-principal-right ideal ring (r-pri ring)
if it satisfies the three condition of (R3).

A r-pri ring R will be refered to as a ring with factorization if it
satisfies also:

(R4) Every regular element in R can be written as a product of a
finite number of prime elements.

One of the aims of the present section is to show that in a great many
cases this property is inherited to Rn. Condition (R4) is generally proved
if R is both right and left principal ideal ring ([3] p. 31). Nevertheless,
some of the differential rings defined by Ore ([4]) are right but not left
principal ideal ring but satisfy (R4).

It is well known that commutative principal ideal rings have unique
factorization. The case of non-commutative right and left principal ideal
rings without zero divisors is dealt extensively in [1] and [3]. The basic
tools in the study of factorizations in rings is the application of the
Jordan-Holder theorem and the Krull-Schmidt-Remak factorization theorem
for the i?-module R—aRy for a£R.

One can show easily that the same methods work as well for some
general cases like matrix rings over principal ideal rings (Cl]) Without
additional efforts one can carry out the proofs also for the regular ele-
ments of an r-pri ring R with factorization. We shall summarise this
result in the next theorem for further reference :

Theorem 2.2 Let R be a r-pri ring with factorization and α 6 i? be
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a regular element, then:

1) R-aR is R-irreducible if and only if a is prime.
2) The factorization a=ply - ypn into prime factors holds in R and

is unique up to equivalency.
3) The decomposition a=[_aly ~ ,am~]y (aiy\βly •••, άiy •••, am~]) = l into

indecomposable factors is possible in Ry and it is unique up to
equivalency^.

Part (2) of the theorem is the Jordan-Holder theorem ([3] p. 34) and
(3) is the Schmidt-Remak theorem ([3] ibid) and ([2]).

The following is an important class of r-pri ring:

Theorem 2. 3. Let R be a (r-)pri ring without zero divisors then Rn

is also an r-pri ring.

Proof. Similar to the proof of theorem 1.1 one verifies that every
right ideal in Rn is a principal right ideal generated by a triangular
matrix, and thus Rn satisfies (a) of (R3).

To prove (b) of (R3) we note that R can be embedded in a division
ring D whose elements are of the form ab~\ with O φ δ e i ? , aeRy and
hence it follows readily that every matrix T£Dn can be written as
T= To Γ1, where ToeRny teR. Thus, for A€Rn regular and B arbitrary,
we have in Dn the relation A-1B=Tot~

1 for some T0£Rny teR. Con-
sequently, AT0 = B(tΛ) and tΛ is regular.

The last requirement (c) of (R3) follows from lemma 2.1.
It remains now to prove that Rn is a ring with factorization, and

we note first that a diagonal matrix D=^dieii is prime if and only if
one dj is prime in R and the rest of the dj are invertible elements (Hilfsatz
3, § 6 is [1])5). Next, one verifies that triangular matrices can be written
as a product of diagonal matrices and invertible elements, e.g.:

0 ...0 \ ίan

\0

0'

An 0

Rings R which are both right and left principal ideal rings have the
property that for every matrix A e Rn there exist two invertible matrices

4) [<z, b~] denotes the least common right multiple of a, b and it exists in an r-pri ring
R if both a and b are regular. (<z, b) denotes the greatest common left divisor of a, b and it
exists under the same condition. ά{ denote the omission of «,-.

5) The proof of this Hilfsatz assumes that R is both right and left principal ideal ring,
but actually it uses only the possibility of triangular reduction in Rn which is valid in our case,
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P, Q such that PAQ = D and Z)=Σ rf*0« is a diagnal matrix and each d£

is a total divisor of di+1 ([3] Theorem 10, ch. 3). This includes the fact
that di is bounded by an element df, in the sense that dfR is a the
maximal two sided ideal containing diy and diR^ϊdtR^2di+1R. The
uniqueness of the invariant factors di (up to equivalency) was proved by
Nakayama using properties of the factorizations and enumeration of prime
factors of bounded elements (e.g. [3], theorem 31, p. 49). The present
proof is a straight forward proof using factorization properties of r-pri
rings with zero divisors, in particular Rn.

