ON THE UNIQUENESS OF THE SOLUTION OF THE CAUCHY PROBLEM AND THE UNIQUE CONTINUATION THEOREM FOR ELLIPTIC EQUATION

By
Нitoshi KUMANO-GO

§ 0. Introduction. We shall consider differential operators with complex valued coefficients in a neighborhood of the origin in the ($\nu+1$)-dimensional Euclidean space whose points are denoted by $(t, x)=\left(t, x_{1}, \cdots, x_{\nu}\right)$ or $(r, \theta)=\left(r, \theta_{1}, \cdots, \theta_{v}\right)$ or simply $(x)=\left(x_{1}, \cdots, x_{v+1}\right)$.

The object of this note is to prove the following two theorems by a unified method.

The one is the theorem on the uniqueness of the solution of the Cauchy problem for the differential equation of the form

$$
\begin{equation*}
L u \equiv \sum_{i+\mid \mu_{1} \leqq m} a_{i, \mu}(t, x) \frac{\partial^{i+|\mu|}}{\partial t^{i} \partial x^{\mu}} u(t, x)=f(t, x) \tag{0.1}
\end{equation*}
$$

$\left(\mu=\left(\mu_{1}, \cdots, \mu_{\nu}\right),|\mu|=\mu_{1}+\cdots+\mu_{\nu} ; x=\left(x_{1}, \cdots, x_{\nu}\right), \partial x^{\mu}=\partial x_{1}^{\mu_{1}} \cdots \partial x_{\nu}^{\mu}\right)$ under the following conditions: Set $L_{m} \equiv \sum_{i+\left|\left.\right|^{m}\right|=m} a_{i, \mu}(t, x) \frac{\partial^{m}}{\partial t^{i} \partial x^{\mu}}$. We assume that the associated characteristic polynomial $L_{m}(t, x, \lambda, \xi)=\sum_{i+|m|=m} a_{i, \mu}(t, x) \lambda^{i} \xi^{\mu}$ $\left(\xi=\left(\xi_{1}, \cdots, \xi_{\nu}\right), \xi^{\mu}=\xi_{1}^{\mu_{1}} \cdots \xi_{\nu}^{\mu_{\nu}}\right)$ can be written as

$$
\begin{align*}
L_{m}\left(t, x, \lambda, \xi^{\prime}\right)=\prod_{i=1}^{k}\left(\lambda-\lambda_{i}^{(1)}\left(t, x, \xi^{\prime}\right)\right) \prod_{j=1}^{m-k} & \left(\lambda-\lambda \lambda_{j}^{(2)}\left(t, x, \xi^{\prime}\right)\right) \tag{0.2}\\
& (0 \leqq k \leqq m)
\end{align*}
$$

for ξ^{\prime} in some neighborhood of any ξ_{0}^{\prime} on the unit sphere $S=\left\{\xi^{\prime} ;\left|\xi^{\prime}\right|=1\right\}$ $\left(\left|\xi^{\prime}\right|=\left(\sum_{i=1}^{v} \xi_{i}^{\prime 2}\right)^{1 / 2}\right)$ and for (t, x) in some neighborhood of the origin where $\lambda_{i}^{(1)}=-q_{i}^{(1)}+i p_{i}^{(1)} \quad(i=1, \cdots, k)$ and $\lambda_{j}^{(2)}=-q_{j}^{(2)}+i p_{j}^{(2)} \quad(j=1, \cdots, m-k)$ are distinct respectively and infinitely differentiable with respect to (t, x, ξ^{\prime}) ($\lambda_{i}^{(1)}$ and $\lambda_{j}^{(2)}$ may coincide at some point for some i and j). Furthermore we assume that $\lambda_{i}^{(1)}(t, x, \xi)=\lambda_{i}^{(1)}\left(t, x, \xi|\xi|^{-1}\right)|\xi| \quad(i=1, \cdots, k)$ satisfy the condition of M. Matsumura [8], that is
(0.3) $\frac{\partial}{\partial t} p_{i}^{(1)}+\sum_{j=1}^{\nu}\left\{\frac{\partial}{\partial x_{j}} \boldsymbol{p}_{i}^{(1)} \frac{\partial}{\partial \xi_{j}} q_{i}^{(1)}-\frac{\partial}{\partial x_{j}} q_{i}^{(1)} \frac{\partial}{\partial \xi_{j}} \boldsymbol{p}_{i}^{(1)}\right\}=\gamma_{i} \boldsymbol{p}_{i}^{(1)} \quad(i=1, \cdots, k)$
for some $\gamma_{i}=\gamma_{i}(t, x, \xi) \in C_{(t, x, \xi)}^{\infty}(\xi \neq 0)$, and that none of $p_{j}^{(2)}(j=1, \cdots$, $m-k$) vanishes.

The other is the unique continuation theorem for the elliptic differential equation of the form

$$
\begin{equation*}
L u=\sum_{|\mu| \leqq m} r^{-(m-|\mu|)} a_{\mu}(x) \frac{\partial^{|\mu|}}{\partial x^{\mu}} u(x)=0 \tag{0.4}
\end{equation*}
$$

$\left(x=\left(x_{1}, \cdots, x_{\nu+1}\right), r=\left(\sum_{i=1}^{\nu+1} x_{i}^{2}\right)^{1 / 2} ; \mu=\left(\mu_{1}, \cdots, \mu_{\nu+1}\right),|\mu|=\mu_{1}+\cdots+\mu_{\nu+1}\right)$ under an exponential vanishing condition, that is

$$
\begin{equation*}
\lim _{r \rightarrow 0} \exp \left\{\alpha r^{-}\right\} \frac{\partial^{|\mu|}}{\partial x^{\mu}} u(x)=0 \quad(0 \leqq|\mu| \leqq m) \tag{0.5}
\end{equation*}
$$

for a fixed l depending only on L and for every α.
Here we make the following assumption for the characteristic polynomial $L_{m}(x, \eta)=\sum_{\mid \mu=m} a_{\mu}(x) \eta^{\mu}$. After transforming $L_{m}(x, \eta)$ dy (2.14), it can be expressed as

$$
\begin{align*}
L_{m}(x, \eta)=a^{*}(x) \prod_{i=1}^{k}\left(\lambda-r^{-1} \lambda_{i}^{(1)}\left(r, \theta, \xi^{\prime}\right)\right) \prod_{j=1}^{m-k} & \left(\lambda-r^{-1} \lambda_{j}^{(2)}\left(r, \theta, \xi^{\prime}\right)\right) \tag{0.6}\\
& (0 \leqq k<m)
\end{align*}
$$

for ξ^{\prime} in some neighborhood of any ξ_{0}^{\prime} on S and for (r, θ) in some neighborhood of the origin where $\lambda_{i}^{(1)}(i=1, \cdots, k)$ and $\lambda_{j}(j=1, \cdots, m-k)$ are distinct respectively and infinitely differentiable.

Strictly speaking it is sufficient to assume that the smoothness of $\lambda_{i}^{(1)}$ and $\lambda_{j}^{(2)}$ with respect to (t, x) in (0.2) or to (r, θ) in (0.6) is sufficiently high depending only on m and ν. Furthermore the constant k may depend on ξ_{0}^{\prime} on S, but it is sufficient to treat only the case when the representation (0.2) or (0.6) holds in the whole of the product set of S and some neighborhood of the origin with a fixed constant k, which will be proved in Theorem 4 of $\S 4$. Appendix using the idea of S. Mizohata [11]. In this note for the convinience sake we assume $\lambda_{i}^{(1)}$ and $\lambda_{j}^{(2)}$ are infinitely differentiable in ξ^{\prime} on S and in (t, x) or (r, θ) in a neighborhood of the origin.

We can easily see from the proof of Theorem 4 that we need not impose restriction on the dimension of the space, and also we see that the condition (0.3) corresponds to a sufficient condition obtained by L. Hörmander [7] for the existence of the solution of first order differential equation.

The results of A. P. Calderón [3], S. Mizohata [9] and L. Hörmander [6] are contained in ours for the case of $k=m$, of $m=4, k=2$ and of $P_{i}^{(1)} \neq 0(i=1, \cdots, k)$ in (0.2) respectively if we assume the sufficient differentiability for the leading coefficients $a_{i, \mu}(t, x)(i+|\mu|=m)$ of L.

The result of the second theorem contains that of M. H. Protter [12], and partly I. S. Bernstein [1] that corresponds to the case of $k=0$ in (0.6).

As a consequence of the first theorem we can also prove the local existence theorem for a certain differential equation $L u=f$ of the form (3. 6).

The idea of the proofs is based on the methods of S. Mizohata [9] and M. Yamaguti [13].

We wish to thank Prof. M. Nagumo, Dr. H. Tanabe and my colleague for valuable discussions.
§ 1. Preliminary lemmas. In this chapter we shall consider singular integral operators in the sense of M. Yamaguti [13] in the ν-dimensional Euclidean space.

The singular integral operator of A. P. Calderón and A. Zygmund [2] is an operator in the sense of M . Yamaguti if it is of type $C_{\beta}^{\infty}(\beta=\infty)$.

Definition 0. We call $H=\sum_{r=0}^{\infty} a_{r} h_{r}$ a singular integral operator with the symbol $\sigma(H)=\sum_{r=0}^{\infty} a_{r}(x) \tilde{h}_{r}(\xi)\left(\tilde{h}_{0}(\xi)=1\right)$ in the sence of M. Yamaguti if the following conditions are satisfied: $a_{r}(x) \in C_{(x)}^{\infty}, \tilde{h}_{r}(\xi) \in C_{(\xi \neq 0)}^{\infty}(r=0,1, \cdots)$, and for every k and l there exists a constant $A_{k, l}$ such that $\left|\frac{\partial^{|\mu|}}{\partial x^{\mu}} a_{0}(x)\right| \leqq$ $A_{k, l},\left|\frac{\partial^{|\mu|}}{\partial x^{\mu}} a_{r}(x)\right| \leqq A_{k, l} r^{-l}$ for $r \geqq 1(|\mu| \leqq k)$, and for every k there exists constants B_{k} and l_{k}^{\prime} such that $\left|\frac{\partial^{|\mu|}}{\partial \xi^{\mu}} \tilde{h}_{r}(\xi)\right| \leqq B_{k} r^{\prime} l_{k}^{\prime}|\xi|^{-\left|\mu_{\mid}\right|}(|\mu| \leqq k, r=1,2, \cdots)$.

We define for $u \in L^{2}$ the Fourier transform \mathfrak{F} by $\mathfrak{F}[u]=\tilde{u}(\xi)=$ $\frac{1}{\sqrt{2 \pi^{2}}} \int \mathrm{e}^{-i x \cdot \xi} u(x) d x$, and convolution operators h_{r} by $\widetilde{h_{r} u}=\tilde{h}_{r}(\xi) \tilde{u}(\xi)$.

Then, $H u$ is defined by

$$
H u=\sum_{r=0}^{\infty} a_{r}(x)\left(h_{r} u\right)(x) \quad \text { or } \quad H u=\frac{1}{\sqrt{2 \pi^{v}}} \int \mathrm{e}^{i x \cdot \xi} \sigma(H) \tilde{u}(\xi) d \xi .
$$

Definition 1. A function $u=u(t, x) \in C_{(t, x)}^{m}$ defined in a neighborhood of the origin is said to be of class $\mathfrak{F}_{h}^{(m)}=\mathfrak{F}_{n, K}^{(m)}$ if car. $u=$ closure of $\{x ; u(x)=-0\}$ is contained in $\left\{(t, x) ; 0 \leqq t<h<\frac{1}{2},|x|<K\right\} \quad(|x|=$ $\left(\sum_{i=1}^{\nu} x_{i}^{2}\right)^{1 / 2}$ and $\frac{\partial^{j-1}}{\partial t^{j-1}} u(0, x)=0 \quad(j=1, \cdots, m)$.

Definition 2. A function $u=u(r, \theta) \in C_{(r, \theta)}^{m}$ defined in a neighborhood of the origin is said to be of class $\mathscr{G}_{r_{0}, l}^{(m)}=\mathscr{G}_{r_{0}, k, l}^{(m)}$ if cas. u is contained in

$$
\begin{aligned}
& \left\{(r, \theta) ; 0 \leqq r<r_{0}<1,|\theta|<K\right\} \quad\left(|\theta|=\left(\sum_{i=1}^{\nu} \theta_{i}^{2}\right)^{1 / 2}\right) \text { and } \\
& \lim _{r \rightarrow 0} \exp \left\{\alpha r^{-} \zeta\right\} \frac{\partial^{i+\mid \mu_{1}}}{\partial r^{i} \partial \theta^{\mu}} u(r, \theta)=0(0 \leqq i+|\mu| \leqq m) \text { for every } \alpha .
\end{aligned}
$$

Definition. 3. A function $u=u(x) \in C_{0}^{m}(\mathfrak{D}), \mathfrak{D}=\left\{x ;|x|<r_{0}<1\right\}$ is said to be of class $\mathfrak{S}_{r_{0}, 亡}^{(m)}$ if $\lim _{r \rightarrow 0} \exp \left\{\alpha r^{-}\right\} \frac{\partial^{|\mu|}}{\partial x^{\mu}} u(x)=0(0 \leqq|\mu| \leqq m)$ for every $\alpha\left(x=\left(x_{1}, \cdots, x_{\nu+1}\right), r=|x|=\left(\sum_{i=1}^{\nu+1} x_{i}^{2}\right)^{1 / 2}\right)$.

In this note we shall use the next lemma without proof.
Lemma 1. i) Let P and Q be singular integral operators of type $C_{\beta}^{\infty}(\beta>1)$ in the sense of [2] with real valued symbols, then the following operator norms

$$
\begin{align*}
& \left\|\left(Q \Lambda-\Lambda Q^{*}\right)\right\|,\left\|\left(P \Lambda-\Lambda P^{*}\right)\right\| \\
& \left\|\left(P^{*} Q-Q^{*} P\right) \Lambda\right\|,\left\|\Lambda\left(P^{*} Q-Q^{*} P\right)\right\| \tag{1.1}
\end{align*}
$$

where Λ is defined by $\widetilde{\Lambda u(\xi)}=|\xi| \tilde{u}(\xi)$ and P^{*} means the adjoint operator of P, are all bounded; see [2].
ii) Let H, H_{1} and H_{2} be singular integral operators, then we have for any positive integers p and q the next representations

$$
\begin{align*}
& H \Lambda^{p}-\Lambda^{p} H=H_{p, q} \Lambda^{p-1}+H_{p, q}^{\prime} \tag{1.2}\\
& \left(H_{1} H_{2}-H_{1} \circ H_{2}\right) \Lambda=H_{q}+H_{q}^{\prime}
\end{align*}
$$

where $H_{p, q}$ and H_{q} are singular integral operators, and $H_{p, q}^{\prime}$ and H_{q}^{\prime} are bounded operators together with $\Lambda^{i} H_{p, q}^{\prime} \Lambda^{j}$ and $\Lambda^{i} H_{q}^{\prime} \Lambda^{j}(0 \leqq i+j \leqq q)$ respectively. $H_{1} \circ H_{2}$ shows a singular integral operator with the symbol $\sigma\left(H_{1}\right)$ $\sigma\left(H_{2}\right)$; see [13].
iii) Let H be a singular integral operator such as $|\sigma(H)| \geqq \delta>0$, then there exists a positive constant C such that

$$
\begin{equation*}
\|H \Lambda u\|^{2} \geqq \frac{\delta^{2}}{8}\|\Lambda u\|^{2}-C\|u\|^{2} ; \quad \text { see S. Mizohata }[10] . \tag{1.3}
\end{equation*}
$$

Remark. The sign || || always shows L^{2} norm.
Lemma 2. Let P and Q be singular integral operators with real valued symbols.

Then we have the following representation

$$
\begin{equation*}
-i\left(P \Lambda Q-\Lambda Q^{*} P\right) \Lambda=\left(K_{1}-K_{2}\right) \Lambda+K_{0} P \Lambda+K^{\prime} \tag{1.4}
\end{equation*}
$$

where K_{1} and K_{2} are singular integral operators with

$$
\begin{equation*}
\sigma\left(K_{1}\right)=\sum_{j=1}^{\nu} \frac{\partial}{\partial x_{j}} \sigma(P) \frac{\partial}{\partial \xi_{j}}(\sigma(Q)|\xi|), \sigma\left(K_{2}\right)=\sum_{j=1}^{\nu} \frac{\partial}{\partial x_{j}} \sigma(Q) \frac{\partial}{\partial \xi_{j}}(\sigma(P)|\xi|) \tag{1.5}
\end{equation*}
$$

respectively, and K_{0} and K^{\prime} are bounded operators.
Proof. Here we shall prove it roughly, details are easily derived from M. Yamaguti [13]. See also the proof of Lemma 6 in $\S 4$ of this note.

As a simple case we consider $P=a h$ and $Q=b k$ with $\sigma(P)=a(x) \check{h}(\xi)$ and $\sigma(Q)=b(x) \tilde{k}(\xi)$ respectively.

Take $\alpha(\xi) \in C_{0(\xi)}^{\infty}(\alpha(\xi)=1$ on $|\xi| \leqq 1)$, we write $P=a h_{1}+a h_{2}\left(\sigma\left(h_{1}\right)=\right.$ $\left.\alpha(\xi) \widetilde{h}(\xi), \sigma\left(h_{2}\right)=(1-\alpha(\xi)) \widetilde{h}(\xi)\right)$, and so $Q=b k_{1}+b k_{2}$.

