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ON THE UNIQUENESS OF THE SOLUTION OF THE

CAUCHY PROBLEM AND THE UNIQUE CONTINUATION

THEOREM FOR ELLIPTIC EQUATION

BY

HITOSHI KUMANO-GO

§ 0. Introduction. We shall consider differential operators with complex
valued coefficients in a neighborhood of the origin in the (^ + ̂ -dimen-
sional Euclidean space whose points are denoted by (t, x) = (t, x19 ••• , #v)
or (r> Θ) = (r,θ19 ., 0V) or simply (x) = (xί9 ••• , #v+1).

The object of this note is to prove the following two theorems by
a unified method.

The one is the theorem on the uniqueness of the solution of the
Cauchy problem for the differential equation of the form

(0. 1) Lu ̂ O i A t

(μ=(μί, ,/*„), |/* |=/M ----- h/«v x = (x1, — ,xv), dx1* = dx$ dx ?v) under
r)W

the following conditions : Set Lm = J] af μ(ί, x) - -. We assume that
, +|μ| = »f ' 3ί'3jtΓμ

the associated characteristic polynomial Lm(t, x> \ξ)= Σ af μ(ί,
* + |μ|=M

(? = (?!, - ,fv), fμ = Sf1 - ^) can be written as

(0. 2) Lm(t, x, \ ξ'
1=1 y=ι

(0 ̂  yfe ̂  m)

for ξ' in some neighborhood of any ξ'0 on the unit sphere S={ξ/ \ξf\ =1}
V

=(Σ^<2)1/2) an(i f°r (^ ^) in some neighborhood of the origin where

(ί = l, -,£) and KΓ=-q? + ipT (j=l, - ,m-k) are
distinct respectively and infinitely differentiable with respect to (/, ΛΓ, ξ')
(λc

<

1) and λf } may coincide at some point for some i and /). Furthermore
we assume that \™(t, x, ξ) = \?>(t, x, ξ \ ξ \ -1) \ξ\ (/=!,-,*) satisfy the
condition of M. Matsumura [8], that is
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for some γf = 7, (ί, #, I) £CΓ ί f * f f r (ί=Φ=0), and that none of ^2) (.7 = 1, ••• ,
m — k) vanishes.

The other is the unique continuation theorem for the elliptic di-
fferential equation of the form

(0.4) Lu = 2 r-cw-ιμ|)tfμ(*) — «(*) - 0
'

V + l

(Λ; = (ΛΓI, — ,ΛΓ V +I), ^(Σ*?)172; μ=(μ19 ••• , y^v+i), I/* I =/*ι+ — +/^v+ι) under
1 = 1

an exponential vanishing condition, that is

(0. 5) lim exp {ar'j} — u(x} = 0 (0 ̂  | ̂  | < m)
r +o a^μ

for a fixed / depending only on L and for every a,
Here we make the following assumption for the characteristic poly-

nomial Lm(x, η) = Σ flμfaOV*- After transforming Z,m(#, ^7) dy (2. 14), it
IH=m

can be expressed as

(0. 6) Lm(x, ^ = a*(x) Π (X-r-^^r, β, f )μ (λ-r^λf (r, ,̂ r))
/=! j=l

(0 ̂  * < m)

for ^ in some neighborhood of any £ό on S and for (r, θ) in some
neighborhood of the origin where λ(

4

1) (ί = l, ••• , A) and λy O' = l, ••- ,m — k)
are distinct respectively and infinitely differ en tiable.

Strictly speaking it is sufficient to assume that the smoothness of
λ^ and λf } with respect to (ί, x) in (0. 2) or to (r, θ) in (0. 6) is sufficiently
high depending only on m and v. Furthermore the constant & may depend
on ξ'0 on S, but it is sufficient to treat only the case when the repre-
sentation (0. 2) or (0. 6) holds in the whole of the product set of S and
some neighborhood of the origin with a fixed constant k, which will be
proved in Theorem 4 of §4. Appendix using the idea of S. Mizohata
[11]. In this note for the convinience sake we assume λc

<

1) and λ(/) are
infinitely differentiate in ξ' on S and in (t, x} or (r, θ) in a neighborhood
of the origin.

We can easily see from the proof of Theorem 4 that we need not
impose restriction on the dimension of the space, and also we see that
the condition (0. 3) corresponds to a sufficient condition obtained by L.
Hormander [7] for the existence of the solution of first order differential
equation.
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The results of A. P. Calderόn [3], S. Mizohata [9] and L. Hormander
[6] are contained in ours for the case of k = m, of m = 4, k = 2 and of
-P<1 ) =f=0 (ί = l, ••• ,Λ) in (0.2) respectively if we assume the sufficient
differentiability for the leading coefficients aitfll(t, x) (i+\μ\=m) of L.

The result of the second theorem contains that of M. H. Protter [12],
and partly I. S. Bernstein [1] that corresponds to the case of k = 0 in (0. 6).

As a consequence of the first theorem we can also prove the local
existence theorem for a certain differential equation Lu=f of the form
(3. 6).

The idea of the proofs is based on the methods of S. Mizohata [9]
and M. Yamaguti [13].

We wish to thank Prof. M. Nagumo, Dr. H. Tanabe and my colleague
for valuable discussions.

§ 1. Preliminary lemmas. In this chapter we shall consider singular
integral operators in the sense of M. Yamaguti [13] in the v-dimensional
Euclidean space.

The singular integral operator of A. P. Calderόn and A. Zygmund [2]
is an operator in the sense of M. Yamaguti if it is of type Cβ (β=oo).

DEFINITION 0. We call H=^arhr a singular integral operator with

the symbol <r(H)=^ar(x)hr(£) (h0(ξ) = l) in the sence of M. Yamaguti if

the following conditions are satisfied: αr(x) £C^, Ar(ίτ) ΞCΓξφo) (r = 0,1, •••)>

and for every k and / there exists a constant AkJ such that

r(x)\^Aktlr~l for r^l (\μ\<^k), and for every k there exists

constants Bk and Γk such, that

We define for u G L2 the Fourier transform g by τ$[_u} = u(ξ) =
1 ^

e~ix'ξu(x)dx, and convolution operators hr by hru = hr(ξ)u(ξ).