The following lemma for rings R of the type of theorem 2 will be
used in the proof.

Lemma 2.4. Let a = {_aly •••, #„], b = {bly •••, bn~] be the decomposition
of a and by regular elements, into indecompasable factors, such that a^biy

i = ly •••, n then a^b.
This is a simple consequence of the fact that R—aR=R1® -®Rn

with Ri^R—a{Ry and R—bR has a similar decomposition with isomorphic
factors.

Lemma 2.5. Let a, b be regular: if a=\aly a2~\y b=[blyb2~\ with
(aly a2) = (bly b2)~l and such that a^b and a1^b1 then a2^b2.

Indeed, we use the decomposition of a1 = \^aily •••, #,>,.], / = 1, 2 into
indecomposable factors to obtain a decomposition of a, and similarly one
obtains the decomposition of b. The condition that a ^ b and the uni-
queness of the decomposition together with a1 ̂  bλ yields readily that the
elements av and bxj can be paired into equivalent pairs, hence the pre-
ceding lemma yields that a2^b2.

Lemma 2. 6. Let aeR be regular and c* a regular bound element
{i.e. c*R=Rc*) and let a = (c*,a)q, b = (c*,b)p, then a^b implies that
(c*, a) ̂  (c*, b) and q~p.

Proof, a^b means that R—aR^R — bR. In this isomorphism two-
sided ideals are mapped on themselves, for if l + aR->x + bR, and / is
two sided then / + aR->xI-\-bR<ΞlI + bR, and isomorphism yields the
equality of the image. In particular, for I=c*R we get that the preced-
ing isomorphism yields that (c*R + aR) - aR ^ (c*R + bR) — bR and
R-(c*R+aR)^R-(c*R+bR). The rest follows since c*R+aR=(c*, ά)R
and (£*, a)R~aR^R-qR (by mapping (c*, a) + aR<^l-\-qR) etc.

We need some additional properties of the matrix ring Rn. The
proofs of which follow easily by (2.1):
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Lemma 2.7. a) Let A=(p jj) B= (Q1 jj) A and BeRn and

Aly BxeRs then A^B if and only if A1^B1

b) A=(£1 J) B=(Q1 ®) of the same type of {a) then A^B if

and only if A1^Bι.
We are now in position to prove :

Theorem 2.8. (Nakayama) Let R be a r-pri ring without zero
divisors and A£Rn. If A^D=^ diEH and d, is total divisor of di+1 for
i^l then the d/s and their bounds are uniquely determined up to equi-
valency. That is the elementary divisors of A, if they exists, are unique
up to equivalency.

By {a) of lemma 2. 7 we can reduce the problem to regular matrices
Ay i.e.

Proof. Let l(A) denote the number of prime factors of A in the
factorization of A into prime factors by the uniqueness of this number
and the factorization of diagonal matrices as given in the proof of
theorem 2. 3, it follows that /(A) = /(D) = Σ l(dt). The proof of the theorem
will be induction on the triple {ny l(D)y /(dx)) arranged lexicographically.

Suppose A^Y^eiEii = Ei is a diagonal matrix such that et a total
divisor of ei+1, then l(A) = l(D) = l(E).

The case n = l is trivial. For w>0, if /(D) = 0 then since /(</,•) > 0 it
follows that all /(ί/x ) = 0, i.e. d{ are invertible similarly, since l(D) = l(E) =
Σ / ( ^ ) = 0, it follows that all /(£,) = 0, hence d / , ^ ^ ^ 1 .

So let rc>0, /(D)>0. If both l(d1) = l(e1) = 0y then we may choose
df — ef = l since both are invertible, and then by applying (b) of lemma
2. 7 we can reduce to the case of matrices of order n — 1, since it follows

by the lemma that Σ e ^ f ^ Σ £*£«.