Then, we can write $\left(P \Lambda Q-\Lambda Q^{*} P\right) \Lambda=a\left(h_{2} \Lambda\right) b\left(k_{2} \Lambda\right)-\left(\Lambda k_{2}\right) b a\left(h_{2} \Lambda\right)+a$ bounded operator, and $a\left(h_{2} \Lambda\right) b\left(k_{2} \Lambda\right)-\left(\Lambda k_{2}\right) b a\left(h_{2} \Lambda\right)=\left\{a\left(\left(h_{2} \Lambda\right) b-b\left(h_{2} \Lambda\right)\right)\left(k_{2} \Lambda\right)+\right.$ $\left.a b h_{2} k_{2} \Lambda^{2}\right\}-\left\{\left(\left(\Lambda k_{2}\right) b-b\left(\Lambda k_{2}\right)\right) a h_{2} \Lambda+b\left(\left(\Lambda k_{2}\right) a-a\left(\Lambda k_{2}\right)\right) h_{2} \Lambda+a b h_{2} k_{2} \Lambda^{2}\right\}$. Now, for sufficiently large l we use the following representation for $u \in C_{0(x)}^{\infty}$

$$
\begin{aligned}
& \left(\left(h_{2} \Lambda\right) b-b\left(h_{2} \Lambda\right)\right) u(x) \\
& =\int\left(\left(h_{2} \Lambda\right)(x-y) b(y)-b(x)\left(h_{2} \Lambda\right)\left(h_{2} \Lambda\right)(x-y)\right) u(y) d y \\
& \quad \text { (in the distribution's sense) } \\
& =-\sum_{j=1}^{\nu} \int \frac{\partial}{\partial x_{j}} b(x)\left(x_{j}-y_{j}\right)\left(h_{2} \Lambda\right)(x-y) u(y) d y \\
& +\sum_{2 \leqq \mid \sum_{|l|} \leqq l}(-1)^{\left|\mu_{\mid}\right|} \int \frac{\partial^{|\mu|}}{\partial x^{\mu}} b(x) \frac{(x-y)^{\mu}}{\mu!}\left(h_{2} \Lambda\right)(x-y) u(y) d y \\
& +\sum_{|\mu|=l+1} \int(x-y)^{\mu}\left(h_{2} \Lambda\right)(x-y) b_{\mu}(x, y) u(y) d y,
\end{aligned}
$$

then, the operator for the first term is equal to a singular integral operator with the symbol $-i \sum_{j=1}^{\nu} \frac{\partial}{\partial x_{j}} b(x) \frac{\partial}{\partial \xi_{j}}\left(\tilde{h}_{2}|\xi|\right)$, and we can see the operators for remaining term are equal to a bounded operator K together with $K \Lambda$.

Using the above representation, if we set K_{2} a singular integral operator with $\sigma\left(K_{2}\right)=\sum_{j=1}^{\nu} \frac{\partial}{\partial x_{j}} \sigma(Q) \frac{\partial}{\partial \xi_{j}}(\sigma(P)|\xi|)$, then, we can obtain $-i a\left(\left(h_{2} \Lambda\right) b-b\left(h_{2} \Lambda\right)\right)\left(k_{2} \Lambda\right)=-K_{2} \Lambda+K_{2}^{\prime}$ where K_{2}^{\prime} is a bounded operator.

Similarly, if we set K_{1} a singular integral operator with $\sigma\left(K_{1}\right)=$ $\sum_{j=1}^{\nu} \frac{\partial}{\partial x_{j}} \sigma(P) \frac{\partial}{\partial \xi_{j}}(\sigma(Q)|\xi|)$, we obtain $+i b\left(\left(\Lambda k_{2}\right) a-a\left(\Lambda k_{2}\right)\right) h_{2} \Lambda=K_{1} \Lambda+K_{1}^{\prime}$ with a bounded operator K_{1}^{\prime}. By (1.1), $\left(\Lambda k_{2}\right) b-b\left(\Lambda k_{2}\right)=\Lambda Q^{*}-Q \Lambda$ is bounded.

Consequently, we get (1.4) for $P=a h$ and $Q=b k$. For general case, we write $\sigma(P)=\sum_{\mu} a_{\mu}(x) \widetilde{h}_{\mu}(\xi)$ and $\sigma(Q)=\sum_{\mu^{\prime}} b_{\mu^{\prime}}(x) \tilde{k}_{\mu^{\prime}}(\xi)$ and we can prove (1.4) dy the same manner as the above simple case.
Q.E.D.

Now we shall prove the next fundamental lemmas 3 and 3^{\prime}.
Lemma 3. Let $P(t)$ and $Q(t)$ be singular integral operators with real valued symbols defined in (x)-space with t as a parameter and satisfy the condition of M. Matsumura [8], that is

$$
\begin{equation*}
\frac{\partial}{\partial t} \sigma(P)+\sum_{j=1}^{\nu}\left\{\frac{\partial}{\partial x_{j}} \sigma(P) \frac{\partial}{\partial \xi_{j}}(\sigma(Q)|\xi|)-\frac{\partial}{\partial x_{j}} \sigma(Q) \frac{\partial}{\partial \xi_{j}}(\sigma(P)|\xi|)\right\}=\gamma \sigma(P) \tag{1.6}
\end{equation*}
$$ in a neighborhood of the origin $(t, x)=(0,0)$ for some $\gamma=\gamma(t, x, \xi) \in C_{(t, x, \xi)}^{\infty}$ $(\xi \neq 0)$.

Then, if we set $J=\frac{\partial}{\partial t}+(P+i Q) \Lambda$, there exists a positive constant h_{0} depending only on P and Q such that for $0<h \leqq h_{0}, r=t+h$ and sufficiently large n

$$
\begin{array}{r}
\int_{0}^{h} r^{-2 n}\|J u\|^{2} d t \geqq \frac{h^{-2} n}{8} \int_{0}^{h} r^{-2 n}\|u\|^{2} d t+\frac{1}{8 n} \int_{0}^{h} r^{-2 n}\|P \Lambda u\|^{2} d t \tag{1.7}\\
\text { for all } u \in \mathfrak{F}_{h}^{(1)} .
\end{array}
$$

Especially, if $|\sigma(P)| \geqq \delta>0$, then we have for a positive constant C^{\prime}

$$
\begin{align*}
\int_{0}^{h} r^{-2 n}\|J u\|^{2} d t & \geqq \frac{h^{-2} n}{9} \int_{0}^{h} r^{-2 n}\|u\|^{2} d t+\frac{C^{\prime}}{n}\left\{\int_{0}^{h} r^{-2 n}\left\|\frac{\partial u}{\partial t}\right\|^{2} d t\right. \tag{1.8}\\
& \left.+\int_{0}^{h} r^{-2 n}\|\Lambda u\|^{2} d t\right\} \quad u \in \Im_{h}^{(1)} .
\end{align*}
$$

Remark: If $\sigma(P) \equiv 0$ or $|\sigma(P)| \geqq \delta>0$, (1.6) is satisfied.
Proof. Set $u=r^{n} v$, then $r^{-n} J u=\left(\frac{d v}{d t}+i Q \Lambda v\right)+\left(P \Lambda v+n r^{-1} v\right)$, so that

$$
\begin{align*}
& \int_{0}^{h} r^{-2 n}\|J u\|^{2} d t=\int_{0}^{h}\left\|\frac{d v}{d t}+i Q \Lambda v\right\|^{2} d t+\int_{0}^{h}\left\|P \Lambda v+n r^{-1} v\right\|^{2} d t \tag{1.9}\\
+ & \int_{0}^{h}\left\{\left(\frac{d v}{d t}, P \Lambda v\right)+\left(P \Lambda v, \frac{d v}{d t}\right)\right\} d t+n \int_{0}^{h} r^{-1} \frac{d}{d t}\|v\|^{2} d t \\
+ & i \int_{0}^{h}\{(Q \Lambda v, P \Lambda v)-(P \Lambda v, Q \Lambda v)\} d t+i n \int_{0}^{h} r^{-1}\{(Q \Lambda v, v)-(v, Q \Lambda v)\} d t \\
\equiv & \sum_{i=1}^{6} I_{i} .
\end{align*}
$$

Integrating by part, $I_{4}=n \int_{0}^{h} r^{-2}\|v\|^{2} d t$ and applying Schwarz's inequality we have

$$
\begin{align*}
I_{2}+I_{4} & \geqq \int_{0}^{h}\left\{\|P \Lambda v\|^{2}-2 n r^{-1}\|P \Lambda v\|\|v\|+n(n+1) r^{-2}\|v\|^{2}\right\} d t \tag{1.10}\\
& \geqq \frac{2}{3} n \int_{0}^{h} r^{-2}\|v\|^{2} d t+\frac{1}{4 n} \int_{0}^{h}\|P \Lambda v\|^{2} d t
\end{align*}
$$

By (1.1) we have for a positive constant C_{1}

$$
\begin{equation*}
I_{6}=i n \int_{0}^{h} r^{-1}\left(\left(Q \Lambda-\Lambda Q^{*}\right) v, v\right) d t \geqq-C_{1} h n \int_{0}^{h} r^{-2}\|v\|^{2} d t \tag{1.11}
\end{equation*}
$$

For I_{3}, we use the method of S. Mizohata [9], and consider it together with I_{5}, then integrating by parts and using (1.1) we get for a constant $C_{2}(>0)$

$$
\begin{aligned}
I_{3}= & -\int_{0}^{h}\left(v, P^{\prime} \Lambda v\right) d t+\int_{0}^{h}\left(\left(P \Lambda-\Lambda P^{*}\right) v, \frac{d v}{d t}+i Q \Lambda v\right) d t \\
& -\int_{0}^{h}\left(v, i\left(\Lambda P^{*}-P \Lambda\right) Q \Lambda v\right) d t \geqq-\int_{0}^{h}\left(v,\left(P^{\prime}+i\left(\Lambda P^{*}-P \Lambda\right) Q\right) \Lambda v\right) d t \\
& -I_{1}-C_{2} h^{2} \int_{0}^{h} r^{-2}\|v\|^{2} d t, \text { and } I_{5}=-\int_{0}^{h}\left(v, i \Lambda\left(Q^{*} P-P^{*} Q\right) \Lambda v\right) d t
\end{aligned}
$$

Consequently we get

$$
I_{3}+I_{5} \geqq-\int_{0}^{h}\left(v,\left(P^{\prime}-i\left(P \Lambda Q-\Lambda Q^{*} P\right)\right) \Lambda v\right) d t-I_{1}-C_{2} h^{2} \int_{0}^{h} r^{-2}\|v\|^{2} d t
$$

and by Lemma 2, we have

$$
-i\left(P \Lambda Q-\Lambda Q^{*} P\right) \Lambda=\left(K_{1}-K_{2}\right) \Lambda+K_{0} P \Lambda+K^{\prime}
$$

where K_{1} and K_{2} are singular integral operators with

$$
\sigma\left(K_{1}-K_{2}\right)=\sum_{j=1}^{\nu}\left\{\frac{\partial}{\partial x_{j}} \sigma(P) \frac{\partial}{\partial \xi_{j}}(\sigma(Q)|\xi|)-\frac{\partial}{\partial x_{j}} \sigma(P) \frac{\partial}{\partial \xi_{j}}(\sigma(Q)|\xi|)\right\},
$$

and K_{0} and K^{\prime} are bounded operators, on the other hand P^{\prime} is a singular integral operator with $\sigma\left(P^{\prime}\right)=\frac{\partial}{\partial t} \sigma(P)$. Hence, by the condition (1.6) we get $\sigma\left(P^{\prime}+\left(K_{1}-K_{2}\right)\right)=\gamma \sigma(P)$, then using (1.2) and Schwarz's inequality, we have for a constant $C_{3}(>0)$

$$
\begin{equation*}
I_{1}+I_{3}+I_{5} \geqq-\frac{1}{8 n} \int_{0}^{h}\|P \Lambda v\|^{2} d t-C_{3} h^{2} n \int_{0}^{h} r^{-2}\|v\|^{2} d t \tag{1.12}
\end{equation*}
$$

From (1.9)-(1.12), we have

$$
\begin{equation*}
\int_{0}^{h} r^{-2 n}\|J u\|^{2} d t \geqq\left(\frac{2}{3} n-C_{1} h^{2} n\right) \int_{0}^{h} r^{-2}\|v\|^{2} d t+\frac{1}{8 n} \int_{0}^{h}\|P \Lambda v\|^{2} d t \tag{1.13}
\end{equation*}
$$

Remarking $v=r^{-n} u$, we get (1.7) for a sufficiently small h because of $r^{-2} \geqq \frac{1}{4} h^{-2}$ for $0 \leqq t \leqq h$.

In order to prove (1.8) we use (1.3) by $|\sigma(P)| \geqq \delta>0$, and remarking $\left\|\frac{\partial u}{\partial t}\right\|^{2} \leqq 2\|J u\|^{2}+C_{4}\|\Lambda u\|^{2}\left(C_{4}>0\right)$, we have (1.8).
Q.E.D.

Lemma 3'. Let $P(r)$ and $Q(r)$ be singular integral operators defined in a neighborhood of the origin in (θ)-space with r as a parameter and have real valued symbols.

Suppose $|\sigma(P)| \geqq \delta>0$, then for the operator $J=\frac{\partial}{\partial r}+r^{-1}(P+i Q) \Lambda$, there exist positive constants l_{0} and C depending only on P and Q such that for every $l\left(\geqq l_{0}\right)$ and sufficiently larg α

$$
\begin{align*}
& \int_{0}^{r_{0}} r^{2 \beta} \exp \left\{2 \alpha r^{-l}\right\}\|J u\|^{2} d r \tag{1.14}\\
& \geqq C\left\{\alpha l^{2} \int_{0}^{r_{0}} r^{2 \beta-l-2} \exp \left\{2 \alpha r^{-l}\right\}\|u\|^{2} d r\right. \\
& \left.+\frac{1}{\alpha} \int_{0}^{r_{0}} r^{2 \beta+l} \exp \left\{2 \alpha r^{-l}\right\}\left(\left\|\frac{\partial u}{\partial r}\right\|^{2}+r^{-2}\|\Lambda u\|^{2}\right) d r\right\} \quad u \in \mathscr{G}_{r_{0}, l}^{(1)}
\end{align*}
$$

Proof. Set $u=\exp \left\{-\alpha r^{-}\right\} v$, then, $\exp \left\{\alpha r^{-}\right\} J u=\left(\frac{d v}{d r}+i r^{-1} Q \Lambda v\right)+$ $\left(r^{-1} P \Lambda v+\alpha l r^{-l-1} v\right)$. Hence,

$$
\begin{align*}
& \int_{0}^{r_{0}} \exp \left\{2 \alpha r^{-l}\right\}\|J u\|^{2} d r=\int_{0}^{r_{0}}\left\|\frac{d v}{d r}+i r^{-1} Q \Lambda v\right\|^{2} d r \tag{1.15}\\
& +\int_{0}^{r_{0}}\left\|r^{-1} P \Lambda v+\alpha l r^{-l-1} v\right\|^{2} d r+\int_{0}^{r_{0}}\left\{\left(\frac{d v}{d r}, r^{-1} P \Lambda v\right)+\left(r^{-1} P \Lambda v, \frac{d v}{d r}\right)\right\} d r \\
& +\alpha l \int_{0}^{r_{0}} r^{-l-1} \frac{d}{d r}\|v\|^{2} d r+i \int_{0}^{r_{0}}\left\{\left(r^{-1} Q \Lambda v, r^{-1} P \Lambda v\right)-\left(r^{-1} P \Lambda v, r^{-1} Q \Lambda v\right)\right\} d r \\
& +i \alpha l \int_{0}^{r_{0}} r^{-l-2}\{(Q \Lambda v, v)-(v, Q \Lambda v)\} d r \\
& \equiv \sum_{i=1}^{6} I_{i}^{\prime}
\end{align*}
$$

We shall estimate each term parallel to the proof of Lemma 3.
Integrating by part, we have $I_{4}^{\prime}=\alpha l(l+1) \int_{0}^{r_{0}} r^{-l-2}| | v \|^{2} d r$, hence, using Schwarz's inequality

$$
\begin{aligned}
I_{2}^{\prime}+I_{4}^{\prime} & \geqq \int_{0}^{r_{0}} r^{-2}\left\{\|P \Lambda v\|^{2}-2 \alpha l r^{-l}\|P \Lambda v\|\|v\|+\alpha l^{2}\left(\alpha r^{-l}+1\right) r^{-l}\|v\|^{2}\right\} d r \\
& \geqq \frac{1}{2} \alpha l^{2} \int_{0}^{r_{0}} r^{-l-2}\|v\|^{2} d r+\frac{1}{4 \alpha} \int_{0}^{r_{0}} r^{l-2}\|P \Lambda v\|^{2} d r .
\end{aligned}
$$

By the assumption of the lemma we can apply (1.3) to the above inequality and we get for a positive constant C_{1} and sufficiently large α

$$
\begin{equation*}
I_{2}^{\prime}+I_{4}^{\prime} \geqq \frac{1}{3} \alpha l^{2} \int_{0}^{r_{0}} r^{-l-2}\|v\|^{2} d r+\frac{C_{1}}{\alpha} \int_{0}^{r_{0}} r^{l-2}\|\Lambda v\|^{2} d r \tag{1.16}
\end{equation*}
$$

Integrating by parts and using (1.1) we get

$$
\begin{equation*}
I_{3}^{\prime} \geqq-\frac{C_{1}}{4 \alpha} \int_{0}^{r_{0}} r^{l-2}\|\Lambda v\|^{2} d r-C_{2} \alpha \int_{0}^{r_{0}} r^{-l-2}\|v\|^{2} d r-I_{1}^{\prime}\left(C_{2}>0\right) \tag{1.17}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{5}^{\prime}+I_{6}^{\prime} \geqq-\frac{C_{1}}{4 \alpha} \int_{0}^{r_{0}} r^{l-2}\|\Lambda v\|^{2} d r-C_{3} \alpha l \int_{0}^{r_{0}} r^{-l-2}\|v\|^{2} d r\left(C_{3}>0\right) . \tag{1.18}
\end{equation*}
$$

From (1.15)-(1.18), there exists a positive constant l_{0} such that

$$
\begin{equation*}
\int_{0}^{r_{0}} \exp \left\{2 \alpha r^{-l}\right\}\|J u\|^{2} d r \geqq \frac{1}{4} \alpha l^{2} \int_{0}^{r_{0}} r^{-l^{-2}}\|u\|^{2} d r+\frac{C_{1}}{2 \alpha} \int_{0}^{r_{0}} r^{l-2}\|\Lambda v\|^{2} d r \tag{1.19}
\end{equation*}
$$

for every $l\left(\geqq l_{0}\right)$ and sufficiently large α.
Remarking $v=\exp \left\{\alpha r^{-l}\right\} u$ and $\left\|\frac{d u}{d r}\right\|^{2} \leqq 2\|J u\|^{2}+C_{4} r^{-2}\|\Lambda u\|^{2}\left(C_{4}>0\right)$ we obtain (1.14) for $\beta=0$, and replacing u by $r^{\beta} u$ we get (1.14) for sufficiently large α.