Then, Hu is defined by

Hu = fiαr(x)(hru)(x) or Hu = — i=-

DEFINITION 1. A function u = u(ty x) 6C™ f Λ ) defined in a neighborhood
of the origin is said to be of class W™^ = ffi™κ if car. u = closure of

{x φ;)ψO} is contained in (ί, x) 0 < / < A < - , \x <K ( \ x \ =
\ £

(Σ^f)1'2 and i«(0, *) = 0 (y=l, - , in).
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DEFINITION 2. A function u = u(r, 0)<GC™ ) Θ ) defined in a neighborhood
of the origin is said to be of class ®r™?ι=®™E ,ι if cas. u is contained in

{(r,ff); 0^r<r0<l, θ <K} ( 1 0 1 = (Σ 0?)1'2) and
i = l

3l + l^l

lim exp {oίr~1} -- u(ry 0) = 0 (Q^i+\μ\^m) for every a.

DEFINITION. 3. A function u = u(x) € C?(S)), S)= {#; |#|<r0<l} is said

to be of class &m\ if lim exp {tfr''}^1 w(*) - 0 (Q<\μ\<m) for every

In this note we shall use the next lemma without proof.

Lemma 1. i) Let P and Q be singular integral operators of type
in the sense of [2] with real valued symbols, then the following operator
norms

| | , ||(PΛ-ΛP*

where A is defined by Λ.u(ξ)= \ξ\u(ξ) and P* means the adjoint operator
of Py are all bounded see [2].

ii) Let H, H1 and H2 be singular integral operators, then we have for
any positive integers p and q the next representations

( ' J

where Hpq and Hq are singular integral operators, and H'p Q and H'q are
bounded operators together with A*H'PιqA.J and AfH'^ ($^i+jί^q) respec-
tively. Hι°H2 shows a singular integral operator with the symbol <r(H^
<r(H2} see [13].

iii) Let H be a singular integral operator such as <r(H) \ ^δ^>0, then
there exists a positive constant C such that

(1.3) ||#Λw||2^ — \\Au\\2 -C\\u\\2; see S. Mizohata [10].
8

REMARK. The sign || || always shows U norm.

Lemma 2. Let P and Q be singular integral operators with real
valued symbols.

Then we have the following representation
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(1.4) - i(PA.Q - ΛQ*P)Λ = (K, - K2)A + K0PA + K' ,

where K^ and K2 are singular integral operators with

(1.5) σ

respectively, and K0 and K' are bounded operators.

Proof. Here we shall prove it roughly, details are easily derived from
M. Yamaguti [13]. See also the proof of Lemma 6 in § 4 of this note.

As a simple case we consider P=ah and Q = bk with σ(p) = a(x)h(ξ)
and σ (Q) = b(x)k(ξ) respectively.

Take ot(ξ)€Cl>φ(a(ξ) = l on |£|<;i), we write P=ahl + ah2(σ(h1) =
a(ξ)%(ξ), <r(hj = (l-<*(ξ))h(ξ)), and so Q = bk, + bk2.

Then, we can write (PAQ-AQ*P)A = a(h2A}b(k2A)-(Ak2)ba(h2A) + a
bounded operator, and a(h2A)b(k2A) — (Ak2)ba(h2A)={a((h2A)b — b(h2A))(k2A) +
abh2k2A

2} - {((Ak2)b - b(Ak2))ah2A 4- b((Ak2)a - a(Ak2))h2A. + abh2k2A
2} . Now, for

sufficiently large / we use the following representation for u 6 C00^

((h2A)b-b(h2A))u(x)

= J ((h2A}(x-y}b(y)-b(x)(h2A)(h2A)(x-y^u(y)dy

(in the distribution's sense)

Σ (-
μ\

then, the operator for the first term is equal to a singular integral
v 3 r) ~

operator with the symbol — ι'Σ - ^(Λ:)-— -(A 2 | l |), and we can see the
y-i dX; dξj

operators for remaining term are equal to a bounded operator K together

with KA.
Using the above representation, if we set K2 a singular integral

operator with o (K2) = Yi-cr(Q)--(σ(P)\ξ\\ then, we can obtain

2 where K^ is a bounded operator.
Similarly, if we set Kλ a singular integral operator with σ (/Γ1) =

σ (P)--(σ (Q)|||), we obtain -}-ib((Ak2}a-a(Ak2))h2A = K1A^K{ with

a bounded operator K{. By (1.1), (Ak2)b — b(Ak2) = AQ* — QA is bounded.
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Consequently, we get (1.4) for P=ah and Q = bk. For general case,
we write o (P} = ̂ aμ(x)h^(ξ) and <r(Q) = 2 bμ/(x)k^(ξ) and we can prove

M μ/

(1. 4) dy the same manner as the above simple case. Q.E.D.
Now we shall prove the next fundamental lemmas 3 and 3'.

Lemma 3. Let P(t) and Q(t) be singular integral operators with real
valued symbols defined in (x)-space with t as a parameter and satisfy the
condition of M. Matsumura [8], that is

(1 6) L

in a neighborhood of the origin (t, x) = (Q, 0) for some γ = γ(ί, x, S) ΞQ; x&
(f ΦO).

o
Then, if we set J= — + (P+iQ)A, there exists a positive constant h0

depending only on P and Q such that for 0<^h^h0> r = t+h and sufficiently
large n

(1.7)
8 r~

2n\\P^u\\2dt
on

for all w e g ^ .

Especially, if |σ~(P)| ^δ^>0, then we have for a positive constant C'

9
Cr

\\u\\2dt+ — dt

REMARK: If <r(P)=0 or |σ-(P)|^δ>0, (1.6) is satisfied.