We shall denote the diagonal matrix Σ ui^u by Diag (uly •••, wj.
Assume /(<ii)>0, and l{d^)^l{e^) and consider the matrix

rffl = Diag (rff, rff, •••, dtT then we have (D, rffl) = Diag (dly df, ••• df) and
(Diag (ely •••, en)y rf!*l) = Diag ((ely df), -- y(eny df)) where (Uy V) denotes the
greatest common left divisor of U and V and one readily shows that if
C7=Diag(w1, —, un)y F = D i a g ( ^ , -~yvn) (£7, F)=Diag((w 1, v,)y —,(«„, vn)).
It follows now by lemma 2.6, since d*l is a bound in Rny that
(A rff 1) ^ (£", df 1). If /(/))>/ [(D, df 1)] then noticing that both (25, df 1)
and (Ey df 1) satisfy the condition that ths diagonal elements are total
divisors of the ones following them — we can use the induction on

6) 1 in the unit matrix in Rn.
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lφy dfΐ) and obtain for the first elementary divisor that dx ̂  (ely df).
Consequently l(ex) <7(fiQ = l{_{e1, £/*)]<7(0i) hence /(rfj = /(βj, and β x =(^, rff)
and thus d1^e1. Now D=[Diag (rf,, 1, •••, 1), Diag (1, d2, •••, d j ] and
£=[Diag(β 1 , 1, •••, 1), Diag(l, e2y •••, O ] (where [f/, F ] denotes the
least right common multiple of U, V). Since D^E and DiagO^^l,

^ , 1, ••-,!) it follows by lemma 2. 5 that Diag (1, d2y •••, dn)
e2y •••, O and by induction we get di^e{ for / > 2 . q.e.d.

It remains to consider the case 1{D) = /[(Zλ rffl)], i.e.
D^Όiag (d19 d?, - , df) hence /(/)) = Σ /(rfi) = /(rf1) + («-l)/(rf1*) and since Jf
is a divisor of ^ we must have l(dt) = l(dt)y ί > 2 . Consequently, d^df
but then the preceding result yields that E^(E,dfl) and, therefore,
KE) = Σ /(^ ) = Σ / [(*,, **)] = lφ)=Kdx) + (« - l)/(df). Since /(^)>/ [(^ , rff)]
this could hold only if equality holds for all i and hence β, = (βί, rff). Con-
sequently /(^ ) < / [ ( ^ , rf*)]</(rf*), but again the same reasoning yields
that the equality holds for all ί > 2 , since by assumption
Consequently e{ ̂  (e{y d?) ^ d? for ι > 2 . Hence, Diag (1, rff,
Diag(l, β2, •••, O , and since D = [Diag(rf1, 1, •-, 1), Diag(l, dfy •
[Diagfe, 1, •••, 1), Diag (1, e2, •••, en)~] it follows by lemma 2.5, that
Diag (fi?!, 1, •••, l ) ^ D i a g (ely 1, •••, 1) and, therefore, lemma 2. 7 yields that
d1^e1 which completes the proof of the theorem.

3. Local quotients rings

In this section we denote by R a pri-ring without zero divisors and
with factorization, and we deal with the existence of certain subrings of the
quotient ring Ry (which exists since they satisfy the Ore-condition) which
behave like the local rings at a prime p of commutative ring.

Let D be the quotient ring of R containing all elements of the form
ab~\ OφbeR. Let p be a fixed prime element in R.

Let Rp be the set of all elements of R whose factors do not contain a
prime ~p; and we form Όp—\ab~x\a^Ry b£Rp}. Our main result i s :

Theorem 3.1. Dp is a proper pri-subring of D and all its primes
are equivalent in Dp with p.

Proof. To prove that Dp is a ring we first show that 1) Rp is a
multiplicative set; and 2) for arbitrary a£Ry beRp there exist xyy£R
such that bx=ay and y£Rp.