Lemma 4. Let $H_{i}(t)(i=1, \cdots, k$ for $k \geqq 2)$ be singular integral operators defined in (x)-space with t as a parameter such that $\left|\sigma\left(H_{i}-H_{j}\right)\right| \geqq \delta>0$ ($i \neq j$).

We set $J_{i}=\frac{\partial}{\partial t}+H_{i} \Lambda(i=1, \cdots, k)$, and $J_{i_{1}} \cdot J_{i_{2}} \cdots \cdot J_{i_{k-1}}\left(i_{\nu} \neq i_{\mu}\right.$ for $\left.\nu \neq \mu\right)$ are the product operators for the permutations from J_{1}, J_{2}, \cdots, and J_{k}.

Then, we have for positive constants C and C^{\prime},
(1.20) $\sum_{i_{1}, i_{2}, \cdots, i_{k-1}}\left\|J_{i_{1}} \cdot J_{i_{2}} \cdots \cdot \cdot J_{i_{k-1}} u\right\|^{2} \geqq C \sum_{i+j=k-1}\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} u\right\|^{2}-C^{\prime} \sum_{0 \leqq i+j \leqq k-2}\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} u\right\|^{2}$.

Proof. For the case $k=2, J_{1}-J_{2}=\left(H_{1}-H_{2}\right) \Lambda$. From the assumption $\left|\sigma\left(H_{1}-H_{2}\right)\right| \geqq \delta>0$, if we apply (1.3) of Lemma 1 , we get

$$
\frac{\delta^{2}}{8}\|\Lambda u\|^{2}-C_{1}\|u\|^{2} \leqq\left\|\left(H_{1}-H_{2}\right) \Lambda u\right\|^{2} \leqq 2\left(\left\|J_{1} u\right\|^{2}+\left\|J_{2} u\right\|^{2}\right)\left(C_{1}>0\right)
$$

and $\left\|\frac{\partial u}{\partial t}\right\|^{2} \leqq 2\left(\left\|J_{1} u\right\|^{2}+\left\|H_{1} \Lambda u\right\|^{2}\right)$, hence we get (1.20) for $k=2$.
For the general case $k \geqq 3$, using (1.3) we have for $2 \leqq i_{\nu} \leqq k$ and $i_{\nu} \neq i_{\mu}$ for $\nu \neq \mu$,

$$
\begin{align*}
& \left\|\left(J_{1}-J_{i_{1}}\right) J_{i_{2}} \cdots \cdot J_{i_{k-1}} u\right\|^{2}=\left\|\left(H_{1}-H_{i_{1}}\right) \Lambda J_{i_{2}} \cdots \cdot J_{i_{k-1}} u\right\|^{2} \tag{1.21}\\
& \quad \geqq \frac{\delta^{2}}{8}\left\|\Lambda J_{i_{2}} \cdots \cdot J_{i_{k-1}} u\right\|^{2}-C_{2} \sum_{0 \leqq i+j \leqq k-2}\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} u\right\|^{2} \quad\left(C^{2}>0\right)
\end{align*}
$$

and because of $\frac{\partial}{\partial t}=J_{1}-H_{1} \Lambda$

$$
\begin{align*}
& \left\|\frac{\partial}{\partial t} J_{i_{2}} \cdots \cdot J_{i_{k-1}} u\right\|^{2} \tag{1.22}\\
& \quad \leqq 2\left(\left\|J_{1} \cdot J_{i_{2}} \cdots \cdot J_{i_{k-1}} u\right\|^{2}+\left\|H_{1} \Lambda J_{i_{2}} \cdots \cdot J_{i_{k-1}} u\right\|^{2}\right) .
\end{align*}
$$

On the other hand, using (1.2) we have for constant $C_{3}(>0)$,

$$
\begin{align*}
A & \equiv\left\|J_{i_{2}} \cdots \cdot J_{i_{k-1}} \Lambda u\right\|^{2}+\left\|J_{i_{2}} \cdots \cdot J_{i_{k-1}} \frac{\partial u}{\partial t}\right\|^{2} \tag{1.23}\\
& \leqq C_{3}\left\{\left\|\Lambda J_{i_{2}} \cdots \cdot J_{i_{k-1}} u\right\|^{2}+\left\|\frac{\partial}{\partial t} J_{i_{2}} \cdots \cdot J_{i_{k-1}} u\right\|^{2}+\sum_{0 \leqq i+j \leqq k-2}\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} u\right\|^{2}\right\}
\end{align*}
$$

Since $J_{i_{2}} \cdots \cdot J_{i_{k-1}}$ are the permutation from J_{2}, \cdots, J_{k}, we can apply the assumption of the induction to A and get for positive constant C_{4} and C_{5}

$$
\begin{equation*}
A \geqq C_{4} \sum_{i+j=k-1}\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} u\right\|^{2}-C_{5}^{5_{0 \leqq i}} \sum_{j \leqq k-2}\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} u\right\|^{2} . \tag{1.24}
\end{equation*}
$$

Combining (1.21)-(1.24) we can prove (1.20) for the general case. Q.E.D.
Lemma 4'. Let $H(r)(i=1, \cdots, k$ for $k \geqq 2)$ be singular integral operators defined in (θ)-space with r as a parameter and satisfy the assumption of Lemma 4.

We set $J_{i}=\frac{\partial}{\partial r}+r^{-1} H_{i} \Lambda(i=1, \cdots, k)$ and $J_{i_{1}} \cdot J_{i_{2}} \cdots \cdot J_{i_{k-1}}\left(i_{\nu} \neq i_{\mu} \quad\right.$ for $\nu \neq \mu)$ are the product operators for the permutations from J_{1}, J_{2}, \cdots, and J_{k}. Then, we have for positive constants C and C^{\prime}

$$
\begin{align*}
& \sum_{i_{1}, i_{2}, \ldots, i_{k-1}}\left\|J_{i_{1}} \cdot J_{i_{2}} \cdots \cdot J_{i_{k-1}} u\right\|^{2} \tag{1.25}\\
& \quad \geqq C \sum_{i+j=k-1} r^{-2(k-1-i)}\left\|\frac{\partial^{i}}{\partial r^{i}} \Lambda^{j} u\right\|^{2}-C^{\prime} \sum_{0 \leqq i+j \leqq k-2} r^{-2(k-1-i)}\left\|\frac{\partial^{i}}{d r^{i}} \Lambda^{j} u\right\|^{2}
\end{align*}
$$

Proof. We can prove it by the method parallel to that of Lemma 4, but we must remark the fact that $\frac{\partial}{\partial r} r^{-1} H \Lambda u-r^{-1} H \Lambda \frac{\partial}{\partial r} u=\left(\frac{\partial}{\partial r}\left(r^{-1} H\right)\right) \Lambda u$ and $\left(\Lambda r^{-1} H \Lambda-r^{-1} H \Lambda^{2}\right) u=r^{-1}(\Lambda H-H \Lambda) \Lambda u$, then using (1.2) we get (1.25). Q.E.D.

Lemma 5. Let $H_{i}(t)=P_{i}(t)+i Q_{i}(t)(i=1, \cdots, k)$ be singular integral operators defined in (x)-space with t as a parameter, and assume each of P_{i} and $Q_{i}(i=1, \cdots, k)$ satisfies the condition (1.6) of M. Matsumura [8].

Set $J_{i}=\frac{\partial}{\partial t}+H_{i} \Lambda \quad(i=1, \cdots, k)$, then we have for the operator $A=J_{1}$. $\cdots \cdot J_{k}$, and a positive constant C

$$
\begin{array}{r}
\int_{0}^{h} r^{-2}\|A u\|^{2} d t \geqq C \sum_{0 \leqq i+j=\tau \leqq k-1}\left(h^{-2} n\right)^{k-\tau} \int_{0}^{h} r^{-2 n}\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} u\right\|^{2} d t \tag{1.26}\\
u \in \mathfrak{F}_{h}^{(k)},
\end{array}
$$

where $r=t+h$ and h is a sufficiently small constant depending only on P_{i} and Q_{i}.

Especially, if $\left|\sigma\left(P_{i}\right)\right| \geqq \delta>0$, then we have for a positive constant C^{\prime},

$$
\begin{array}{r}
\int_{0}^{h} r^{-2 n}\|A u\|^{2} d t \geqq C^{\prime} \frac{1}{n} \sum_{0 \leqq i+j=\tau \leqq k}\left(h^{-2} n\right)^{k-\tau} \int_{0}^{h} r^{-2 n}\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} u\right\|^{2} d t \tag{1.27}\\
u \in \Im_{h}^{(k)}
\end{array}
$$

Proof. (a) The proof of (1.26). For the case $k=1$, the proof is trivial from (1.7) of Lemma 3.

For the general case $k \geqq 2$, we use for example the equality $J_{1} J_{2}-J_{2} J_{1}$ $=\left(\frac{\partial}{\partial t}\left(H_{1}-H_{2}\right)\right) \Lambda+\left(H_{1} \Lambda H_{2} \Lambda-H_{2} \Lambda H_{1} \Lambda\right)=\left(\frac{\partial}{\partial t}\left(H_{1}-H_{2}\right)\right) \Lambda-\left\{H_{1}\left(\Lambda H_{2}-H_{2} \Lambda\right)+\right.$ $\left.\left(H_{1} H_{2}-H_{1} \circ H_{2}\right) \Lambda-\left(H_{2} \circ H_{1}-H_{2} H_{1}\right) \Lambda-H_{2}\left(H_{1} \Lambda-\Lambda H_{1}\right)\right\} \Lambda$. Then, applying (1.2) to the above equality we can write with a singular integral operator H^{\prime} and a operator $H^{\prime \prime}$ which for every q has a singular integral operator H_{q} such as $\Lambda^{i}\left(H^{\prime \prime}-H_{q}\right) \Lambda^{j}(0 \leqq i+j \leqq q)$ bounded,

$$
\begin{equation*}
J_{1} \cdot J_{2}-J_{2} J_{1}=H^{\prime} \Lambda+H^{\prime \prime} \tag{1.28}
\end{equation*}
$$

If we use (1.28) for any $J_{i} J_{j}-J_{j} J_{i}$, we get for a constant $C_{1}(>0)$

$$
\begin{align*}
&\left\|\left(J_{1} \cdots \cdot J_{k}-J_{i_{1}} \cdot \cdots \cdot J_{i_{k}}\right) u\right\|^{2} \leqq C_{1} \sum_{0 \leqq i+j \leqq k-1}\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} u\right\|^{2} \tag{1.29}\\
&\left(i_{\nu} \neq i_{\mu} \text { for } \nu \neq \mu\right),
\end{align*}
$$

hence for constants C_{2} and $C_{3}(>0)$, we get

$$
\begin{equation*}
\|A u\|^{2} \geqq C_{i_{1}} \sum_{i_{1}, \cdots, i_{k}}\left\|J_{i_{1}} \cdots \cdot J_{i_{k}} u\right\|^{2}-C_{3} \sum_{0 \leqq i+j \leqq k-1}\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} u\right\|^{2} . \tag{1.30}
\end{equation*}
$$

Now, we apply (1.7) to the operators $J_{i_{1}} \cdots \cdot J_{i_{k}}$ and use (1.30), then we get for constants C_{4} and $C_{5}(>0)$

$$
\begin{align*}
& \int_{0}^{h} r^{-2 n}\|A u\|^{2} d t \tag{1.31}\\
& \geqq C^{4} h^{-2} n \sum_{i_{2}, \cdots, i_{k}} \int_{0}^{h} r^{-2 n}\left\|J_{i_{2}} \cdot \cdots \cdot J_{i_{k}} u\right\|^{2} d t-C_{5_{0 \leqq i}} \sum_{0 \leqq j \leqq k-1} \int_{0}^{h} r^{-2 n}\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} u\right\|^{2} d t
\end{align*}
$$

By the assumption of the induction,
(1.32) $\varepsilon h^{-2} n \int_{0}^{h} r^{-2 n}\left\|J_{1} \cdot \cdots \cdot J_{k-1} u\right\|^{2} d t \geqq \varepsilon C \sum_{0 \leqq i+j=\tau \leqq k-2}\left(h^{-2} n\right)^{k-\tau} \int_{0}^{h} r^{-2 n}\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} u\right\|^{2} d t$
$(\varepsilon>0)$.
Then, if we apply Lemma 4 to the first term of the right hand side of (1.31), and use (1.32) for sufficiently small ε, we get (1.26) for sufficiently large n.
(b) The proof of (1.27). By the assumption we can apply (1.8) of Lemma 3 to $J_{i_{1}} \cdots \cdot J_{i_{k}}\left(i_{\nu} \neq i_{\mu}\right.$ for $\left.\nu \neq \mu\right)$, and using (1.30) we obtain for constants C_{6} and $C_{7}(>0)$,

$$
\begin{aligned}
\int_{0}^{h} r^{-2 n}\|A u\|^{2} d t \geqq & C_{6} \frac{1}{n} \sum_{i_{2}, \cdots, i_{k}} \int_{0}^{h} r^{-2 n}\left(\left\|\frac{\partial}{\partial t} J_{i_{2}} \cdots \cdot J_{i k} u\right\|^{2}+\left\|\Lambda J_{i_{2}} \cdots \cdot J_{i_{k}} u\right\|^{2} d t\right. \\
& +\frac{1}{2} \int_{0}^{h} r^{-2 n}\|A u\|^{2} d t-C_{7} \sum_{0 \leqq i+j \leqq k-1} \int_{0}^{h} r^{-2 n}\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} u\right\|^{2} d t
\end{aligned}
$$

In the first term of the right hand side in the above inequality we estimate the commutators $\left(\frac{\partial}{\partial t} J_{i_{2}} \cdots \cdot J_{i_{k}}-J_{i_{2}} \cdots \cdot J_{i_{k}} \frac{\partial}{\partial t}\right) u$ and $\left(\Lambda J_{i_{2}} \cdots \cdot\right.$
$\left.J_{i_{k}}-J_{i_{2}} \cdot \cdots \cdot J_{i_{k}} \Lambda\right) u$ by (1.2) and apply Lemma 4, and we apply (1.26) to the second term, then we have for constants C_{8} and $C_{9}(>0)$

$$
\begin{aligned}
\int_{0}^{h} r^{-2 n}\|A u\|^{2} d t \geqq & C_{8} \frac{1}{n} \sum_{i+j=k} \int_{0}^{h} r^{-2 n}\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} u\right\|^{2} d t-C_{9} \sum_{0 \leqq i+j \leqq k-1} \int_{0}^{h} r^{-2 n}\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} u\right\|^{2} d t \\
& +C \sum_{0 \leqq i+j=\tau \leqq k-1}\left(h^{-2} n\right)^{k-\tau} \int_{0}^{h} r^{-2 n}\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} u\right\|^{2} d t .
\end{aligned}
$$

Then, for sufficiently large n we get (1.27).
Q.E.D.

Lemma 5'. Let $H_{i}(r)=P_{i}(r)+i Q_{i}(r)(i=1, \cdots, k)$ be singular integral operators defined in (θ)-space with r as a parameter, and assume $\left|\sigma\left(P_{i}\right)\right| \geqq \delta>0$ $(i=1, \cdots, k)$.