Proof. Set u = rnvy then r~nju = (^ + iQAv ), so that

(1.9) (kr-*'\\Ju\\1dt=[l

Jo Jc dt
+ IQA.V

/ Γ
Jo

, QA.v)}dt+in f*r-1{(QAι;, »)-(»,
Jo

J Λ
r~2\\v\\2dt and applying Schwarz's inequality

u o
we have
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(1. 10) 72+/4 ̂  f* {\\PAv\\*-2nr-1\\PA.υ\\ \\v\\ +n(n + l)r-*\\v\\'}dt
Jo

6 Jo 4/zJo

By (1. 1) we have for a positive constant Cx

(1. 11) 76 = in (V^QΛ-ΛQ*)^, v)dt^-C,hn Γ \~2\\v\\2dt .
Jo Jo

For 73, we use the method of S. Mizohata [9], and consider it
together with 75, then integrating by parts and using (1.1) we get for
a constant C2(>0)

J h Ph / fj^ \
(v, P'λv) dt+\ (PΛ - ΛP*X ̂  + iQAv) dt

o Jo \ dt '

-(\v, i(AP*-
Jo

^MI2^, and /5 = -

Consequently we get

dt

and by Lemma 2, we have

-*(PΛQ-ΛQ

where ^ and /f2 are singular integral operators with

and /Γ0 and Kf are bounded operators, on the other hand P' is a singular
o

integral operator with <τ(P') = — σ (P). Hence, by the condition (1.6) we
*

get σ(P'-\-(Kl — K^) = rγσ(P)9 then using (1.2) and Schwarz's inequality,
we have for a constant

(1.12) 71 + /3 + /5^-— (h \\PKv\\2 dt-C,h2n(hr-2\\v\\2dt.
8nJo Jo

From (1. 9) (1. 12), we have

(1.13) ' l l / w l i y f ^ — w-C^'n
J o \ 3 / J o 8/^Jo
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Remarking v = r nu, we get (1.7) for a sufficiently small h because

of r~2^-ί/r2 for Q^Lt^h.
4

In order to prove (1. 8) we use (1. 3) by \<r(P) \ ^δ^>0, and remarking

Λw| | 2 (C4>0), we have (1.8). Q.E.D.du

Lemma 3'. Let P(r) and Q(r] be singular integral operators defined
in a neighborhood of the origin in (Θ)-space with r as a parameter and
have real valued symbols.

Suppose |σ (P)|^δ>0, then for the operator J=— + r~1(P+iQ)Δ,
dr

there exist positive constants /0 and C depending only on P and Q such
that for every I (2g/0) and sufficiently larg a

(1. 14) exp {2ar~1} \\]u\\2dr

Oί Jo

exp {2ar~l}\\u\\2dr

+ r-2\\λu\\2}dr
or

Proof. Set w = e x p { — oίr

~1v). Hence,

exp

(dvz;, then, exp {ar~1} Ju= ( —+ ir~lQKv } +
Wr

(1. 15) Γ°
Jo

- Γ°
Jo

dr

*PAv, —}}
Jr/ J

dr

We shall estimate each term parallel to the proof of Lemma 3.

Integrating by part, we have /£ = <*/(/ -I- 1)1 * r~l~2\\v\\2dr, hence, using
Jo

Schwarz's inequality

2 {\\PAv\\2 - \\v\\ + al\ar~
l \\v\\2} dr
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By the assumption of the lemma we can apply (1. 3) to the above
inequality and we get for a positive constant Cί and sufficiently large a

(1.16) I!2 + I^^al2{r\-*-2\\v\\2dr + ̂ (r\'-2\\M\2dr.
3 Jo a J o

Integrating by parts and using (1. 1) we get

(1.17) /'3 ̂  — ̂ Γ0^-2||Λ^||Vr-C2^ΓV^-2|MI2^-/ί (C2>0)
4^ Jo Jo

and

(1.18) 7£ + /'6^ — ̂ \r\l-2\\M)\\2dr-Czal\r()r-^\\v\\2dr (C3>0).
4<x Jo Jo

From (1. 15) -(1. 18), there exists a positive constant /0 such that

(1.19) α
4 Jo Jo2ot J o

for every / (3^/0) and sufficiently large ot.
duRemarking v = exp {ar~l}u and
dr

(C4>0) we

obtain (1.14) for /8=0, and replacing w by Λ we get (1.14) for suf-
ficiently large a. Q.E.D.

Lemma 4. Let .fff (f)(ί = l, •••, & /br k^2) be singular integral operators
defined in (x)-space with t as a parameter such that |σ(//z — #y) |Ξ>

We set Ji

product operators for the permutations from Jly /2,
/or positive constants C and C7,

(1-20)

Proof. For the case k = 2, J1-J2 = (H1-H2}A. From the assumption
^8^>Oy if we apply (1.3) of Lemma 1, we get

^ (C!

and <2(\\J1u\\2jr\\Hi-ku\\2), hence we get (1.20) for k = 2.'du
dt

For the general case #2^3, using (1.3) we have for 2^iv^k and
'-in for
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(1.21) IKΛ-/,,)/,,

^ S2

/,Vl«H2-C2 Σ (C2>0)

and because of — = L — H
dt

(1. 22)
a

<2(n/1.y,,

On the other hand, using (1.2) we have for constant C3(>0),

(1.23) A=\\Jit

Όu
J'2 •''•-'If

I 2+

2

3 T T
^/. 2 /<»-!«

2

+ Σ
O^t + j^k 2

^Λ%a/*

Since //2 /^_1 are the permutation from /2, ••• ,/Λ, we can apply the
assumption of the induction to A and get for positive constant C4 and C5

(1. 24)

Combining (1. 21)-(1. 24) we can prove (1. 20) for the general case. Q.E.D.

Lemma 4X. Let H(r] (i = l, ••• , & /or ^^2) 6^ singular integral operators
defined in (θ}-space with r as a parameter and satisfy the assumption of
Lemma 4.