Indeed, let ayb£Rp and a=p1~-pny b = q1~-qm then ab=p1~ pnq1 - qm

is the factorization of ab and it does not contain factors ^ p hence by
the uniqueness of the factorization it follows that no factors of ab will
be ^p. The proof of the second part follows from the fact that if
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O, b~\ = ay then (aR+bR)-bR^aR-[ay b~]R^R-yR\ on the other hand
if b = (ayb) c then (aR+bR)-bR^(a, b)R-bR^R-cR so that y^c but
c is a factor of b hence c £RP since its factors are not ^ p. Consequently

p

The definitions of addition and multiplication in the quotient ring
D, yields readily that Dp is a subring of D. For, if b, d € i?^ then

ab~ι-\-cd~1 = (aJrcd~1b)b'1 = (av-\-cu)(bv)~1 where du = bv (i.e. d~1b = uυ~1)
and both b,υeRp so bveRp. Similarly ab~λ * cd~λ = (ax) (dy)'1 where
fo ̂ cy and i, y€Rp.

To complete the proof of the theorem, we consider a right ideal /
in Z)̂ . Let I0 = Ir\Ry then /0 is a right ideal in i? and I=IODP. Indeed, if
ab-λel then a = ab-1-beI[}R=I0 and so ab-'el.Dp. Thus I^IODP^I.
Now let /0 = tfi? then I=qDp.

Consider now a factorization q = q1--qn of # in R into prime factors:
If q^p then #y is invertible in Dp; thus it suffices to show that qj~p
in R holds also in Z^ and that p (and therefore also qj) are primes in
Dp as well. Indeed, if q5 ̂  p in R then the conditions (2.1) for the
equivalency remains valid also in Dp and hence qj~p also in Dp.
Suppose now that p = (ab~1) (cd~λ) in Dp then p = a(b~1c)d~1 = auv~1d~1 where
[b, c] = cv = bu. Thus, pdv = au. Both d,υ£Rp hence they both do not
contain prime factors ^ p consequently, au has only one prime factor
^ p. If this factor appears in a, then since cv = bu and both b, u€Rp

it follows that c£Rp and therefore cd~λ is invertible in Dp. On the other
hand if this factor appears in u then a£Rp and consequently ab'1 is
invertible in Z)̂ . To end the proof that p is prime in Dp we show that
pDpφDp. Indeed, if it is not true then l=pab~1 and thus b=pa but
b € Rp and has no factor ^ p, which by the uniqueness of factorization
leads to a contradiction.

The ring Dp seems to be proper generalization of the notion of local
subring at p and it coincides with it if R is commutative.

EXAMPLE. Let R = K[Q be the ring of polynomials in a commutative
indeterminate / with coefficient in a division ring K. Let p(t) = t — k, k£K,
then all equivalent prime elements of p(t) are of the form t — xkx"1, x £K.
Thus Dp= {/(t)g(t)'1} where no factor of g(t) is of the form t — xkx'1.

If k is algebraic over the center K then Dp can be characterized as
the set of all quotients f(t)g~\t) where g(t) is relatively prime to the
minimal polynomial z(t) of k.

Indeed, let z(t) = Γ + zλt
m ~λ + + zm and zt € Center of K. Then

K\_t~\ —z(t)K{t~\ is a simple ring with minimun condition for right ideals,
hence it is a total matrix ring over a division ring (which can be idea-
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tified with the centralizer of k in K). Consequently. g=g(t) Λ-z(t)K[t~]
is a invertible element in K[t~\ — z(t)K[t~\ (i.e. {z, g) = l) if and only if
it is not a zero divisor in this ring. Now let g=g1-~gk be the factorization
of g(t)=g into prime factors, then g is a zero divisor in K\f\ — z(t)K[t~\
if and only if at least one of the factors is a zero divisor, i.e. gihi = z u
and /z φ O (mod z(t)). Since g{ is irreducible, and z belongs to the center it
follows that gi must divide z. Otherwise g{ divides u and hence / ^ = 0
(mod z(t)). Next we observe that z(ΐ) is the least common multiple of
all t — xkx~λ where x ranges over all non zero element of K, hence all
its prime factors, like gξ must be of the form ^t — xkx~\ Combining
this remarks, we obtain that (z, g) = l if and only if g€Rp with p = t — k
and our assertion is proved.

The proof of this example can be carried out, without any changes
for pri-rings R and prime factors p which are bounded by p*. Namely:

Corollary 3. 2. / / R is a pri-ring without zero divisors and a prime
bounded by p* then Op={ab~x\by aeR, and (byp*) = ϊ\.
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