Set $J_{i}=\frac{\partial}{\partial r}+r^{-1}\left(P_{i}+i Q_{i}\right) \Lambda(i=1, \cdots, k)$, then we have for the operator $A=J_{1} \cdot \cdots \cdot J_{k}$ and a positive constant C
(1.33) $\int_{0}^{r_{0}} r^{2 \beta} \exp \left\{2 \alpha r^{-}\right\}\|A u\|^{2} d r$

$$
\begin{array}{r}
\geqq C \alpha \sum_{0 \leqq i+j=\tau \leqq k-1} l^{2(k-\tau)} \int_{0}^{r_{0}} r^{2 \beta-l-2(k-i)} \exp \left\{2 \alpha r^{-l}\right\}\left\|\frac{\partial^{i}}{\partial r^{i}} \Lambda^{j} u\right\|^{2} d r \\
u \in \mathscr{S}_{r_{0}, l}^{(k)},
\end{array}
$$

and for another positive constant C^{\prime}

$$
\begin{align*}
& \int_{0}^{r_{0}} r^{2 \beta} \exp \left\{2 \alpha r^{-l}\right\}\|A u\|^{2} d r \tag{1.34}\\
& \qquad \begin{array}{l}
\text { C } \frac{1}{\alpha} \sum_{0 \leqq i+j=\tau \leqq k} l^{2(k-\tau)} \int_{0}^{r_{0}} r^{2 \beta+l-2(k-i)} \exp \left\{2 \alpha r^{-l}\right\}\left\|\frac{\partial^{i}}{\partial r^{i}} \Lambda^{j} u\right\|^{2} d r \\
\\
u \in \mathscr{G}_{r_{0}, l}^{(k)} .
\end{array}
\end{align*}
$$

Proof. The proofs are played by the same process with that of Lemma 5.
Corresponding to (1.30) we have

$$
\|A u\|^{2} \geqq C_{i_{1}, \cdots, i_{k}}\left\|J_{i_{1}} \cdots \cdot J_{i_{k}} u\right\|^{2}-C_{2} \sum_{0 \leqq i+j \leqq k-1} r^{-2(k-i)}\left\|\frac{\partial^{i}}{\partial r^{i}} \Lambda^{j} u\right\|^{2},
$$

and

$$
\begin{aligned}
& \left\|\frac{\partial}{\partial r} J_{i_{1}} \cdots \cdot J_{i_{k-1}} u\right\|^{2}+r^{-2}\left\|\Lambda J_{i_{1}} \cdots \cdot J_{i_{k-1}} u\right\|^{2} \\
& \geqq \geqq \\
& \quad C_{3}\left\{\left\|J_{i_{1}} \cdots \cdot J_{i_{k-1}} \frac{\partial u}{\partial r}\right\|^{2}+r^{-2}\left\|J_{i_{1}} \cdots \cdot J_{i_{k-1}} \Lambda u\right\|^{2}\right\} \\
& \quad-C_{4} \sum_{0 \leqq i+j \leqq k-1} r^{-2(k-i)}\left\|\frac{\partial^{i}}{\partial r^{i}} \Lambda^{j} u\right\|^{2}
\end{aligned}
$$

where C_{1}, C_{2}, C_{3} and C_{4} are positive constants. Remarking the above inequality, if we apply (1.14) of Lemma 3^{\prime} according to the proofs of (1.26) and (1.27), we get for positive constants C_{5} and C_{6}
(1.35) $\int_{0}^{r_{0}} r^{2 \beta} \exp \left\{2 \alpha r^{-l}\right\}\|A u\|^{2} d r$

$$
\geqq C_{5} \sum_{0 \leqq i+j=\tau \leqq k-1}\left(\alpha l^{2}\right)^{k-\tau} \int_{0}^{r_{0}} r^{2 \beta-l(k-\tau)-2(k-i)} \exp \left\{2 \alpha r^{-l}\right\}\left\|\frac{\partial^{i}}{\partial r^{i}} \Lambda^{j} u\right\|^{2} d r
$$

and
(1. 36) $\int_{0}^{r_{0}} r^{2 \beta} \exp \left\{2 \alpha r^{-}\right\}\|A u\|^{2} d r$

$$
\geqq C_{6} \frac{1}{\alpha} \sum_{0 \leqq i+j=\tau \leqq k}\left(\alpha l^{2}\right)^{k-\tau} \int_{0}^{r_{0}} r^{2 \beta-l(k-1-\tau)-2(k-i)} \exp \left\{2 \alpha r^{-l}\right\}\left\|\frac{\partial^{i}}{\partial r^{i}} \Lambda^{j} u\right\|^{2} d r
$$

respectively.
Hence, if we note $r^{-l(k-\tau)} \geqq r^{-l}$ for $\tau \leqq k-1$ and $r^{-l(k-1-\tau)} \geqq r^{l}$ for $\tau \leqq k$
because of $0 \leqq r \leqq r_{0}<1$, and $\left(\alpha l^{2}\right)^{k-\tau} \geqq \alpha l^{2(k-\tau)}$ for $\tau \leqq k-1$ and $\left(\alpha l^{2}\right)^{k-\tau}$ $\geqq l^{2(k-\tau)}$ for $\tau \leqq k$, then from (1.35) and (1.36) we can easily obtain (1.33) and (1.34) respectively.
Q.E.D.
§2. Main theorems. First we shall prove a theorem which will be used for the uniqueness of the Cauchy problem.

Let $L_{m}(t, x, \lambda, \xi)=\sum_{j=0}^{m} H_{j}(t, x, \xi) \lambda^{m-j}$ be a homogeneous differential polynomial where $H_{j}(t, x, \xi)=\sum_{|\mu|=j} a_{\mu}(t, x) \xi^{\mu}\left(H_{0}=1\right)$ are differential polynomials with respect to ξ with complex valued infinitely differentiable caefficients $a_{\mu}(t, x)$ defined in a neighborhood of the origin.

Now we resolve L_{m} into the form

$$
\begin{equation*}
L_{m}(t, x, \lambda, \xi)=\prod_{i=1}^{k}\left(\lambda-\lambda_{i}^{(1)}(t, x, \xi)\right) \prod_{j=1}^{m-k}\left(\lambda-\lambda_{j}^{(2)}(t, x, \xi)\right) \quad(0 \leqq k \leqq m) \tag{2.1}
\end{equation*}
$$ and we write

$$
\begin{array}{ll}
\lambda_{i}^{(1)}(t, x, \xi)=-q_{i}^{(1)}(t, x, \xi)+i p_{i}^{(1)}(t, x, \xi) & (i=1, \cdots, k) \\
\lambda_{j}^{(2)}(t, x, \xi)=-q_{j}^{(2)}(t, x, \xi)+i p_{j}^{(2)}(t, x, \xi) & (j=1, \cdots, m-k) . \tag{2.2}
\end{array}
$$

Theorem 1. Let $L=L(t, x, \lambda, \xi)=L_{m}(t, x, \lambda, \xi)+\sum_{0 \leqq i+||M| \leqq m-1} b_{i, \mu}(t, x) \lambda^{i} \xi^{\mu}$ be a differential polynomial of order m with bounded measurable coefficients $b_{i, \mu}(t, x)$.

Suppose $\lambda_{i}^{(1)}(i=1, \cdots, k)$ and $\lambda_{j}^{(2)}(j=1, \cdots, m-k)$ in (2.1) are distinct for $\xi \neq 0$ respectively and infinitely differentiable, and $p_{i}^{(1)}$ and $q_{i}^{(1)}(i=$ $1, \cdots, k$) in (2.2) satisfy the condition of M. Matsumura [8], that is

$$
\begin{equation*}
\frac{\partial}{\partial t} p_{i}^{(1)}+\sum_{j=1}^{\nu}\left\{\frac{\partial}{\partial x_{j}} p_{i}^{(1)} \frac{\partial}{\partial \xi_{j}} q_{i}^{(1)}-\frac{\partial}{\partial x_{j}} q_{i}^{(1)} \frac{\partial}{\partial \xi_{j}} p_{i}^{(1)}\right\}=\nu_{i} p_{i}^{(1)} \quad(i=1, \cdots, k) \tag{2.3}
\end{equation*}
$$

in a neighborhood of the origin for some $\nu_{i}=\nu_{i}(t, x, \xi) \in C_{(t, x, \xi)}^{\infty}(\xi \neq 0)$, and $p_{j}^{(2)}(j=1, \cdots, m-k)$ in (2.2) do not vanish for $\xi \neq 0$.

Then, there exist positive constants C and h such that

$$
\begin{array}{r}
\int_{0}^{h} r^{-2 n}\|L u\|^{2} d t \geqq C \sum_{0 \leqq i+|\mu|=\tau} \leqq^{m-1} h^{-2(m-\tau)} \int_{0}^{h} r^{-2 n}\left\|\frac{\partial \tau}{\partial t^{i} \partial x^{\mu}} u\right\|^{2} d t \tag{2.4}\\
\left(r=t+h, \quad u \in \mathfrak{F}_{h}^{(m)}\right)
\end{array}
$$

for sufficiently large n.
Proof. By Theorem 4 we may consider that (2.1) and (2.3) hold for every (t, x). Let $P_{i}^{(1)}+i Q_{i}^{(1)}(i=1, \cdots, k)$ and $P_{j}^{(2)}+i Q_{j}^{(2)}(j=1, \cdots, m-k)$ be singular integral operators with $\sigma\left(P_{i}^{(1)}+i Q_{i}^{(1)}\right)=-i \lambda_{i}^{(1)}|\xi|^{-1}$ and $\sigma\left(P_{j}^{(2)}+i Q_{j}^{(2)}\right)=$
$-i \lambda_{\xi}^{(2)}|\xi|^{-1}$ respectively, then they are of type $C_{\beta}^{\infty}(\beta=\infty)$ in the sense of [2].

Set $A_{1}=\prod_{i=1}^{k}\left(\frac{\partial}{\partial t}+\left(P_{i}^{(1)}+Q_{i}^{(1)}\right) \Lambda\right)$ and $A_{2}={ }_{j=1}^{m-k}\left(\frac{\partial}{\partial t}+\left(P_{j}^{(2)}+i Q_{j}^{(2)}\right) \Lambda\right)$. Then, using (1.2) of Lemma 1 , we have for a positive constant C_{1},

$$
\begin{equation*}
\left\|\left(A_{1} \cdot A_{2}-L\right) u\right\|^{2} \leqq C_{1_{0 \leqq i}} \sum_{j \leqq m-1}\left\|\frac{\partial^{i}}{\partial t^{i}} \Delta^{j} u\right\|^{2} . \tag{2.5}
\end{equation*}
$$

By the assumptions of the theorem, we can apply (1.26) and (1.27) of Lemma 5 to A_{1} and A_{2} respectively. Hence, first using (1.26)

$$
\begin{equation*}
\int_{0}^{h} r^{-2 n}\left\|A_{1} A_{2} u\right\|^{2} d t \geqq C C_{0 \leqq i+j=\tau \leqq k-1}\left(h^{-2} n\right)^{k-\tau} \int_{0}^{h} r^{-2 n}\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} A_{2} u\right\|^{2} d t \tag{2.6}
\end{equation*}
$$

and using (1.2) we get for positive constants C_{2} and C_{3}

$$
\begin{align*}
& \sum_{0 \leqq i+j=\tau \leqq k-1}\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} A_{2} u\right\|^{2} \tag{2.7}\\
& \geqq C_{2} \sum_{0 \leqq i+j=\tau \leqq k-1}\left\|A_{2} \frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} u\right\|^{2}-C_{3 \leqq i^{\prime}+j^{\prime}=\tau^{\prime} \leqq} \sum_{\substack{\tau+(m-k)-1}}\left\|\frac{\partial^{i^{\prime}}}{\partial t^{\prime}} \Lambda^{j^{\prime}} u\right\|^{2} .
\end{align*}
$$

Now, by (1.27) for a positive constants C_{4}

$$
\begin{align*}
& \sum_{0 \leqq i+j=r \leqq k-1}\left(h^{-2} n\right)^{k-\tau} \int_{0}^{h} r^{-2 n}\left\|A_{2} \frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} u\right\|^{2} d t \tag{2.8}\\
& \quad \geqq C_{4} \frac{1}{n} \sum_{0 \leqq i+j=r \leqq m-1}\left(h^{-2} n\right)^{m-\tau} \int_{0}^{h} r^{-2 n}\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} u\right\|^{2} d t .
\end{align*}
$$

From the second term of the right hand side of (2.7) we get $k-\tau \leqq$ $m-1-\tau^{\prime}$, hence combining (2.6)-(2.8) we have for positive constants C_{5} and C_{6}

$$
\begin{aligned}
& \int_{0}^{h} r^{-2 n}\left\|A_{1} A_{2} u\right\|^{2} d t \geqq C_{5} \frac{1}{n} \sum_{0 \leqq i+j=r \leqq_{m-1}}\left(h^{-2} n\right)^{m-\tau} \int_{0}^{h} r^{-2 n}\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda^{j} u\right\|^{2} d t \\
& \quad-C_{6} \sum_{0 \leqq i^{\prime} j^{\prime}=r^{\prime} \leqq m-2}\left(h^{-2} n\right)^{m-1-r^{\prime}} \int_{0}^{h} r^{-2 n}\left\|\frac{\partial^{i}}{\partial t^{i^{\prime}}} \Lambda^{j^{\prime} u}\right\|^{2} d t .
\end{aligned}
$$

Then, if we use (2.5) and $\left\|\frac{\partial^{i+\mid \mu_{1}}}{\partial t^{i} \partial x^{\mu}}\right\| \triangleq\left\|\frac{\partial^{i}}{\partial t^{i}} \Lambda^{\left|{ }^{\mu \mid}\right|}\right\| \|$, and note $m-1-\tau \geqq 0$ for $\tau \leqq m-1$, we can get (2.4) for sufficiently small h. Q.E.D.
Corollary 1. Let $L_{i}(i=1, \cdots, s)$ be differential polynomials of order m_{i}, and assume each of them satisfies the conditions of Theorem 1.

Then, there exist positive constants C^{\prime} and h such that

$$
\begin{array}{r}
\int_{0}^{h} r^{-2 n}\left\|L_{1} \cdot \cdots \cdot L_{s} u\right\|^{2} d t \geqq C^{\prime} \sum_{0 \leqq i+|\mu|=\tau \leqq M-s} h^{-2(M-\tau)} \int_{0}^{h} r^{-2 n}\left\|\frac{\partial \tau}{\partial t^{i} \partial x^{\mu}} u\right\|^{2} d t \tag{2.9}\\
\left(M=\sum_{i=1}^{s} m_{i}, \quad u \in \mathfrak{F}_{h}^{(\mu)}\right)
\end{array}
$$

for sufficiently large n.
Proof. If we consider $L_{1} \cdot \cdots \cdot L_{s} u$ as $L_{1} \cdot \cdots \cdot L_{s-1}\left(L_{s} u\right)$, and apply the assumption of the induction, then by using the inequality for $M_{s}=M-m_{s}$ and sufficiently small h

$$
\begin{aligned}
&{ }_{0 \leqq i+|\mu|=\tau \leqq M_{s}-(s-1)} h^{-2\left(M_{s}-\tau\right)}\left\|\frac{\partial \tau}{\partial t^{i} \partial x^{\mu}} L_{s} u\right\|^{2} \\
& \geqq C_{1_{0 \leqq i+|\mu|=\tau}} \sum_{M_{M_{s}-(s-1)}} h^{-2\left(M_{s}-\tau\right)}\left\|L_{s} \frac{\partial \tau}{\partial t^{i} \partial x^{\mu}} u\right\|^{2} \\
& \quad-C_{2} h^{2} \sum_{0 \leqq i+|\mu|=\tau \leqq \boldsymbol{M}-s} h^{-2(M-\tau)}\left\|\frac{\partial \tau}{\partial t^{i} \partial x^{\mu}} u\right\|^{2} \quad\left(C_{1}, C_{2}>0\right)
\end{aligned}
$$

we can easily prove (2.9).
Q.E.D.

Next we shall prove the theorem concerning the unique continuation for elliptic differential operator.

Let $L=L(x, \eta)=\sum_{|\mu| \leq m} a_{\mu}(x) \eta^{\mu}$ be an elliptic differential polynomial with complex valued bounded coefficients defined in a neighborhood of the origin in the ($\nu+1$)-dimensional Euclidean space, and assume for constants δ_{1} and $\delta_{2}(>0)$

$$
\begin{equation*}
\delta_{1} \geqq\left|\sum_{|\mu|=m} a_{\mu}(x) \eta^{\mu}\right| \geqq \delta_{2}>0 \quad(|\eta|=1) \tag{2.10}
\end{equation*}
$$

Now we transform the coordinates (x) to polar coordinates (r, θ), for example

$$
\begin{array}{r}
x=\left(x_{1}, \cdots, x_{\nu}, x_{\nu+1}\right)=r \phi(\theta)=r\left(\theta_{1}, \cdots, \theta_{\nu}, \sqrt{1-|\theta|^{2}}\right) \\
\left(|\theta|=\left\{\sum_{i=1}^{\nu} \theta\right\}^{1 / 2}<1\right) \tag{2.11}
\end{array}
$$

$$
r=\sqrt{\sum_{i=1}^{\nu+1} x_{i}^{2}}, \quad \theta_{i}=\frac{x_{i}}{\sqrt{\sum_{i=1}^{\nu+1} x_{i}^{2}}}(i=1, \cdots, \nu) \quad\left(x_{\nu+1}>0\right) .
$$

Then,

$$
\begin{align*}
& \frac{\partial}{\partial x_{i}}=\theta_{i} \frac{\partial}{\partial r}+r^{-1} \sum_{j=1}^{\nu}\left(\delta_{i j}-\theta_{i} \theta_{j}\right) \frac{\partial}{\partial \theta_{j}} \quad(i=1, \cdots, \nu), \tag{2.12}\\
& \frac{\partial}{\partial x_{\nu+1}}=\sqrt{1-|\theta|^{2}}\left(\frac{\partial}{\partial r}-r^{-1} \sum_{j=1}^{\nu} \theta_{j} \frac{\partial}{\partial \theta_{j}}\right) .
\end{align*}
$$

Hence, if we define a matrix D by

$$
D=D(\theta)=\left(\begin{array}{ll}
1-\theta_{1}^{2}, & -\theta_{1} \theta_{2}, \cdots,-\theta_{1} \theta_{\nu}, \theta_{1} \tag{2.13}\\
\vdots \\
-\theta_{\nu} \theta_{1}, & -\theta_{\nu} \theta_{2}, \cdots, 1-\theta_{v}^{2}, \theta_{\nu} \\
-\theta_{1} \sqrt{1-|\theta|^{2}}, \cdots,-\theta_{\nu} \sqrt{1-|\theta|^{2}}, \sqrt{1-|\theta|^{2}}
\end{array}\right)
$$

then, the principal part $L_{m}=L_{m}(r, \theta, \lambda, \xi)$ of the above differential polynomial L as the operator with respect to (r, θ), is obtained in $\sum_{|\mu|=m} a_{\mu}(x) \eta^{\mu}$ by replacing $a_{\mu}(x)$ by $a_{\mu}(r \phi(\theta))$ and transforming η by

$$
\left(\begin{array}{c}
\boldsymbol{\eta}_{1} \tag{2.14}\\
\vdots \\
\boldsymbol{\eta}_{\nu} \\
\boldsymbol{\eta}_{\nu+1}
\end{array}\right)=D\left(\begin{array}{c}
\boldsymbol{r}^{-1} \xi_{1} \\
\vdots \\
\boldsymbol{r}^{-1} \xi_{\nu} \\
\lambda
\end{array}\right)
$$

respectively.
We write L_{m}

$$
\begin{equation*}
L_{m} \equiv a^{*}(x)\left\{\lambda^{m}+\sum_{i=1}^{m} r^{-i} H_{i}(r, \theta, \xi) \lambda^{m-i}\right\} \tag{2.15}
\end{equation*}
$$

where $H_{i}(r, \theta, \xi)=\sum_{|\mu|=i} b_{\mu}(r, \theta) \xi^{\mu}, a^{*}(x)=\sum_{|\mu|=m} a_{\mu}(x)\left(\frac{x}{r}\right)^{\mu}$ and by (2.10) and $\left|\frac{x}{r}\right|=1$ we have

$$
\begin{equation*}
\delta_{1} \geqq\left|a^{*}(x)\right| \geqq \delta_{2}>0 \tag{2.16}
\end{equation*}
$$

Remark 1. Since the elements of the matrix D is analytic, $b_{\mu}(r, \theta)$ are infinitely differentiable with respect to (r, θ) if $a_{\mu}(x)(|\mu|=m)$ are infinitely differentiable with respect to (x).
2. Since $D(0)=$ unit matrix, for the associated differential polynomial

$$
\begin{equation*}
L_{m}^{*}(r, \theta, \lambda, \xi) \equiv \lambda^{m}+\sum_{i=1}^{m} r^{-i} H_{i}(r, \theta, \xi) \lambda^{m-i}=\prod_{i=1}^{m}\left(\lambda-r^{-1} \lambda_{i}(r, \theta, \xi)\right), \tag{2.17}
\end{equation*}
$$

$\lambda_{i}(r, \theta, \xi)(i=1, \cdots, m)$ are distinct if the equation $\sum_{|\mu|=m} a_{\mu}(x) \eta^{\mu}=0$ has distinct roots as the polynomial with respect to $\eta_{\nu+1}$.