We set Ji = ξ- + r-ΉiΔ (ί = l, ,*) βwrf J^Ji2 ..... Jik_, (iv9r

product operators for the permutations from J19 /2, ••• ,
/or positive constants C and C'

(1.25) Σ I I Λ Λ

>c Σ 3' -C' Σ r-

but we must remark the fact that

Proof. We can prove it by the method parallel to that of Lemma 4,

—r^HAu-r^HJ^—u = (—(r-l

-dr 3r \3r
and (Ar-ΉA-r-ΉA2)u = r-l(AH-HA)Au, then using (1.2) we get (1.25).
Q.E.D,
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Lemma 5. Let Hi(t) = Pi(t)JriQi(t) (i = \, ••• , k) be singular integral opera-
tors defined in (x)- space with t as a parameter, and assume each of Pi
and Qi (/ = !,-•• , k) satisfies the condition (1.6) of M. Matsumura [8].

o
Set Jf= — -\-HgA. (i = l, ••• , &), then we have for the operator A = J^

dt

"* Jk> and a positive constant C

(1. 26) [ V2| \Au\\2dt ^C Σ (h~2n)k-r (V 2W

Jo o<, +/=τ<j(>-ι Jo dt*
dt

where r^tΛ-h and h is a sufficiently small constant depending only on Pj
and Qi.

Especially, if |σ(Pf.) |2^δ>0, /few ^^ have for a positive constant C',

(1. 27)
dt*

dt

Proof, (a) The proof of (1.26). For the case £ = 1, the proof is trivial
from (1. 7) of Lemma 3.

For the general case £2^2, we use for example the equality JλJ2— ]2J\

- (H^H.-H^K- H2(H^ - AH,)} A. Then, applying
(1. 2) to the above equality we can write with a singular integral operator
H' and a operator H" which for every q has a singular integral operator
Hq such as A.ί(H"~H9)A} (O^i+j^q) bounded,

(1.28) Λ /2

If we use (1.28) for any /,/y — /y//, we get for a constant C^

(1.29) IK/, Jk-ffi /,>|| ^Q

(ίv φ ίμ for v

hence for constants C2 and C3(>0), we get

(1.30) V3. _.2_ι
dt*

-Λ^

Now, we apply (1. 7) to the operators Jgί Jift and use (1. 30), then we
get for constants C4 and C5
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(1.31) \"r-2n\\Au\\2dί
Jo

Jίku\\2dt-Cs (
- l J θ

rfί.

a

i2, ,ikJθ

By the* assumption of the induction,

(1.32) SA-

Then, if we apply Lemma 4 to the first term of the right hand side of
(1. 31), and use (1. 32) for sufficiently small £, we get (1. 26) for sufficiently
large n.

(b) The proof of (1. 27). By the assumption we can apply (1. 8) of

Lemma 3 to Jfl Jik (ίvΦίμ for *>φμ), and using (1.30) we obtain
for constants C6 and C7

/**« HΛ/ ί2

a/
rfί.

In the first term of the right hand side in the above inequality we

( r)
- 7i2 Jik U

Jik—Ji2 ..... JikΔ}u by (1.2) and apply Lemma 4, and we apply (1.26) to
the second term, then we have for constants C8 and C9OO)

(hr-2"\\Au\\2dt^C8±- Σ (V
J θ n i + j=k J θ

-Aju ,,i dt*
dt

+c Σ (A'
o^ί+y=τ^jfe-ι

Then, for sufficiently large n we get (1. 27). Q.E.D.

Lemma 5'. Let Hi(r) = Pi(r) + iQi(r) (i=l, ••• , K) be singular integral opera-
tors defined in (ff)-space with r as a parameter, and assume |σ(P, ) |̂

Set Ji = — operator

Jk and a positive constant C
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(1. 33) Pr* exp {2ar~'} \\Au\\2dr
Jo

^ Ca yj /«*-

193

/0r another positive constant C'

(1. 34) ΓV* exp {2αr-'} ||Λ*|| 2rfr
Jo

^C'-ί Σ /2C*-τ)ΓV2fi+<-2(*-< 3exp{2αr-<}
# 0^ί+/=τ<C£ Jo

Proof. The proofs are played by the same process with that of Lemma 5.
Corresponding to (1. 30) we have

, Σ IIΛ Jiku\\2-C2 Σ
"

and

r->\\jtί.... ./^

where Cly C2, C3 and C4 are positive constants. Remarking the above
inequality, if we apply (1.14) of Lemma 3' according to the proofs of
(1. 26) and (1. 27), we get for positive constants C5 and C6

(1. 35) (Vβexp {2ar-'}\\Au\\2dr
Jo

ί
y

and

(1. 36)

'0 exp {2ftr~'}

exp

^cΛ Σ
f# o<gt +/=

respectively.
Hence, if we note

3'"

^r-' for τ<)&^l and r-'^-'-'^r1 for τ^
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because of 0<r^r0<l, and (aiγ^^al2^-^ for r^k-1 and (<x/2)*-τ

^/2c*-« for τ^^ then from (1.35) and (1.36) we can easily obtain

(1.33) and (1.34) respectively. Q.E.D.

§ 2. Main theorems. First we shall prove a theorem which will be
used for the uniqueness of the Cauchy problem.

m

Let Lm(ty x, λ, ξ) = Σ Hj(t, x, ξ)\m~j be a homogeneous differential

polynomial where HAtyxyξ)= ^a^(tyx)^ (H0 = ΐ) are differential poly-
IH=/

nomials with respect to ξ with complex valued infinitely differentiate
caefficients ciμ.(t, x) defined in a neighborhood of the origin.

Now we resolve Lm into the form

(2. 1) Lm(t9 x, λ, ξ) = Π (λ-λ^α *, f))"π (λ-λf X/, *, £)) (0 <£ & <: m) ,
ί=ι y=ι

and we write

(t,'x, ξ) (ί = i, ... , k) ,
λf (/, *, f) = -^2)(/, x, l) + ̂ 2)(/, ̂ , ?) (; = 1, - , m-K) .

Theorem 1. Let L = L(t, x, λ, ξ) = Lm(t, x, λ, ξ) + Σ ^ μ(ί,
0 ί̂+|f*|^«ι-l

^ differential polynomial of order m with bounded measurable coefficients

bitμ(t, x).
Suppose λc

<

1)(ί = l, ••• ,k) and \^(j=l, ••• ym — k) in (2.1) are distinct
for ξ φO respectively and infinitely differentiate, and p^ and q^ (i =
1, ••• y k ) in (2.2) satisfy the condition of M. Matsumura [8], that is

a neighborhood of the origin for some »< = »&, x, ξ) 6C (~> J t t$) (£ΦO),
ί} O' = l, ••• , m—&) in (2.2) do not vanish for IΦO.

positive constants C and h such that

2

dt(2. 4) (Hr~2n\\Lu\\2dt^ C Σ Λ-2Cm"τ5 (
Jo O^I +IH=T^«-I Jo

(r=t+h, «6§n

/or sufficiently large n.

Proof. By Theorem 4 we may consider that (2.1) and (2. 3) hold for every
(/, x). Let Py + iQ(

t

l) (i = l, - , fe) and Pf>+iQ?> (/ = !, - , m-k)be singu-
lar integral operators with ^(P^ + W^-iV,1'!!!-1 and o (P«'
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~* respectively, then they are of type Cβ (β=oo) in the sense

*=*τί(— + (P?} H-ίQf )Λ\ Then,
y=ι\3ί '

using (1.2) of Lemma 1, we have for a positive constant Cιy

(2.5)
3f<

By the assumptions of the theorem, we can apply (1. 26) and (1. 27)
of Lemma 5 to A1 and A2 respectively. Hence, first using (1.26)

(2.6) - Σo^ί+y=τ^*-ι
-* Γ

Jo

3' dt

and using (1. 2) we get for positive constants C2 and C3

(2.7) Σ

A -C3

Now, by (1. 27) for a positive constants C4

(2.8) dt

rfί.

From the second term of the right hand side of (2.7) we get k — τ<J
w-l-V, hence combining (2.6)-(2.8) we have for positive constants
C5 and C6

-C.

Then, if we use (2. 5) and

a''V«
df{'

2

dt

, and note m — 1—τ^0

for τ^m — 1, we can get (2.4) for sufficiently small Λ. Q.E.D.

3»

Corollary 1. Let Lt (/ = !,••• ,s) be differential polynomials of order mί9

and assume each of them satisfies the conditions of Theorem 1.
Then, there exist positive constants Cx and h such that
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(2. 9) Lsu\\2dt ^ C Σ /Γ2CM-τ)Γ
0<i+\μ\=τ<M-s Jo

sufficiently large n.

Proof. If we consider Lλ Lsu as Lx L^^L^), and apply the

assumption of the induction, then by using the inequality for Ms = M—ms

and sufficiently small h

dr

dt'dx"
(C l fC a>0)

we can easily prove (2.9). Q.E.D.
Next we shall prove the theorem concerning the unique continuation

for elliptic differential operator.

Let L=L(x, fly)= Σ ffμOOV* be an elliptic differential polynomial with

complex valued bounded coefficients defined in a neighborhood of the
origin in the (v + l)-dimensional Euclidean space, and assume for con-
stants δx and S2 OO)

(2.10) δι^lΣ*μ(*)VΊ^δ2>0 ( \ η \ -1).

Now we transform the coordinates (#) to polar coordinates (r, 0),

for example

> vΊ-|6Ί2)

(2.11)

Then,

(\θ\ =

(2.12)
a**

a
dx V + l
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Hence, if we define a matrix D by

(2.13)

197

then, the principal part LM = Lm(r, θ, λ, ξ) of the above differential poly-
nomial L as the operator with respect to (r, 0), is obtained in Σ a*

by replacing a^x} by aμ(rφ(θ)) and transforming η by

(2.14)

respectively.
We write

(2.15)

where

= 1 we have

= D

λ J

, ά*(x)= —) and by (2.10) and
r '

r

(2.16)

REMARK 1. Since the elements of the matrix D is analytic, bμ(r, θ) are
infinitely differentiable with respect to (r, θ) if aμ(x) (\μ\=m) are infinitely
differentiate with respect to (x).

2. Since D(0) = unit matrix, for the associated differential polynomial

(2. 17) L*(r, 5, λ, f) = άr, θ, * = Π X-r"1

\(r> θ> £) (ί = l, ••• , f») are distinct if the equation Σ Λμ(x)ιf = Q has

distinct roots as the polynomial with respect to ^v+ι

Theorem I7. Let L(x, r?)= Σ #/*(#) V ^ an elliptic differential polynomial

n defined in a neighborhood of the origin which satisfies (2.10),
leading coefficients are infinitely differentiate and remaining coefficients

bounded measurable.
Suppose for any representation of polar coordinates we can write L*

of (2.17) such as
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(2. 18) Z*(r, θ, λ, ξ ) = Π (λ - , θ, £)) Π (λ - r~ 'λf (r, 0, I))

^Xί = 1, ••- , k) and λ$2)(y = l, ••• , m — &) #r0 distinct respectively \ and
infinitely differentiate for ξ=\-Q.

TA0«, /A0r0 exist positive constants C and 10 depending only on L such
that

(2. 19) r2β exp {2ar~
1} \ Lu \ 2dx

G

C Σ /2C«-FP f

i J | Λ | < r
dx

/ (^/0) ^wrf sufficiently large <x.

Proof. For L* of (2.18), we define Λ = πf
ί=ι \

and

where iQ^ (i = 1, •-, *) and

P™ + iQ™(j=l, ,m — k) are singular integral operators with symbols
- iλ^l f l" 1 and - ίX^l f j- 1 respectively.

Then, the assumptions of the theorem it is easy A1 and A2 satisfy
the conditions of Lemma 5X.

We remark here by estimating commutators using (1. 2)

(2. 20) SC,

and considering L as a operators with respect to (r, θ)

/Q θ"i \ I (/ T st^ T i f c N - f / l 12 .̂ ^ /^
\Δ. £*-) I I V ^ — ̂  J-^mJ^ll —^ ^

for M€CE? o ; e ) and positive constants C1 and C2.
Now, if we apply (1.34) to A19 we get

(2. 22) exp {2Λr-'} \\A,A2u\\2dr

<υ exp 3'

and if we estimate the commutators by (1. 2) we get
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(2. 23)
dr*

-Λ*A2u

-C4 Σ (C3,C4>0).