Theorem 1'. Let $L(x, \eta)=\sum_{\mid \mu \leqq_{m}^{m}} a_{\mu}(x) \eta^{\mu}$ be an elliptic differential polynomial of order m defined in a neighborhood of the origin which satisfies (2.10), and leading coefficients are infinitely differentiable and remaining coefficients bounded measurable.

Suppose for any representation of polar coordinates we can write L_{m}^{*} of (2.17) such as

$$
\begin{array}{r}
L_{m}^{*}(r, \theta, \lambda, \xi)=\prod_{i=1}^{k}\left(\lambda-r^{-1} \lambda_{i}^{(1)}(r, \theta, \xi)\right) \prod_{j=1}^{m-k}\left(\lambda-r^{-1} \lambda \lambda_{j}^{(2)}(r, \theta, \xi)\right) \tag{2.18}\\
(0 \leqq k<m)
\end{array}
$$

where $\lambda_{i}^{(1)}(i=1, \cdots, k)$ and $\lambda_{j}^{(2)}(j=1, \cdots, m-k)$ are distinct respectively, and infinitely differentiable for $\xi \neq 0$.

Then, there exist positive constants C and l_{0} depending only on L such that

$$
\begin{align*}
& \int_{|x|<r_{0}} r^{2 \beta} \exp \left\{2 \alpha r^{-l}\right\}|L u|^{2} d x \tag{2.19}\\
& \quad \geqq C_{0 \leqq\left|\sum^{\mu}\right| \leqq m-1} l^{2\left(m-\mid \mu_{\mid}\right)} \int_{|x|<r_{0}} r^{2 \beta-2\left(m-\mid \mu_{\mid}\right)} \exp \left\{2 \alpha r^{-l}\right\}\left|\frac{\partial^{|\mu|}}{\partial x^{\mu}} u\right|^{2} d x \\
& \\
& u \in \mathscr{S}_{r_{0}, l}^{(m)}
\end{align*}
$$

for every $l\left(\geqq l_{0}\right)$ and sufficiently large α.
Proof. For L_{m}^{*} of (2.18), we define $A_{1}=\prod_{i=1}^{k}\left(\frac{\partial}{\partial r}+r^{-1}\left(P_{i}^{(1)}+i Q_{i}^{(1)}\right) \Lambda\right)$ and $A_{2}=\prod_{j=1}^{m-k}\left(\frac{\partial}{\partial r}+r^{-1}\left(P_{j}^{(2)}+i Q_{j}^{(2)}\right) \Lambda\right) \quad$ where $\quad P_{i}^{(1)}+i Q_{i}^{(1)} \quad(i=1, \cdots, k) \quad$ and $P_{j}^{(2)}+i Q_{j}^{(2)}(j=1, \cdots, m-k)$ are singular integral operators with symbols $-i \lambda_{i}^{(1)}|\xi|^{-1}$ and $-i \lambda_{j}^{(2)}|\xi|^{-1}$ respectively.

Then, the assumptions of the theorem it is easy A_{1} and A_{2} satisfy the conditions of Lemma 5^{\prime}.

We remark here by estimating commutators using (1.2)

$$
\begin{equation*}
\left\|\left(L_{m}^{*}\left(r, \theta, \frac{\partial}{\partial r}, \frac{\partial}{\partial \theta}\right)-A_{1} A_{2}\right) u\right\|^{2} \leqq C_{1} \sum_{0 \leqq i+j \leqq m-1} r^{-2(m-i)}\left\|\frac{\partial^{i}}{\partial r^{i}} \Lambda^{j} u\right\|^{2} \tag{2.20}
\end{equation*}
$$

and considering L as a operators with respect to (r, θ)

$$
\begin{equation*}
\left\|\left(L-a^{*} L_{m}^{*}\right) u\right\|^{2} \leqq C_{2} \sum_{0 \leqq i+j \leqq m-1} r^{-2(m-i)}\left\|\frac{\partial^{i}}{\partial r^{i}} \Lambda^{j} u\right\|^{2} \tag{2.21}
\end{equation*}
$$

for $u \in C_{\left(r_{0}, \theta\right)}^{(m)}$ and positive constants C_{1} and C_{2}.
Now, if we apply (1.34) to A_{1}, we get

$$
\begin{align*}
& \int_{0}^{r_{0}} r^{2 \beta} \exp \left\{2 \alpha r^{-l}\right\}\left\|A_{1} A_{2} u\right\|^{2} d r \tag{2.22}\\
& \quad \geqq C^{\prime} \frac{1}{\alpha} \sum_{0 \leqq i+j=\tau \leqq k} l^{2(k-\tau)} \int_{0}^{r_{0}} r^{2 \beta+l-2(k-i)} \exp \left\{2 \alpha r^{-l}\right\}\left\|\frac{\partial^{i}}{\partial r^{i}} \Lambda^{j} A_{2} u\right\|^{2} d r \\
& \\
& u \in \mathbb{S}_{r_{0}, l}^{(m)},
\end{align*}
$$

and if we estimate the commutators by (1.2) we get
(2.23)

$$
\begin{aligned}
& \sum_{0 \leqq i+j=\tau \leqq k} l^{2(k-\tau)} r^{-2(k-i)}\left\|\frac{\partial^{i}}{\partial r^{i}} \Lambda^{j} A_{2} u\right\|^{2} \\
& \quad \geqq C_{3} \sum_{0 \leqq i+j=\tau \leqq k} l^{2(k-\tau)} r^{-2(k-i)}\left\|A_{2} \frac{\partial^{i}}{\partial r^{i}} \Lambda^{j} u\right\|^{2} \\
& \quad-C_{4} \sum_{0 \leqq i^{\prime}+j^{\prime}=\tau^{\prime} \leqq \tau+(m-k)-1} l^{2(k-\tau)} r^{-2\left(m-i^{\prime}\right)}\left\|\frac{\partial^{i^{\prime}}}{d r^{i^{\prime}}} \Lambda^{j^{\prime}} u\right\|^{2} \quad\left(C_{3}, C_{4}>0\right) .
\end{aligned}
$$

Noting $k-\tau \leqq m-1-\tau^{\prime}$ and $\tau^{\prime} \leqq m-1$, and replacing i^{\prime}, j^{\prime} and τ^{\prime} by i, j and τ respectively, we can see that the second term of the right hand side in (2.23) is not larger than $C_{5} l^{-2} \sum_{0 \leqq i+j=\tau} \sum_{m-1} l^{2(m-\tau)} r^{-2(m-i)}\left\|\frac{\partial^{i}}{\partial r^{i}} \Lambda^{j} u\right\|^{2}$ $\left(C_{5}>0\right)$. Hence, if we replace the right hand side of (2.22) by that of (2.23) and apply (1.33) to the terms $\int_{0}^{r_{0}} r^{2 \beta+l-2(k-i)} \exp \left\{2 \alpha r^{-}\right\}\left\|A_{2} \frac{\partial^{i}}{\partial r^{i}} \Lambda^{j} u\right\|^{2} d r$ then we get
(2.24) $\quad \int_{0}^{r_{0}} r^{2 \beta} \exp \left\{2 \alpha r^{-r}\right\}\left\|A_{1} A_{2} u\right\|^{2} d r$

$$
\begin{aligned}
& \geqq C_{6} \sum_{0 \leqq i+j=\tau \leqq m-1} l^{2(m-\tau)} \int_{0}^{r_{0}} r^{2 \beta-2(m-i)} \exp \left\{2 \alpha r^{-l}\right\}\left\|\frac{\partial^{i}}{\partial r^{i}} \Lambda^{j} u\right\|^{2} d r \\
& -C_{7} \frac{l^{-2}}{\alpha} \sum_{0 \leqq i+j=\tau \leqq m-1} r_{0}^{l} l^{2(m-\tau)} \int_{0}^{r_{0}} r^{2 \beta-2(m-i)} \exp \left\{2 \alpha r^{-}\right\}\left\|\frac{\partial^{i}}{\partial r^{i}} \Lambda^{j} u\right\|^{2} d r \\
& \left(C_{6}, C_{7}>0\right) .
\end{aligned}
$$

By (2.20), (2.21) and (2.24), if we consider L as

$$
L=\left(L-a^{*} L_{m}^{*}\right)+a^{*}\left(L_{m}^{*}-A_{1} A_{2}\right)+a^{*} A_{1} A_{2},
$$

then, by (2.16) we have the following important inequality for positive constants l_{0} and C_{8}

$$
\begin{align*}
& \int_{0}^{r_{0}} r^{2 \beta} \exp \left\{2 \alpha r^{-l}\right\}\|L u\|^{2} d r \tag{2.25}\\
& \geqq C_{8_{0 \leqq i+j}} \sum_{j=\tau \leqq m-1} l^{2(m-\tau)} \int_{0}^{r_{0}} r^{2 \beta-2(m-i)} \exp \left\{2 \alpha r^{-} \zeta\right\}\left\|\frac{\partial^{i}}{\partial r^{i}} \Lambda^{j} u\right\|^{2} d r \\
& u \in \mathscr{S G}_{r_{0}, l}^{(m)}
\end{align*}
$$

for every $l\left(\geqq l_{0}\right)$ and sufficiently large α.
Now we use the partition of the unity such that

$$
\begin{equation*}
\Theta_{i}\left(\frac{x}{|x|}\right) \in C_{(|x|>0)}^{\infty}(i=1, \cdots, s), \quad \sum_{i=1}^{s} \Theta_{i}^{2}=1 \tag{2.26}
\end{equation*}
$$

for any $u(x) \in \mathscr{S}_{r_{0}, i}^{(m)} u_{i}=\left(\Theta_{i} u\right)(r \phi(\theta))$ belong to $\mathscr{S}_{r_{0}, \downarrow}^{(m)}$ and we can apply the
inequality (2.25) to each u_{i}. It is easy that such partition of the unity exists from the assumption of Theorem 1^{\prime}.

We have for such u_{i} the following inequality
(2.27) $\quad\left|\frac{\partial^{|\mu|} \mid}{\partial x^{\mu}} u\right|^{2} \leqq C_{9} \sum_{i=1}^{s}\left|\frac{\partial^{|\mu|}}{\partial x^{\mu}} u_{i}\right|^{2}$,

$$
\sum_{i=1}^{s}\left|L u_{i}\right|^{2} \leqq 2|L u|^{2}+C_{9} \sum_{0 \leqq\left|\mu^{\mu}\right| m-1} r^{-2\left(m-\mid \mu_{\mid}\right)}\left|\frac{\partial^{\mid \mu_{\mid}}}{\partial x^{\mu}} u\right|^{2} \quad\left(C_{9}>0\right) .
$$

On the other hand by (2.12) and (2.14), if we set $r^{\nu} d r d \theta=\psi(x) d x$, then $\frac{1}{2} \leqq \psi(x) \leqq 2$ for sufficiently small θ. Hence, we have for any $v(x)$ $=v(r, \theta) \in \mathbb{G}_{r_{0}, t}^{(0)}$

$$
\begin{align*}
& 2 \int_{|x|<r_{0}} r^{2 \beta-v} \exp \left\{2 \alpha r^{-l}\right\}|v|^{2} d x \geqq \int_{0}^{r_{0}} r^{2 \beta} \exp \left\{2 \alpha r^{-l}\right\}\|v\|^{2} d r \geqq \frac{1}{2} \tag{2.28}\\
& \int_{|x|<r_{0}} r^{2 \beta-v} \exp \left\{2 \alpha r^{-l}\right\}|v|^{2} d x,
\end{align*}
$$

and for any $v \in \overbrace{r_{w}, i}^{(\mu)}$ we have

$$
\begin{equation*}
r^{-2\left(m-\mid \mu_{\mid}\right)} \int\left|\frac{\partial^{|\mu|}}{\partial x^{\mu}} v\right|^{2} d \theta \leqq C_{10} \sum_{0 \leqq i+j \leqq\left|\mu_{\mid}\right|} r^{-2(m-i)}\left\|\frac{\partial^{i}}{\partial r^{i}} \Lambda^{j} v\right\|^{2} \quad\left(C_{10}>0\right) . \tag{2.29}
\end{equation*}
$$

From (2.25), (2.28) and (2.29), we get
(2. 30)

$$
\begin{aligned}
& \int_{|x|<r_{0}} r^{2 \beta-\nu} \exp \left\{2 \alpha r^{-l}\right\}\left|L u_{i}\right|^{2} d x \geqq C_{11} \sum_{0 \leqq|\mu| \leqq m-1} l^{2\left(m-\left|\mu_{\mid}\right|\right.} \\
& \int_{|x|<r_{0}} r^{2 \beta-\nu-2\left(m-\left|\mu_{\mid}\right|\right.} \exp \left\{2 \alpha r^{-l}\right\}\left|\frac{\partial^{|\mu|}}{\partial x^{\mu}} u_{i}\right|^{2} d x \quad\left(C_{11}>0\right) .
\end{aligned}
$$

In the above inequality we replace $2 \beta-\nu$ by 2β and using (2.27) we get (2.19) for sufficiently large l. Q.E.D.

Corollary 1'. Let $L_{i}(i=1, \cdots, s)$ be elliptic differential polynomials of order m_{i}, and assume each of them satisfies the conditions of Theorem 1^{\prime}.

Then, there exist positive constants C^{\prime} and l^{\prime} such that

$$
\begin{align*}
& \int_{|x|<r_{0}} r^{2 \beta} \exp \left\{2 \alpha r^{-l}\right\}\left|L_{1} \cdots \cdot L_{s} u\right|^{2} d x \tag{2.31}\\
& \geqq C^{\prime} \sum_{0 \leqq|\mu| \leqq \mu-s} l^{2(M-|\mu|)} \int_{|x|<r_{0}} r^{2 \beta-2\left(m-\mid \mu_{\mid}\right)} \exp \left\{2 \alpha r^{-l}\right\}\left|\frac{\left.\right|^{|\mu|}}{\partial x^{\mu}} u\right|^{2} d x \\
& \left(M=\sum_{i=1}^{s} m_{i}, u \in \mathfrak{S}_{r_{0}, \imath}^{(M)}\right)
\end{align*}
$$

for every $l\left(\geqq l_{0}\right)$ and sufficiently large α.

Proof. We can easily prove it by the method of the induction. Q.E.D.

§ 3. Uniqueness and unique continuation.

First we shall state the uniqueness of the Cauchy problem. Let $L(y, \eta)=\sum_{|\mu| \leqq_{m}^{m}} a_{\mu}(y) \eta^{\mu}$ be a differential polynomial defined in a neighborhood of the origin in the $(\nu+1)$-dimensional Euclidean space.