Noting k — r<Jm — 1 — r' and r'<ίw — 1, and replacing i', / and r' by /,.;'
and T respectively, we can see that the second term of the right hand

side in (2.23) is not larger than C5/-2 Σ /*«-τ>r-*m-,n &

(C5>0). Hence, if we replace the right hand side of (2.22) by that of

(2. 23) and apply (1. 33) to the terms pr2β+/-2C*-'>exp
Jo

then we get

(2.24) pr* exp {2ccr-ί}\\A1A2u\\2dr
Jo

exp

-Cτ—

(C6,C7>0).

then, by (2. 16) we have the following important inequality for positive
constants /„ and C8

By (2. 20), (2. 21) and (2. 24), if we consider L as

L = (L - α*L*) + α*(L* - ̂ .

(2.25) V2βexp {2oίr~l}\\Lu\\2dr

exp

for every / (^/0) and sufficiently large Λ.
Now we use the partition of the unity such that

(2. 26) Θ,

for any u(x)£®%\ Ui = (®iU)(rφ(θ)) belong to ®™t and we can apply the
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inequality (2.25) to each uf. It is easy that such partition of the unity
exists from the assumption of Theorem 1'.

We have for such u{ the following inequality

(2.27) u

(C9>0)

On the other hand by (2.12) and (2.14), if we set r*drdθ=ψ (x)dx, then

-s-<ί'ψ'(#)<J2 for sufficiently small θ. Hence, we have for any v(x)

(2.28) 2\
J|*I<»Ό

I*l<r 0

and for any v

(2.29) r-2(m- |μ

^ we have

3'

Ό^ι+/^|μ|

From (2. 25), (2.28) and (2. 29), we get

(2.30) ( r*-vexp {2αr-<}|Lw,.|2ίfeC11( "S /*"-'

(C10>0).

f r*-
J l«l<rn

(Cu>0).

In the above inequality we replace 2β — v by 2/3 and using (2.27) we get
(2. 19) for sufficiently large /. Q.E.D.

Corollary 1'. L0/ Lz (ί = l, ••• , s) be elliptic differential polynomials of
order mt , and assume each of them satisfies the conditions of Theorem V.

Then, there exist positive constants Cf and Γ such that

(2. 31)
\x\<r0

r 2β exp Lsu \

\χ]<rn

dx

sufficiently large oc.
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Proof. We can easily prove it by the method of the induction. Q.E.D.

§ 3. Uniqueness and unique continuation.

First we shall state the uniqueness of the Cauchy problem. Let
L(y, η)= Σ tfμCjv)^ be a differential polynomial defined in a neighbor -

IW^m

hood of the origin in the (^ + l)-dimensional Euclidean space.
We take Holmgren's transformation to y=(yly ••• ,jv+ι)

(3. 1) t = Λ+ Σ j^!, Xi = yi+ί (i = l, - , *) ,
y=ι

and we consider only the operator L such that after that transformation
the principal polynomial of L is of the form a*Lm (|#* |2>δ^>0), where

(3. 2) Lm = Lm(t, x, \ξ)= Π (λ-λ^α x, ξ)) "ff (λ-λf (ί, *, I)) .
1=1 y=ι

(0 ̂  k < m)

Theorem 2. Let L = L(y, η) = Σ aμ.(y)ιf be a differential polynomial of
IH^W

orrf^r m defined in a neighborhood of the origin of which leading coefficients
are infinitely differentiate and remaining coefficients bounded measurable,
and let u = u(y)^C^ defined in a neighborhood of the origin satisfy the

differential equation L(y, - ]u(y) = 0 and the initial conditions
\ 3y/

(3. 3) - w ( 0 ' Λ' " '^+l) = ° ( j = ^ •" ' m) *

Suppose after the transformation (3.1) ^
(ί = l, •-,*) tf»rf \^=-q^ + ip^ (y=l, ••• ,m-Λ) o/ /Ae associated poly-
nomial Lm in (3. 2) tfr0 distinct respectively and infinitely differentiate,
and p^ and q^ (ί = l, ••• , A) satisfy the condition (2. 3) 0/ M. Matsumura
[8], ^wrf ^2) (/=!,-••, w— A) ί/o wo/ vanish for £ΦO.

TA^^, u(y) = u(t, x) vanishes identically in a neighborhood of the origin.

Proof. From the assumption of Theorem 2 a*~lL as the operator with
respect to (ί, #) satisfies the assumptions of Theorem 1.

Now we take a function φ(t) 6 C"t) such that

(3. 4) φ(t) = 1 on [o, A], 9>(0 - 0 for

then by (3.1) and (3.3) w(t, x)=φ(t)u(t, x) belongs to f&w ).
Applying (2. 4) of Theorem 1 to ^*~1L and w and remarking

we get
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(3.5) -W dt

(r = t+h)

for sufficiently large n and C1 = 8~2C.

By (3.4) Lw = Lu = 0 for / G 0, -̂ - and because of

for O^t^h we get

S A fA/2

r-^ILii ll'Λ^CΛ r-* | |w| | 2Λ.
A/2 J o

I h \~λ 2 h
Hence, noting 0<> ^ (-τr + *) ^^o"^ f°r ~^^r^h ^n(i\ Z / o Z

=-h~l for O^r^ we have

4 o

C Q \ 2« Λ A

Ίr) L

A/3

and letting n->°° we get w vanishes identically in 0<ίί<ί^-.
o

This completes the proof. Q.E.D.

EXAMPLE 1. Lm(t, x> λ, f) =X8+2( Σ ??)2λ4+ ( Σ ξ^~a(t, x}2 Σ f ?, where
i = l ί=l t = l

a(t, x)£C°°(t, x) in a neighborhood of the origin and #(0, 0) = 0 but
#(/, jtr)φO in any neighborhood of the origin. We can write this operator

= π (λ-λ^1') π (λ-λf) =

where λ(

ί

1> = e*/4c2ί-13l/=ϊδ1 (ί = l, - ,4) and λ^e^"-15"^ (ί=l, - ,4)

with ftt = (( Σ ί?)2+«(ί, ΛΓ)( Σ OT/4 and *, = (( Σ ̂ )2-β(ί, «)( Σ !?)V2Γ
« « i

respectively. Then, A1 and ^42 have distinct roots respectively and in-
finitely differentiate, but at the origin λ(

ί

1)=λf) (/ = !, ••• ,4).
Hence, for the operator L = Lm+ Σ δ, μ(f, x)\*ξμ> the uniqueness

- '

of the Cauchy problem holds. We must note that we can not write Lm

as the product of two differential operators see L. Hόrmander \Jo\.

Corollary 2. Let £,,•(£ = 1, ••• ,5) δ# differential polynomials of order
πii and each of them satisfy the conditions of Theorem 2.

Then, if u = u(y) satisfies the differential equation L^ Lsu
31^1 *

= Σ βμ,(y) — r^ (M= Σ Wf) ίw <z neighborhood of the origin, and satisfiesif^jc-* θy* ι=ι
the initial conditions
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u (0, Λ> - ,Λ+1) = 0 (j = l, .- , M) ,

then u(y) vanishes identically in a neighborhood of the origin.
Next we shall prove the unique continuation theorem.

Theorem 2'. Let L = L ( x y η ) = Σ #/*(*) V* be an elliptic differential
\μ.\^m

polynomial of order m which satisfies the conditions of Theorem V.
Suppose u = u(x)£C™X) satisfies the differential equation Lu = 0 in a

neighborhood of the origin, and

limexp {rtr-'} — u(x] = 0 for every a (\μ\^m, r={Σ*?}1/2)
r+O dX^ «•=!

for sufficiently large I for which we can apply Theorem V.
Then, u = u(x) vanishes identically in a neighborhood of the origin.

Proof. We take a function φ(x)^C^^\x^r^ such that φ(x) = \ on

{*>'l*K-7Jr}» then w(x) = (φu)(x) belongs to φ™.

Hence by the same process with the proof of Theorem 2 we can
derive an inequality

exp {2ar~1} \ Lw \ 2dx^C, \ exp {2ar~
1} \u\2dx (

/2^UI<r 0 J\x\^rQ/3

and letting Λ-> °o we have u vanishes identically in I x | x \ ̂ ^ } Q.E.D.

ί
EXAMPLE 2. a) A(x, ή) = Π (η\ + ai(x)ηl) (Λf (jp)]>0 ί = l, ••• , s) where

«,-(^)€C(°i) and af(x)Φaj(x) for /Φ^' in a neighborhood of the origin in
(x) = (Xι, Λ:2)-space. Then, the associated operator ^4* in (2. 17) for A has
distinct roots in any representation of polar coordinates, hence for the
operator L = A2+ Σ bμ(x}ημ' the unique cotinuation theorem holds.

b) L = Δ?

(Δy = η'i+jηl j = 1,2,3 and θ = £(jr l f x2) € C^,) .

By the remark of a), after any orthogonal transformation

1
A - (j = 2, 3) are bounded in a neighborhood of (η19 η2) =2V Δj Θί/i

(±/, ±1), so that for sufficiently small £ the roots of Aj = 0 (j=ί,2) are

distinc and belong to C^ because of AjφO at Aj = 0 respectively.
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Hence, for L Theorem 2' holds, but we can not represent L as the
product of two second order elliptic polynomials.

Corollary 2'. Let Li (/ = !,• •••>$) be elliptic differential polynomials of
order m, which satisfy the conditions of Theorem V.

Suppose u = u(x) satisfies a differential equation L1 ..... Lsu
3|μ| s

= Σ bμ.(χ) - u (M= Σ mi) in a neighborhood of the origin, and1*
r

satisfies limexp^r'7} — u(x} = Q (\μ\<^M) for every a and sufficiently

large I for which we can apply Theorem 1' for each Lz (ί = l, ••• , s).
Then, u = u(x) vanishes identically in a neighborhood of the origin.

EXAMPLE 3. Let Lf (&' = !,•••, s) be elliptic differential polynomials of
order 2 with real valued leading coefficients and sufficiently smooth
remaining ones.

In this case the principal parts of Lt have distinct roots for every
direction respectively.

Then, by the remark 1 in the chapter 2, each pair L2y_ιL2/

(l<^j<^ 4- ) satisfies the conditions of Theorem I/, consequently for

the operator L = L1 ..... L5+ Σ b^(x)rf the unique continuation theorem
.|H^C3/2O

holds see [9] and [12].
Finary we shall state the local existence theorem for the operator

concerning Theorem 1.

Theorem 3. Let Lcυ = Lcl) (/, x9 λ, ξ) be an elliptic differential poly-
nomial of order m and L^ = L^ (t,x,\yξ) (/ = !,•• -,5) be differential
polynomials of order m{ which satisfy the conditions of Theorem 1.

Set Lw = Li2) ..... Z42)+ Σ *ί μ(ί, ^)λί'^ (M- Σ w,) βwrf L = LWLC2)

ί+I^I^JK-5 ' 1=1
ai μ(ί> x^^y and suppose the coefficients are sufficiently smooth.

'

( o o \

ί, Λ:, - , - j^^/ Λ^5, /or β^j /GL2(Ω) (Ω /5
3ί ΘΛΓ /

a sufficiently small neighborhood of the origin) at least one maximal solu-
tion u in the sense of L. Hόrmander [5], that is u G L2[Ω] and

(3. 6) (/, υ) = (u, L*v) for any υ 6 C?(Ω) .