We take Holmgren's transformation to $y=\left(y_{1}, \cdots, y_{v+1}\right)$

$$
\begin{equation*}
t=y_{1}+\sum_{j=1}^{\nu} y_{j+1}^{2}, x_{i}=y_{i+1} \quad(i=1, \cdots, \nu) \tag{3.1}
\end{equation*}
$$

and we consider only the operator L such that after that transformation the principal polynomial of L is of the form $a^{*} L_{m}\left(\left|a^{*}\right| \geqq \delta>0\right)$, where

$$
\begin{array}{r}
L_{m}=L_{m}(t, x, \lambda, \xi)=\prod_{i=1}^{k}\left(\lambda-\lambda_{i}^{(1)}(t, x, \xi)\right) \prod_{j=1}^{m-k}\left(\lambda-\lambda_{j}^{(2)}(t, x, \xi)\right) . \tag{3.2}\\
(0 \leqq k \leqq m)
\end{array}
$$

Theorem 2. Let $L=L(y, \eta)=\sum_{\mid \mu_{1} \leqq_{m}} a_{\mu}(y) \eta^{\mu}$ be a differential polynomial of order m defined in a neighborhood of the origin of which leading coefficients are infinitely differentiable and remaining coefficients bounded measurable, and let $u=u(y) \in C_{(y)}^{m}$ defined in a neighborhood of the origin satisfy the differential equation $L\left(y, \frac{\partial}{\partial y}\right) u(y)=0$ and the initial conditions

$$
\begin{equation*}
\frac{\partial^{j-1}}{\partial y_{1}^{j-1}} u\left(0, y_{2}, \cdots, y_{v+1}\right)=0 \quad(j=1, \cdots, m) \tag{3.3}
\end{equation*}
$$

Suppose after the transformation (3.1) the roots $\lambda_{i}^{(1)}=-q_{i}^{(1)}+i p_{i}^{(1)}$ $(i=1, \cdots, k)$ and $\lambda_{j}^{(2)}=-q_{j}^{(2)}+i p_{j}^{(2)}(j=1, \cdots, m-k)$ of the associated polynomial L_{m} in (3.2) are distinct respectively and infinitely differentiable, and $p_{i}^{(1)}$ and $q_{i}^{(1)}(i=1, \cdots, k)$ satisfy the condition (2.3) of M. Matsumura [8], and $p_{j}^{(2)}(j=1, \cdots, m-k)$ do not vanish for $\xi \neq 0$.

Then, $u(y)=u(t, x)$ vanishes identically in a neighborhood of the origin.
Proof. From the assumption of Theorem $2 a^{*-1} L$ as the operator with respect to (t, x) satisfies the assumptions of Theorem 1.

Now we take a function $\rho(t) \in C_{(t)}^{\infty}$ such that

$$
\begin{equation*}
\varphi(t)=1 \text { on }\left[0, \frac{h}{2}\right], \quad \varphi(t)=0 \text { for } t \geqq \frac{2}{3} h \tag{3.4}
\end{equation*}
$$

then by (3.1) and (3.3) $w(t, x)=\mathscr{P}(t) u(t, x)$ belongs to $\mathfrak{F}_{n}^{(m)}$.
Applying (2.4) of Theorem 1 to $a^{*^{-1} L}$ and w and remarking $\left|a^{*}\right| \geqq \delta>0$ we get

$$
\begin{array}{r}
\int_{0}^{h} r^{-2 n}\|L w\|^{2} d t \geqq C_{1_{0}} \sum_{0+|\mu|=\tau \leqq m-1} h^{-2(m-\tau)} \int_{0}^{h} r^{-2 n}\left\|\frac{\partial \tau}{\partial t^{i} \partial x^{\mu}} w\right\|^{2} d t \tag{3.5}\\
(r=t+h)
\end{array}
$$

for sufficiently large n and $C_{1}=\delta^{-2} C$.
By (3.4) $L w=L u=0$ for $t \in\left[0, \frac{h}{2}\right]$ and because of $h \leqq r \leqq 2 h<1$ for $0 \leqq t \leqq h$ we get

$$
\int_{h / 2}^{h} r^{-2 n}\|L w\|^{2} d t \geqq C_{1} \int_{0}^{h / 2} r^{-2 n}\|u\|^{2} d t
$$

Hence, noting $0<r^{-1} \leqq\left(\frac{h}{2}+h\right)^{-1}=\frac{2}{3} h^{-1}$ for $\frac{h}{2} \leqq r \leqq h$ and $r^{-1} \geqq\left(h+\frac{h}{3}\right)^{-1}$ $=\frac{3}{4} h^{-1}$ for $0 \leqq r \leqq \frac{h}{3}$, we have

$$
C_{1}^{-1}\left(\frac{8}{9}\right)^{2 n} \int_{h / 2}^{h}\|L w\|^{2} d t \geqq \int_{0}^{h / 3}\|u\|^{2} d t
$$

and letting $n \rightarrow \infty$ we get u vanishes identically in $0 \leqq t \leqq \frac{h}{3}$.
This completes the proof. Q.E.D.
Example 1. $\quad L_{m}(t, x, \lambda, \xi)=\lambda^{8}+2\left(\sum_{i=1}^{\nu} \xi_{i}^{2}\right)^{2} \lambda^{4}+\left(\sum_{i=1}^{\nu} \xi_{i}^{2}\right)^{4}-a(t, x)^{2} \sum_{i=1}^{\nu} \xi_{i}^{8}, \quad$ where $a(t, x) \in C^{\infty}(t, x)$ in a neighborhood of the origin and $a(0,0)=0$ but $a(t, x) \equiv 0$ in any neighborhood of the origin. We can write this operator

$$
\begin{aligned}
L_{m} & =\left\{\lambda^{4}+\left(\left(\sum_{i} \xi_{i}^{2}\right)^{2}+a(t, x)\left(\sum_{i} \xi_{i}^{8}\right)^{1 / 2}\right)\right\}\left\{\lambda^{4}+\left(\left(\sum_{i} \xi_{i}^{2}\right)^{2}-a(t, x)\left(\sum_{i} \xi_{i}^{8}\right)^{1 / 2}\right)\right\} \\
& =\prod_{i=1}^{4}\left(\lambda-\lambda_{i}^{(1)}\right) \prod_{j=1}^{4}\left(\lambda-\lambda_{j}^{(2)}\right) \equiv A_{1} A_{2}
\end{aligned}
$$

where $\quad \lambda_{i}^{(1)}=\mathrm{e}^{\pi / 4(2 i-1) V-1} b_{1}(i=1, \cdots, 4) \quad$ and $\quad \lambda_{j}^{(2)}=\mathrm{e}^{\pi / 4(2 i-1) V-1} b_{2} \quad(i=1, \cdots, 4)$ with $b_{1}=\left(\left(\sum_{i} \xi_{i}^{2}\right)^{2}+a(t, x)\left(\sum_{i} \xi_{i}^{8}\right)^{1 / 2}\right)^{1 / 4}$ and $b_{2}=\left(\left(\sum_{i} \xi_{i}^{2}\right)^{2}-a(t, x)\left(\sum \xi_{i}^{8}\right)^{1 / 2}\right)^{1 / 4}$ respectively. Then, A_{1} and A_{2} have distinct roots respectively and infinitely differentiable, but at the origin $\lambda_{i}^{(1)}=\lambda_{i}^{(2)}(i=1, \cdots, 4)$.

Hence, for the operator $L=L_{m}+\sum_{0 \leqq i+\left|m^{m}\right| \leqq^{m-1}} b_{i, \mu}(t, x) \lambda^{i} \xi^{\mu}$ the uniqueness of the Cauchy problem holds. We must note that we can not write L_{m} as the product of two differential operators; see L. Hörmander [6].

Corollary 2. Let $L_{i}(i=1, \cdots, s)$ be differential polynomials of order m_{i} and each of them satisfy the conditions of Theorem 2.

Then, if $u=u(y)$ satisfies the differential equation $L_{1} \cdots L_{s} u$ $=\sum_{|\mu| \leqq \mu-s} a_{\mu}(y) \frac{\partial^{\left|\mu_{\mid}\right|}}{\partial y^{\mu}} u\left(M=\sum_{i=1}^{s} m_{i}\right)$ in a neighborhood of the origin, and satisfies the initial conditions

$$
\frac{\partial^{j-1}}{\partial y_{1}^{j-1}} u\left(0, y_{2}, \cdots, y_{v+1}\right)=0 \quad(j=1, \cdots, M)
$$

then $u(y)$ vanishes identically in a neighborhood of the origin.
Next we shall prove the unique continuation theorem.
Theorem 2'. Let $L=L(x, \eta)=\sum_{|\mu| \leqq m} a_{\mu}(x) \eta^{\mu}$ be an elliptic differential polynomial of order m which satisfies the conditions of Theorem 1^{\prime}.

Suppose $u=u(x) \in C_{(x)}^{m}$ satisfies the differential equation $L u=0$ in a neighborhood of the origin, and
$\lim _{r \rightarrow 0} \exp \left\{\alpha r^{-l}\right\} \frac{\partial^{|\mu|}}{\partial x^{\mu}} u(x)=0 \quad$ for every $\alpha\left(|\mu| \leqq m, r=\left\{\sum_{i=1}^{\nu+1} x_{i}^{2}\right\}^{1 / 2}\right)$ for sufficiently large l for which we can apply Theorem 1^{\prime}.

Then, $u=u(x)$ vanishes identically in a neighborhood of the origin.
Proof. We take a function $\rho(x) \in C_{0\left(|x|<r_{0}\right)}^{\infty}$ such that $\mathcal{P}(x)=1$ on $\left\{x ;|x|<\frac{r_{0}}{2}\right\}$, then $w(x)=(\rho u)(x)$ belongs to $\mathfrak{S}_{r_{0}, l}^{(m)}$.

Hence by the same process with the proof of Theorem 2 we can derive an inequality

$$
\int_{r_{0} / 2 \leqq|x|<r_{0}} \exp \left\{2 \alpha r^{-l}\right\}|L w|^{2} d x \geqq C_{1} \int_{|x| \leqq r_{0} / 3} \exp \left\{2 \alpha r^{-l}\right\}|u|^{2} d x \quad\left(C_{1}>0\right)
$$

and letting $\alpha \rightarrow \infty$ we have u vanishes identically in $\left\{x ;|x| \leqq \frac{r_{0}}{3}\right\}$. Q.E.D.
EXAMPLE 2. a) $A(x, \eta)=\prod_{i=1}^{s}\left(\eta_{1}^{2}+a_{i}(x) \eta_{2}^{2}\right)\left(a_{i}(x)>0 ; i=1, \cdots, s\right) \quad$ where $a_{i}(x) \in C_{(x)}^{\infty}$ and $a_{i}(x) \neq a_{j}(x)$ for $i \neq j$ in a neighborhood of the origin in $(x)=\left(x_{1}, x_{2}\right)$-space. Then, the associated operator A_{m}^{*} in (2.17) for A has distinct roots in any representation of polar coordinates, hence for the operator $L=A^{2}+\sum_{|\mu| \leqq \^{s-1}} b_{\mu}(x) \eta^{\mu}$ the unique cotinuation theorem holds.
b) $\quad L \equiv \Delta_{1}^{2}+\varepsilon^{2}\left(\Delta_{2}^{2}+\Delta_{3}^{2}\right)-2 \varepsilon\left(\Delta_{1} \Delta_{2}+\Delta_{2} \Delta_{3}+\Delta_{3} \Delta_{1}\right)$

$$
\begin{aligned}
= & \left\{\Delta_{1}-\varepsilon\left(\sqrt{\Delta_{2}}+\sqrt{\Delta_{3}}\right)^{2}\right\}\left\{\Delta_{1}-\varepsilon\left(\sqrt{\Delta_{2}}-\sqrt{\Delta_{3}}\right)^{2}\right\} \equiv A_{1} A_{2} \\
& \left(\Delta_{j}=\eta_{1}^{2}+j \eta_{2}^{2} ; j=1,2,3 \text { and } \varepsilon=\varepsilon\left(x_{1}, x_{2}\right) \in C_{(x)}^{\infty}\right) .
\end{aligned}
$$

By the remark of a), after any orthogonal transformation $\frac{\partial}{\partial \eta_{1}} \sqrt{ } \overline{\Delta_{j}}$ $=\frac{1}{2 \sqrt{\Delta_{j}}} \frac{\partial}{\partial \eta_{1}} \Delta_{j}(j=2,3)$ are bounded in a neighborhood of $\left(\eta_{1}, \eta_{2}\right)=$ $(\pm i, \pm 1)$, so that for sufficiently small ε the roots of $A_{j}=0(j=1,2)$ are distinc and belong to $C_{(x)}^{\infty}$ because of $\frac{\partial}{\partial \eta_{1}} A_{j} \neq 0$ at $A_{j}=0$ respectively.

Hence, for L Theorem 2^{\prime} holds, but we can not represent L as the product of two second order elliptic polynomials.

Corollary 2^{\prime}. Let $L_{i}(i=1, \cdots, s)$ be elliptic differential polynomials of order m_{i} which satisfy the conditions of Theorem 1^{\prime}.

Suppose $u=u(x)$ satisfies a differential equation $L_{1} \cdots \cdot L_{s} u$ $=\sum_{|\mu|} \sum_{\leqq \mu-s} b_{\mu}(x) \frac{\partial^{\left|\mu_{\mid}\right|}}{\partial x^{\mu}} u\left(M=\sum_{i=1}^{s} m_{i}\right)$ in a neighborhood of the origin, and satisfies $\lim _{r \rightarrow 0} \exp \left\{\alpha r^{-l}\right\} \frac{\partial^{|\mu|}}{\partial x^{\mu}} u(x)=0(|\mu| \leqq M)$ for every α and sufficiently large l for which we can apply Theorem 1^{\prime} for each $L_{i}(i=1, \cdots, s)$.

Then, $u=u(x)$ vanishes identically in a neighborhood of the origin.
Example 3. Let $L_{i}(i=1, \cdots, s)$ be elliptic differential polynomials of order 2 with real valued leading coefficients and sufficiently smooth remaining ones.

In this case the principal parts of L_{i} have distinct roots for every direction respectively.

Then, by the remark 1 in the chapter 2 , each pair $L_{2 j-1} L_{2 j}$ $\left(1 \leqq j \leqq\left[\frac{s}{2}\right]\right)$ satisfies the conditions of Theorem 1^{\prime}, consequently for the operator $L=L_{1} \cdots \cdots \cdot L_{s}+\sum_{|\mu| \leqq \mid 3 / 2} b_{s} b_{\mu}(x) \eta^{\mu}$ the unique continuation theorem holds ; see [9] and [12].

Finary we shall state the local existence theorem for the operator concerning Theorem 1.

Theorem 3. Let $L^{(1)}=L^{(1)}(t, x, \lambda, \xi)$ be an elliptic differential polynomial of order m and $L_{i}^{(2)}=L_{i}^{(2)}(t, x, \lambda, \xi)(i=1, \cdots, s)$ be differential polynomials of order m_{i} which satisfy the conditions of Theorem 1.

Set $L^{(2)}=L_{1}^{(2)} \cdots \cdot L_{s}^{(2)}+\sum_{i+\mid \mu \leqq M-s} b_{i, \mu}(t, x) \lambda^{i} \xi^{\mu}\left(M=\sum_{i=1}^{s} m_{i}\right)$ and $L=L^{(1)} L^{(2)}$ $+\sum_{i+|\mu| \leqq j+m-s} a_{i, \mu}(t, x) \lambda^{i} \xi^{\mu}$, and suppose the coefficients are sufficiently smooth.

Then, the equation $L\left(t, x, \frac{\partial}{\partial t}, \frac{\partial}{\partial x}\right) u=f$ has, for any $f \in L^{2}(\Omega)(\Omega$ is a sufficiently small neighborhood of the origin) at least one maximal solution u in the sense of L. Hörmander [5], that is $u \in L^{2}[\Omega]$ and

$$
\begin{equation*}
(f, v)=\left(u, L^{*} v\right) \quad \text { for any } \quad v \in C_{0}^{\infty}(\Omega) \tag{3.6}
\end{equation*}
$$

Proof. The conditions of Theorem 1 are determined by the principal parts of $L_{i}^{(2)}(i=1, \cdots, s)$, so that the formal adjoint polynomials $L_{i}^{(2) *}$ of $L_{i}^{(2)}$ satisfy the conditions of Theorem 1 respectively. Hence we can apply Corollary 1 to $\left(L_{1}^{(2)} \cdots \cdots L_{s}^{(2)}\right)^{*}=L_{s}^{(2) *} \cdots \cdots L_{1}^{(2) *}$.

Remarking the condition $u \in \mathfrak{F}_{n}^{(\mathcal{M})}$ is required so that the boundary value may vanish together with its derivatives in integrating by parts, we get for sufficiently small domain $\Omega_{h}\left(\subset\left\{(t, x) ; t^{2}+|x|^{2}<h^{2} / 4\right\}\right)$,

$$
\begin{aligned}
& \int_{\Omega_{h}} r^{-2 n}\left|\left(L_{1}^{(2)} \cdots \cdot L_{s}^{(2)}\right)^{*} L^{(1) *} v\right|^{2} d t d x \geqq C_{1_{i+\mid}} \sum_{\mid=\tau \leqq \mu-s} h^{-2(M-\tau)} \\
& \int_{\Omega_{h}} r^{-2 n}\left|\frac{\partial \tau}{\partial t^{i} \partial x^{\mu}} L^{(1) *} v\right|^{2} d t d x \quad\left(C_{1}>0, v \in C_{0}^{\infty}\left(\Omega_{h}\right)\right) .
\end{aligned}
$$

Remarking $\left|\left(L^{(2) *}-\left(L_{i}^{(2)} \cdots \cdots L_{s}^{(2)}\right)^{*}\right) L^{(1) *} v\right|^{2} \leqq C_{2} \sum_{i+|\mu|=\tau \leqq H-s}\left|\frac{\partial \tau}{\partial t^{i} \partial x^{\mu}} L^{(1) *} v\right|^{2}$, if we take domain $\Omega_{h, n}$ such as $\left(\frac{h+t_{1}}{h+t_{2}}\right)^{2 n} \geqq \frac{1}{2}$ for $\left(t_{i}, x\right) \in \Omega_{h, n}(i=1,2)$, then

$$
\begin{aligned}
& \text { (3. 7) } \int_{\Omega_{h, n}}\left|L^{(2) *} L^{(1) *} v\right|^{2} d t d x \geqq \frac{1}{3} C_{1_{i+|\mu|=\tau}} \sum_{\underline{M}-s} h^{-2(M-\tau)} \int_{\Omega_{h}, n}\left|\frac{\partial \tau}{\partial t^{i} \partial x^{\mu}} L^{(1) * v}\right|^{2} d t d x \\
& \geqq C_{3_{i+\mid} \mid \mu_{1}=\tau \leqq M-s} h^{-2(M-\tau)} \int_{\Omega_{h}, n}\left|L^{(1) *} \frac{\partial \tau}{\partial t^{i} \partial x^{\mu}} v\right|^{2} d t d x \\
& -C_{i^{\prime}+\left|\mu^{\prime}\right|=\tau^{\prime}} \sum_{\leqq^{m+\tau-1}} h^{-2(M-\tau)} \int_{\Omega_{h}, n}\left|\frac{\partial \tau^{\prime}}{\partial t^{i^{\prime}} \partial x^{\mu^{\prime \prime}}} v\right|^{2} d t d x \\
& \equiv I_{1}-I_{2} \quad\left(C_{3}, C_{4}>0\right) .
\end{aligned}
$$

By Gålding's inequality [4] and (1.3) of L. Hörmander [7] we get
(3. 8) $\quad I_{1} \geqq C_{5} \sum_{i+|\mu|=\tau \leqq \boldsymbol{M}-s} h^{-2(M-\tau)} \sum_{i^{\prime}+\left|\mu^{\prime}\right|=\tau^{\prime} \leqq m} h^{-2\left(m-\tau^{\prime}\right)} \int_{\Omega_{h, n}}\left|\frac{\partial \tau+\boldsymbol{\tau}^{\prime}}{\partial t^{i+i^{\prime}} \partial x^{\mu+\mu^{\prime}}} v\right|^{2} d t d x$

$$
\geqq C_{6_{i+\mid}} \sum_{i \mid=T \leqq M+m-s} h^{-2(M+m-\tau)} \int_{\Omega_{h, n}}\left|\frac{\partial \tau}{\partial t^{i} \partial x^{\mu}} v\right|^{2} d t d x \quad\left(C_{5}, C_{6}>0\right),
$$

and for I_{2}, remarking $M-\tau \leqq M+m-\boldsymbol{\tau}^{\prime}-1$ we get

$$
\begin{equation*}
I_{2} \leqq C_{7} h^{2} \sum_{i^{\prime}+\left|\mu^{\prime}\right|=\tau^{\prime} \leqq \boldsymbol{M}+m-s} h^{-2\left(M+m-\tau^{\prime}\right)} \int_{\Omega_{h, n}}\left|\frac{\partial \tau^{\prime}}{\partial t^{\prime} d x^{\mu^{\prime}}} v\right|^{2} d t d x \tag{3.9}
\end{equation*}
$$

Hence, from (3. 7)-(3.9) and $\left|\left(L^{*}-L^{(2) *} L^{(1) *}\right) v\right|^{2} \leqq C_{8_{i+|\mu|}} \sum_{\leqq m+m-s}\left|\frac{\partial^{i+\left|\mu_{1}\right|}}{\partial t^{i} \partial x^{\mu}} v\right|^{2}$ we get for sufficiently small $h(>0)$

$$
\begin{aligned}
\int_{\Omega_{h, n}}\left|L^{*} v\right|^{2} d t d x & \geqq C_{9} \sum_{i+|\mu|=\tau \leqq M+m-s} h^{-2(M+m-\tau)} \int_{\Omega_{h, n}}\left|\frac{\partial \tau}{\partial t^{i} \partial x^{\mu}} v\right|^{2} d t d x \\
& \geqq C_{9} h^{-2(M+m)} \int_{\mathbf{\Omega}_{h, n}}|v|^{2} d t d x \quad\left(C_{9}>0, v \in C_{0}^{\infty}\left(\Omega_{h, n}\right)\right)
\end{aligned}
$$

This shows $L^{*^{-1}}$ is bounded, and by Lemma 1.7 of L. Hörmander [5]
proves the existence theorem of maximal solutions for $L u=f$ in $\Omega_{h, n}$ (h, n; fixed). Q.E.D.
§4. Appendix. Let $H=\sum_{r=0}^{\infty} a_{r} h_{r}$ be a singular integral operator in the sense of M. Yamaguti such that for every $\mu(0 \leqq|\mu| \leqq k)$

$$
\begin{align*}
& \left|\frac{\partial^{\mid \mu_{1}}}{\partial x^{\mu}} a_{0}(x)\right| \leqq A_{k, l},\left|\frac{\partial^{\mid \mu_{\mid}}}{\partial x^{\mu}} a_{r}(x)\right| \leqq A_{k, l} r^{-l} \quad(r=1,2, \cdots) ; \\
& \widetilde{h}_{0}(\xi)=1,\left|\frac{\partial^{\mu_{\mid} \mid}}{\partial \xi^{\mu}} \check{h}_{r}(\xi)\right| \leqq B_{k} r_{k}^{\prime}|\xi|^{-\mid \mu_{\mid}} \quad(r=1,2, \cdots) \tag{4.1}
\end{align*}
$$

whose meaning is stated in Definition 0 of $\S 1$.
We consider a convolution operator α defined by $\widetilde{\alpha u}=\tilde{\alpha}(\xi) \tilde{u}(\xi)\left(u \in L^{2}\right)$ where $\tilde{\alpha}(\xi)$ is an infinitely differentiable function such that

$$
\begin{equation*}
\widetilde{\alpha}(\xi)=0 \quad \text { on } \quad\{\xi ;|\xi| \leqq 1\}, \tag{4.2}
\end{equation*}
$$

and for every k there exists a constant B_{k}^{\prime} such that

$$
\begin{equation*}
\left|\frac{\partial^{|\mu|}}{\partial \xi^{\mu}} \widetilde{\alpha}(\xi)\right| \leqq B_{k}^{\prime}|\xi|^{-\left|\mu_{\mid}\right|} \quad(0 \leqq|\mu| \leqq k) . \tag{4.3}
\end{equation*}
$$

Tnen, setting $\Xi_{\delta}=\{x ;|x|<\delta\}(\delta>0)$ we have the next
Lemma 6. Let H be a singular integral operator in the sense of M. Yamaguti and α is a convolution operator which satisfies (4.2) and (4.3).

Suppose $\sigma(H)=\sum_{r=0}^{\infty} a_{r}(x) \tilde{h}_{r}(\xi)=0$ for $x \in \Xi_{2 \delta}$ and $\xi \in$ car. $\tilde{\alpha}(\xi)$. Then, for every non-negative integer p there exists a constant C depending only on H, α, p, ν and δ such that

$$
\begin{equation*}
\left\|H \Lambda^{p} \alpha u\right\|_{L^{2}} \leqq C\|u\|_{L^{2}} \quad \text { for } u \in C_{0}^{p}\left(\Xi_{\delta}\right) \tag{4.4}
\end{equation*}
$$

Proof. Take a function $\mathcal{P}(x) \in C_{0}^{\infty}\left(\Xi_{2 \delta}\right)$ such that $\rho(x)=1$ for $x \in \Xi_{\delta}$. Then, for $u \in C_{0}^{\infty}\left(\Xi_{\delta}\right)$ we have

$$
\begin{aligned}
& H \Lambda^{p} \alpha u=\sum_{r=0}^{\infty} a_{r}\left(\left(h_{r} \Lambda^{p} \alpha\right) \mathcal{P}-\mathcal{P}\left(h_{r} \Lambda^{p} \alpha\right)\right) u+\sum_{r=0}^{\infty} a_{r} \varphi\left(h_{r} \Lambda^{p} \alpha\right) u \\
& =\sum_{r=0}^{\infty} a_{r}(x) \int\left(h_{r} \Lambda^{p} \alpha\right)(x-y)(\mathcal{P}(y)-\varphi(x)) u(y) d y+\mathcal{P} H \alpha^{\Lambda^{p} u} \\
& \text { (in the distribution's sense) } \\
& =\sum_{r=0}^{\infty} a_{r}(x)\left\{\sum_{1 \leqq\left.\right|^{|\mu|} \leqq k-1}(-1)^{|\mu|} \frac{\partial^{|\mu|}}{\partial x^{\mu}} \varphi(x) \int \frac{(x-y)^{\mu}}{\mu!}\left(h_{r} \alpha^{p} \Lambda^{p}\right)(x-y) u(y) d y\right. \\
& \left.+\sum_{|\mu|=k} \int(x-y)^{\mu}\left(h_{r} \Lambda^{p} \alpha\right)(x-y) \varphi_{\mu}(x, y) u(y) d y\right\}+甲 H \alpha \Lambda^{p} u
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{0 \leqq} C_{\mu} \int \mathrm{e}^{i x \cdot \xi \cdot \xi} \frac{\partial^{|\mu|}}{\partial \xi^{\mu}}\left(\frac{\partial^{\mid \mu_{\mid}}}{\partial x^{\mu}} \varphi(x) \sigma(H) \tilde{\alpha}(\xi)|\xi|^{p}\right) \tilde{u}(\xi) d \xi \\
& +\sum_{r=0}^{\infty} a_{r}(x) \sum_{|\mu|=k} \int(x-y)^{\mu}\left(h_{r} \alpha \Lambda^{p}\right)(x-y) \mathcal{P}_{\mu}(x, y) u(y) d y .
\end{aligned}
$$

From the assumption of $\sigma(H)$ and $\mathscr{P} \in C_{0}^{\infty}\left(\Xi_{2 \delta}\right)$ we have

$$
\frac{\partial^{\mid \mu_{\mid}}}{\partial x^{\mu}} \mathcal{P}(x) \sigma(H) \tilde{\alpha}(\xi)=0
$$

hence the first term vanishes, and by an well known theorem for the convolution operator, i.e. $\|v * u\|_{L^{p}} \leqq\|v\|_{L^{1}} \cdot\|u\|_{L^{p}}$ for $v \in L^{1}$ and $u \in L^{p}(p \geqq 1)$, we have
(4. 5) $\left\|H \Lambda^{p} \alpha u\right\|_{L^{2}} \leqq \sum_{r=0}^{\infty} \operatorname{Max}_{x}\left|a_{r}(x)\right| \sum_{\| u \mid=k} \operatorname{Max}_{x, y}\left|\mathcal{P}_{\mu}(x, y)\right|\left\|x^{\mu}\left(h_{r} \alpha^{p}\right)(x)\right\|_{L^{1}} \cdot\|u\|_{L^{2}}$.

Now we consider $x^{\mu}\left(h_{r} \alpha \Lambda^{p}\right)(x) \quad(|\mu|=k)$.
Since $\mathfrak{F}\left[x^{\mu}\left(h_{r} \alpha_{\Lambda^{p}}\right)(x)\right](\xi)=i^{k} \frac{\partial^{k}}{\partial \xi^{\mu}}\left(\widetilde{h}_{r}(\xi) \widetilde{\alpha}(\xi)|\xi|^{p}\right)$,
we have by (4.1)-(4.3)

$$
\begin{array}{ll}
& \mathfrak{F}\left[x^{\mu}\left(h_{r} \alpha \Lambda^{p}\right)\right](\xi)=0 \quad \text { on } \quad\{\xi ;|\xi| \leqq 1\} \\
\text { and } & \left|\mathfrak{F}\left[x^{\mu}\left(h_{r} \alpha^{p}\right)(x)\right](\xi)\right| \leqq C_{p, k} r_{k}^{\prime \prime} B_{k} B_{k}^{\prime}|\xi|^{p-k} .
\end{array}
$$

We take $k=p+\nu+1$, then for every x

$$
\left|x^{\mu}\left(h_{r} \alpha \Lambda^{p}\right)(x)\right| \leqq \frac{1}{\sqrt{2 \pi^{v}}}\left|\int_{|\xi| \geqq 1} \mathrm{e}^{i x \cdot \xi} \mathfrak{F}\left[x^{\mu}\left(h_{r} \alpha \Lambda^{p}\right)(x)\right](\xi) d \xi\right| \leqq C_{p, k, \nu, \alpha} r_{k}^{l_{k}^{\prime}} B_{k}
$$

and for $x(|x| \geqq 1)$

$$
\begin{aligned}
& \left|x^{\mu}\left(h_{r} \alpha \Lambda^{p}\right)(x)\right|=\left.|x|^{-2([\nu / 2]+1)}| | x\right|^{2([\nu / 2]+1)}\left(h_{r} \alpha \Lambda^{p}\right)(x) \mid \\
& \quad \leqq|x|^{-2([\nu / 2]+1)} \frac{1}{\sqrt{ } 2 \pi^{\nu}} \int_{|\xi| \geqq 1}\left|\Delta_{\xi}^{(i / 2 / 2]+1)} \frac{\partial^{k}}{\partial \xi^{\mu}}\left(\widetilde{h}_{r}(\xi) \tilde{\alpha}(\xi)|\xi|^{p}\right)\right| d \xi \\
& \quad \leqq C_{p, k^{\prime}, \nu, \alpha} l_{k}^{\prime} B_{k^{\prime}}|x|^{-2([\nu / 2]+1)} \quad\left(|\mu|=k, k^{\prime}=k+2\left(\left[\frac{\nu}{2}\right]+1\right)\right),
\end{aligned}
$$

so that we have

$$
\begin{equation*}
\left\|x^{\mu}\left(h_{r} \alpha \Lambda^{p}\right)(x)\right\|_{L^{1}} \leqq C_{p, k^{\prime}, \nu, \alpha} r^{l_{k}^{\prime}} B_{k^{\prime}} . \tag{4.6}
\end{equation*}
$$

In (4.1) we take $l=l_{k^{\prime}}^{\prime}+2$ then by (4.5) and (4.6)

$$
\left\|H \Lambda^{p} \alpha u\right\|_{L^{2}} \leqq C_{p, k^{\prime}, \nu, \alpha} A_{0, l_{k^{\prime}}^{\prime}} B_{k^{\prime}}\left(1+\sum_{r=1}^{\infty} r^{-2}\right)\|u\|_{L^{2}} \leqq C\|u\|_{L^{2}} \text {. Q.E.D. }
$$

Set $\Omega_{r_{0}}=\left\{(t, x) ; t^{2}+|x|^{2}<r_{0}^{2}\right\}$ and $S_{(s)}=S_{(s)}^{(\delta)}=\left\{\xi^{\prime} ;\left|\xi^{\prime}-\xi_{(s)}^{\prime}\right|<\delta\right\}$. Then,
by the compactness of $S=\left\{\xi^{\prime} ;\left|\xi^{\prime}\right|=1\right\}$ there exist positive constants r_{0} and δ such that we have the representation (0.2) in each $S_{(s)}=S_{(s)}^{(8)}$ $(s=1, \cdots, p)$ and in $\Omega_{3 r_{0}}$, and $S \subset \sum_{s=1}^{p} S_{(s)}$.

Now we take $\psi(t, x) \in C_{0}^{\infty}\left(\Omega_{3 r_{0}}\right)$ such that

$$
\begin{equation*}
1 \geqq \psi(t, x) \geqq 0, \psi(t, x)=1 \quad \text { for } \quad(t, x) \in \Omega_{2 r_{0}} \tag{4.7}
\end{equation*}
$$

and for $a_{\mu}^{*}(t, x)=\psi(t, x) a_{i, \mu}(t, x)+(1-\psi(t, x)) a_{i, \mu}(0,0) \quad(i+|\mu|=m)$ consider the associated polynomial $L_{m}^{*}(t, x, \lambda, \xi)=\sum_{i+|\mu|=m} a_{\mu}^{*}(t, x) \xi^{\mu} \lambda^{i}$.

Then, we have

$$
\begin{equation*}
L_{m}\left(t, x, \frac{\partial}{\partial t}, \frac{\partial}{\partial x}\right) u=L_{m}^{*}\left(t, x, \frac{\partial}{\partial t}, \frac{\partial}{\partial x}\right) u \quad \text { for } \quad u \in C_{0}^{m}\left(\Omega_{2 r_{0}}\right), \tag{4.8}
\end{equation*}
$$

and we can represent L_{m}^{*} as the form

$$
\begin{equation*}
L_{m}^{*}=\sum_{j=0}^{m} H_{j}^{*} \Lambda^{j} \frac{\partial^{m-j}}{\partial t^{m-j}} \tag{4.9}
\end{equation*}
$$

where H_{j}^{*} are singular integral operators of type $C_{\beta}^{\infty}(\beta=\infty)$ with $\sigma\left(H_{j}^{*}\right)=i^{j} \sum_{|\mu|=j} a_{\mu}^{*}(t, x) \xi^{\mu} \mid \xi^{-j}$ in the sense of [2].

According to $S_{(s)}(s=1, \cdots, p)$ we take the following real valued functions $\alpha_{s}^{\prime}\left(\xi^{\prime}\right)(s=1, \cdots, p)$ and $\beta\left(\xi^{\prime}\right)$ such that

$$
\begin{align*}
& \alpha_{s}^{\prime}\left(\xi^{\prime}\right) \in C_{0}^{\infty}\left(S_{(s)}\right)(s=1, \cdots, p), \sum_{s=1}^{p} \alpha_{(s)}^{\prime 2}\left(\xi^{\prime}\right)=1 ; \\
& \beta(\xi) \in C_{(\xi)}^{\infty},
\end{align*}\left\{\begin{array}{lll}
\beta(\xi)=0 & \text { for } & \xi(|\xi| \leqq 1) \tag{4.10}\\
0<\beta(\xi)<1 & \text { for } & \xi(1<|\xi|<2) \\
\beta(\xi)=1 & \text { for } & \xi(|\xi| \geqq 2)
\end{array} .\right.
$$

Setting

$$
\begin{align*}
\widetilde{\alpha}_{0}(\xi) & =\left(1-\beta(\xi)^{2}\right)^{1 / 2} \\
\widetilde{\alpha}_{s}(\xi) & =\beta(\xi) \alpha_{s}^{\prime}\left(\xi|\xi|^{-1}\right) \quad(s=1, \cdots, p) \tag{4.11}
\end{align*}
$$

we consider the convolution operators α_{s} defined by

$$
\begin{equation*}
\alpha_{s} ; \widetilde{\alpha_{s} u}=\widetilde{\alpha}_{s}(\xi) \tilde{u}(\xi) \quad(s=0, \cdots, p) \quad \text { for } \quad u \in L^{2} \tag{4.12}
\end{equation*}
$$

then $\alpha_{s}(s=1, \cdots, p)$ satisfy the conditions (4.2) and (4.3), and

$$
\begin{equation*}
\|u\|^{2}=\sum_{s=0}^{p}\left\|\alpha_{s} u\right\|^{2} \quad \text { for } \quad u \in L^{2} . \tag{4.13}
\end{equation*}
$$

For each $\alpha_{s}^{\prime}(s=1, \cdots, p)$ we take $\gamma_{s}^{\prime}\left(\xi^{\prime}\right) \in C_{0}^{\infty}\left(S_{(s)}\right)$ such that $\gamma_{s}^{\prime}\left(\xi^{\prime}\right)=1$ on
car. $\alpha_{s}^{\prime}\left(\xi^{\prime}\right)$, and set $\gamma_{s}(\xi)=\gamma_{s}^{\prime}\left(\xi|\xi|^{-1}\right)$. Now we write $L_{m}(t, x, \lambda, \xi)$ simply $L_{m}=\prod_{j=1}^{m}\left(\lambda-\lambda_{j}(t, x, \xi)\right)$. We define

$$
\begin{array}{r}
\lambda_{j}^{*}(t, x, \xi)=\psi(t, x) \lambda_{j}(t, x, \xi)+(1-\psi(t, x)) \lambda_{j}^{*}(0,0, \xi), \\
\lambda_{j, s}^{*}(t, x, \xi)=\gamma_{s}(\xi) \lambda_{j}^{*}(t, x, \xi)+\left(1-\gamma_{s}(\xi)\right) \lambda_{j}^{*}\left(t, x, \xi_{(s)}^{\prime}|\xi|\right) \\
(s=1, \cdots, p),
\end{array}
$$

then $\lambda_{j, s}^{*} \in C_{(t, x, \xi)}^{\infty}$ for $\xi \neq 0$ and are homogeneous of order 1 with respect to ξ.

Set $L_{s}^{*}(t, x, \lambda, \xi)=\prod_{j=1}^{m}\left(\lambda-\lambda_{j, s}^{*}\right)=\sum_{j=0}^{m} h_{j, s}^{*}(t, x, \xi)|\xi|^{j} \lambda^{m-j}$ and define the associated operator $L_{m, s}^{*}$ by

$$
\begin{equation*}
L_{m, s}^{*}=\sum_{j=0}^{m} H_{j, s}^{*} \Lambda^{j} \frac{\partial^{m-j}}{\partial t^{m-j}} \quad(s=1, \cdots, p) \tag{4.14}
\end{equation*}
$$

where $H_{j, s}^{*}$ are singular integral operators with $\sigma\left(H_{j, s}^{*}\right)=i^{j} h_{j, s}^{*}$ which are of type $C_{\beta}^{\infty}(\beta=\infty)$ in the sense of A. P. Calderón and A. Zygmund [2].

Then, by the definition it follows that

$$
\begin{align*}
& H_{0, s}^{*}=H_{0}^{*}=1, \\
& \sigma\left(H_{j, s}^{*}\right)=\sigma\left(H_{j}^{*}\right) \quad \text { for } \quad(t, x) \in \Omega_{2 r_{0}}, \xi \in \operatorname{car} . \widetilde{\alpha}_{s}(\xi) \quad(j=1, \cdots, p) . \tag{4.15}
\end{align*}
$$

Taking the number p sufficiently large we may assume $L_{s}^{*}(t, x, \lambda, \xi)$ have the form (0.2) on the whole unit sphere and for every (t, x), and the condition (0.3) of M. Matsumura is satisfied for $(t, x) \in \Omega_{2 r_{0}}$ and $\xi \in \operatorname{car} . \widetilde{\alpha}_{s}(\xi)$.

Theorem 4. Let differential operators in (0.1) and (0.4) satisfy the condition stated in §0. Introduction respectively. Then, the inequalities (2.4) of Theorem 1 and (2.9) of Theorem 1^{\prime} hold respectively.

Proof. We shall prove the theorem only for the operator in (0.1), the proof for the operator in (0.4) is played quite similarly.

Let a function $u=u(t, x)$ be of class $\mathfrak{F}_{h, K}^{(m)}\left(h^{2}+K^{2}<r_{0}^{2}\right)$. We consider $\alpha_{s} u(s=1, \cdots, p)$ defined by (4.12) and for each $\alpha_{s} u$ we operate $L_{m, s}^{*}$ defined by (4.14).

Considering the process of the construction of $L_{m, s}^{*}$ we can write the associated polynomials $L_{m, s}^{*}(t, x, \lambda, \xi)$ as

$$
L_{m, s}^{*}(t, x, \lambda, \xi)=\prod_{i=1}^{k}\left(\lambda-\lambda_{i, s}^{(1)}(t, x, \xi)\right) \prod_{j=1}^{m-k}\left(\lambda-\lambda_{j, s}^{(2)}(t, x, \xi)\right)
$$

so that $\lambda_{i, s}^{(1)}$ and $\lambda_{j, s}^{(2)}$ may satisfy the conditions of Theorem 1 for every
$(t, x, \xi)(\xi \neq 0)$, but the condition (0.3) or (2.3) of M. Matsumura is satisfied only for $(t, x) \in \Omega_{2 r_{0}}$ and $\xi \in \operatorname{car} . \widetilde{\alpha}_{s}(\xi)$.

Now, we consider the operators $J_{i, s}^{(1)}=\frac{\partial}{\partial t}+\left(P_{i, s}^{(1)}+i Q_{i, s}^{(1)}\right) \Lambda(i=1, \cdots, k)$ and $J_{j, s}^{(2)}=\frac{\partial}{\partial t}+\left(P_{j, s}^{(2)}+i Q_{j, s}^{(2)}\right) \Lambda(j=1, \cdots, m-k)$ where $P_{i, s}^{(1)}+i Q_{i, s}^{(1)}$ and $P_{j, s}^{(2)}$ $+i Q_{j, s}^{(2)}$ are singular integral operators with the symbols $-i \lambda_{i, s}^{(1)}|\xi|^{-1}$ and $-i \lambda_{j, s}^{(2)}|\xi|^{-1}$ respectively.

Then, by Lemma 3 and Lemma 6 we get for $u \in \mathscr{F}_{n, K}^{(1)}$.

$$
\begin{array}{r}
\int_{0}^{h} r^{-2 n}\left\|J_{j, s}^{(1)} \alpha_{s} u\right\|^{2} d t \geqq \frac{1}{8} h^{-2} n \int_{0}^{h} r^{-2 n}\left\{\left\|\alpha_{s} u\right\|^{2}-C_{1} h^{2}\|u\|^{2}\right\} d t \\
\left(s=1, \cdots, p ; i=1, \cdots, k_{s}\right)
\end{array}
$$

and for a positive constant C_{2}

$$
\begin{gathered}
\int_{0}^{h} r^{-2 n}\left\|J_{j, s}^{(2)} \alpha_{s} u\right\|^{2} d t \geqq C_{2}\left\{h^{-2} n \int_{0}^{h} r^{-2 n}\left\|\alpha_{s} u\right\|^{2} d t+\frac{1}{n} \int_{0}^{h} r^{-2 n}\left\{\left\|\frac{\partial}{\partial t} \alpha_{s} u\right\|^{2}+\left\|\Lambda \alpha_{s} u\right\|^{2}\right\} d t\right. \\
\left(s=1, \cdots, p ; j=1, \cdots, m-k_{s}\right) .
\end{gathered}
$$

Using the above inequalities we proceed the same step with the proofs of Lemma 5 and Theorem 1, then we get

$$
\begin{aligned}
& \int_{0}^{h} r^{-2 n}\left\|L_{m, s}^{*} \alpha_{s} u\right\|^{2} d t \geqq C_{3_{i+\mid \mu}} \sum_{i=\tau \leqq m-1} h^{-2(m-\tau)} \\
& \int_{0}^{h} r^{-2 n}\left\{\left\|\frac{\partial \tau}{\partial t^{i} \partial x^{\mu}} \alpha_{s} u\right\|^{2}-C_{4} h^{2}\left\|\frac{\partial \tau}{\partial t^{i} \partial x^{\mu}} u\right\|^{2}\right\} d t \\
& \quad\left(s=1, \cdots, p ; C_{3}, C_{4}>0 ; u \in \mathfrak{F}_{h, K}^{(m)}\right) .
\end{aligned}
$$

We write $\alpha_{s} L_{m} u(s=1, \cdots, p)$ as

$$
\alpha_{s} L_{m} u=\alpha_{s} L_{m}^{*} u=\left(\alpha_{s} L_{m}^{*}-L_{m}^{*} \alpha_{s}\right) u+\left(L_{m}^{*}-L_{m, s}^{*}\right) \alpha_{s} u+L_{m, s}^{*} \alpha_{s} u
$$

then estimating $\left(\alpha_{s} L_{m}^{*} u-L_{m}^{*} \alpha_{s}\right) u$ by (1.2) and $\left(L_{m}^{*}-L_{m, s}^{*}\right) \alpha_{s} u$ by Lemma 6 we get important inequalities

$$
\begin{align*}
& \int_{0}^{h} r^{-2 n}\left\|\alpha_{s} L_{m} u\right\|^{2} d t \geqq C_{5_{i+\mid}} \sum_{\mid=\tau \leqq m-1} h^{-2(m-\tau)} \\
& \int_{0}^{h} r^{-2 n}\left\{\left\|\frac{\partial \tau}{\partial t^{i} \partial x^{\mu}} \alpha_{s} u\right\|^{2}-C_{6} h^{2}\left\|\frac{\partial \tau}{\partial t^{i} \partial x^{\mu}} u\right\|^{2}\right\} d t \tag{4.16}\\
& \quad\left(s=1, \cdots, p ; C_{5}, C_{6}>0 ; u \in \mathfrak{F}_{r, K}^{(m)}\right) .
\end{align*}
$$

On the other hand we have for $\alpha_{0} L_{m}$ and $u \in \mathfrak{F}_{n, K}^{(m)}$

$$
\alpha_{0} L_{m} u=\alpha_{0} L_{m}^{*} u=\alpha_{0} \frac{\partial^{m}}{\partial t^{m}} u+\alpha_{0} \sum_{j=1}^{m} H_{j}^{*} \Lambda^{j} \frac{\partial^{m-j}}{\partial t^{m-j}} u
$$

and

$$
\alpha_{0} \sum_{j=1}^{m} H_{j}^{*} \Lambda^{j} \frac{\partial^{m-j}}{\partial t^{m-j}} u=\sum_{j=1}^{m} \alpha_{0}\left(H_{j}^{*} \Lambda-\Lambda H_{j}^{*}\right) \Lambda^{j-1} \frac{\partial^{m-j}}{\partial t^{m-j}} u+\alpha_{0} \Lambda \sum_{j=1}^{m} \Lambda^{j-1} \frac{\partial^{m-j}}{\partial t^{m-j}} u
$$

Since $\alpha_{0}\left(H_{j}^{*} \Lambda-\Lambda H_{j}^{*}\right)$ and $\alpha_{0} \Lambda$ are bounded operators we have for a constant C_{7}

$$
\left\|\alpha_{0} \sum_{j=1}^{m} H_{j}^{*} \Lambda^{j} \frac{\partial^{m-j}}{\partial t^{m-j}} u\right\|^{2} \leqq C_{7} \sum_{i+|\mu|=m-1}^{m}\left\|\frac{\partial^{m-1}}{\partial t^{i} \partial x^{\mu}} u\right\|^{2}
$$

As a special case of Lemma $3(P=Q=0)$ we get

$$
\begin{aligned}
& \int_{0}^{h} r^{-2 n}\left\|\alpha_{0} \frac{\partial^{m}}{\partial t^{m}} u\right\|^{2} d t=\int_{0}^{h} r^{-2 n}\left\|\frac{\partial}{\partial t}\left(\frac{\partial^{m-1}}{\partial t^{m-1}} \alpha_{0} u\right)\right\|^{2} d t \geqq C_{8} n h^{-2} \\
& \int_{0}^{h} r^{-2 n}\left\|\frac{\partial^{m-1}}{\partial t^{m-1}} \alpha_{0} u\right\|^{2} d t \quad\left(C_{8}>0\right)
\end{aligned}
$$

and so on we get

$$
\begin{align*}
& \int_{0}^{h} r^{-2 n}\left\|\alpha_{0} L_{m} u\right\|^{2} d t \geqq C_{9} \sum_{i=0}^{m-1} h^{-2(m-i)} \int_{0}^{h} r^{-2 n}\left\|\frac{\partial^{i}}{\partial t^{i}} \alpha_{0} u\right\|^{2} d t \tag{4.17}\\
& \quad-C_{10} \sum_{i+|\mu|=m-1} \int_{0}^{h} r^{-2 n}\left\|\frac{\partial^{m-1}}{\partial t^{i} \partial x^{\mu}} u\right\|^{2} d t \quad\left(C_{9}, C_{10}>0\right)
\end{align*}
$$

By (4.13) we get $\left\|L_{m} u\right\|^{2}=\sum_{s=0}^{n}\left\|\alpha_{s} L_{m} u\right\|^{2}$, and since $\left\|\frac{\partial^{i^{+} \mid \mu_{\mid}}}{\partial t^{i} \partial x^{\mu}} \alpha_{0} u\right\|^{2}=\left\|\widetilde{\alpha}_{0}(\xi) \xi^{\mu} \frac{\partial^{i}}{\partial t^{i}} \tilde{u}(t, \xi)\right\|^{2} \leqq C_{\mu}\left\|\frac{\partial^{i}}{\partial t^{i}} u\right\|^{2}$ we get for i and $\mu(i+|\mu|=\tau)$

$$
\begin{gathered}
\left\|\frac{\partial \tau}{\partial t^{i} \partial x^{\mu}} u\right\|^{2}=\sum_{s=0}^{p}\left\|\alpha_{s} \frac{\partial \tau}{\partial t^{i} \partial x^{\mu}} u\right\|^{2} \\
=\sum_{s=0}^{n}\left\|\frac{\partial \tau}{\partial t^{i} \partial x^{\mu}} \alpha_{s} u\right\|^{2} \leqq \sum_{s=1}^{n}\left\|\frac{\partial \tau}{\partial t^{i} \partial x^{\mu}} \alpha_{s} u\right\|^{2}+\left\|\frac{\partial \tau}{\partial t^{\tau}} \alpha_{0} u\right\|^{2}+C_{\tau} \sum_{0 \leqq j<\tau}\left\|\frac{\partial^{j}}{\partial t^{j}} u\right\|^{2} .
\end{gathered}
$$

Hence, combining (4.16) and (4.17), and remarking $\left\|\left(L-L_{m}\right) u\right\|^{2}$ $\leqq C_{12} \sum_{i+|\mu| \leqq m-1}\left\|\frac{\partial^{i^{+}|\mu|}}{\partial t^{i} \partial x^{\mu}} u\right\|^{2}$ we get

$$
\begin{gather*}
\int_{0}^{h} r^{-2 n}\|L u\|^{2} d t \geqq C_{13} \sum_{0 \leqq i+|\mu|=\tau \leqq m-1} h^{-2(m-\tau)} \int_{0}^{h} r^{-2 n}\left(1-C_{14} h^{2}\right)\left\|\frac{\partial \tau}{\partial t^{i} \partial x^{\mu}} u\right\|^{2} d t \tag{4.18}\\
\left(r=t+h ; C_{13}, C_{14}>0 ; u \in \dddot{W}_{h, K}^{(m)}\right)
\end{gather*}
$$

so that we get (2.4) of Theorem 1 for sufficiently small fixed h. Q.E.D.

Osaka University

(Received March 5, 1962)

Bibliography

[1] I. S. Bernstein: On the unique continuation problem of elliptic partial differential equations, J. Math. \& Mech. 10 (1961), 579-606.
[2] A. P. Calderón \& A. Zygmund: Singular integral operators and differential equations, Amer. J. Math. 79 (1957), 901-921.
[3] A. P. Calderón: Uniqueness in the Cauchy problem for partial differential equations, Amer. J. Math. 80 (1958), 16-36.
[4] L. Gårding: Dirichlet's problem for linear elliptic partial differential equation, Math. Scand. 1 (1953), 55-72.
[5] L. Hörmander: On the theory of general partial differential operators, Acta Math. 94 (1955), 161-247.
[6] L. Hörmander: On the uniqueness of the Cauchy problem II, Math. Scand. 7 (1959), 177-190.
[7] L. Hörmander: Differential operators of principal type, Math. Ann. 140 (1960), 124-146.
[8] M. Matsumura: Existence des solution locales pour quelques opérateurs différentiels, Proc. Japan Acad. 37 (1961), 383-387.
[9] S. Mizohata: Unicite du prolongement des solutions des equations elliptiques du quatrième ordre, Proc. Japan Acad. 34 (1958), 687-692.
[10] S. Mizohata; Systèmes hyperboliques, J. Math. Soc. Japan 11 (1959), 205233.
[11] S. Mizohata: Une note sur le traitement par les operateurs d'intégrale singulière du problème de Cauchy, J. Math. Soc. Japan 11 (1959), 234-240.
[12] M. H. Protter: Unique continuation for elliptic equations, Trans. Amer. Math. Soc. 95 (1960), 81-91.
[13] M. Yamaguti: Le problème de Cauchy et les opérateurs d'intégrale singulière, Mem. Coll. Sci. Kyoto Univ. Ser. A, 32 (1959), 121-151.