Proof. The conditions of Theorem 1 are determined by the principal
parts of Z42) (/ = !, ••• ,5), so that the formal adjoint polynomials Z42)* of
L(ί2) satisfy the conditions of Theorem 1 respectively. Hence we can
apply Corollary 1 to (Li2) ..... Z42))* = Z42)* ..... Li2)*.
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Remarking the condition wefJi* ' is required so that the boundary
value may vanish together with its derivatives in integrating by parts,
we get for sufficiently small domain ΩA(C[ {(ί, ΛΓ) £2+ \x\2<^h2/4}),

l
 Σ

JJΩΛ

dr
'dtdx

Remarking | (LC2)* - (ZΛ2) L<2))*) Lw*v Σ

if we take domain Ω A > n such as

then

^*L^*υ\2dtdx^ — C, Σ ^2CM-τ)j

2

d&fa;

\2» 1

ι) ̂ jL f
or
 (̂  jt:)6Ω

A n
 (ί = l,2),

2

(3.7)( \U2

J®h,n

dtdx

~^* '-i '=τ'lίίι+τ-l ^ KM T j Q

= /,-/, (C3, C4>0).

ιr,v dtdx

By Galding's inequality [4] and (1. 3) of L. Hδrmander [7] we get

(3.8) /,

(C
5
, C

6
>0),

and for 72, remarking M—T^

(3.9)

— T' — 1 we get

*-τ')f

3/ ώr11

Hence, from (3. 7)-(3.9) and | (L*-LC2^Lcw)z;|2<C{

we get for sufficiently small

|Z*^ rf/ΛcM

//^ ^>f) D^C^fO \\
yWg^x^W, t/ <C O 0 \^^Λ W / / *

This shows L*'1 is bounded, and by Lemma 1,7 of L. Hormander
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proves the existence theorem of maximal solutions for Lu=f in Ωh>n

(hy n fixed). Q.E.D.

§ 4. Appendix. Let H= Σ arhr be a singular integral operator in the
r=o

sense of M. Yamaguti such that for every μ (Q^\μ\^k)

(4.1)
a**

aΰ(x)

= 1, •'i|f |-l"l

'=1,2,-);

-=1,2,...)

whose meaning is stated in Definition 0 of § 1.

We consider a convolution operator a defined by ocu = &(ξ)ΰ(ξ) (weL2)
where &(ξ) is an infinitely differentiable function such that

(4.2) a(D = 0 on {ξ;\ξ\^l},

and for every k there exists a constant β^ such that

(4.3)

Tnen, setting Sδ= {x \\x\<^<>} (δ>0) we have the next

Lemma 6. L0£ H be a singular integral operator in the sense of M.
Yamaguti and a is a convolution operator which satisfies (4. 2) and (4. 3).

Suppose <r(H}= Σ0r(*)Ar(£) = 0 /or #6B2 δ <zm/ iGαzr. #(£). Tfew,
r=0

/or ^f^rjv non-negative integer p there exists a constant C depending only
on Hy ocy p, v and δ such that

(4.4)

Proof. Take a function φ(x) 6 C^(Ξ2δ) such that 9>(Λr) = l for
Then, for u € C;r(Ξδ) we have

= Σ βr(

= Σ «r•

χ -y)(φ(y) - φ(χ)) u

(in the distribution's sense)

{ Σ (-l)"11!̂ ^) ( (
3Λ;μ J

Σ t (x

^
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= Σ

From the assumption of σ(7/) and φ € C;r(B2δ) we have

hence the first term vanishes, and by an well known theorem for the
convolution operator, i.e. llwwIlzA^IMLHMIz,* for v^U andu€Lp (p^\\
we have

*^ Σ Max \αr(x) \ Σ Max \φμ(x, y) \
r=o x \ιι\=k xfy

( \ μ \ = k ) .

(4. 5)

Now we consider

Since 8[*μ(MΛ>)

we have by (4. l)-(4. 3)

8[^(MA*)](f) = 0 on

and 1 8[̂ (MΛ*) W](f) I ̂  CPt kr
l*BkB'k \ ξ \

We take k=p + vjrl, then for every x

|*"(A,ΛΛ*)(*) 1^-7= I ( .
"v ^TZΓ J | ς l ̂  i

and for Λ: ( | Λ Γ

*= J (ί) ̂-

so that we have

(4. 6) I |**(

In (4.1) we take /=/'/+ 2 then by (4.5) and (4.6)

. \\u\\ L*.

Set Ωrβ= {(A*); /'+|*Γ<rS} and

. Q.E.D.

. Then,
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by the compactness of S= {f \ξ'\=l} there exist positive constants r0

and δ such that we have the representation (0.2) in each S^ = S[8

S]
p

(s = l, ••• ,p} and in Ω3r , and SCΣSoo
0 s=ι

Now we take - (̂ί, x) 6 Co (Ω3r0) such that

(4. 7) 1 ̂  t(f , *) ̂  0 , ψ»(ί, *) = 1 for (ί, *)

and for α?(ί, ^)=ψ(ί, Λ)αί§μ(ί, *) + (!-• ψ{f, *)X.μ(0,0) (i+\μ\=m)
consider the associated polynomial LJ(ί, ΛΓ, λ, |)= Σ a$(t, Λτ)

Then, we have

(4. 8) Lmt, ,̂ - - , - _ « = L * / , ^ , - _ « for
\ ot oX ' \

and we can represent L* as the form

m
(4-9) ι* =

where Hf are singular integral operators of type Cg (/3=oo) with
σ(Hf) = y Σ β?(ί, Λ ) f μ | f Γ ' in the sense of [2].

«*!=/

According to Sω (5=!, •••,/>) we take the following real valued
functions a's(ξ') (s=l, ••• ,p) and β(ξ') such that

<(r) e C0~(SCs)) (5=1, - , j>), Σ <}(r ) = 1

for l

for ξ

Setting

as(|)

we consider the convolution operators <xs defined by

(4. 12) as ££ = a,(f)β(D (5=0, ... , p) for « € U ,

then «., (s=l, ••• ,/>) satisfy the conditions (4.2) and (4.3), and

(4.13) I M I 2 = ΣIKw||2 for M € L 2 .
s=0

For each αj (s=l, •••,/>) we take 7ί(§0 € C?(SCΛ) such that γKI') = l on
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car. oί't(ξf), and set 7,(D = 7ί(f I^Γ1). Now we write Lm(t,xy\ξ) simply

Lm= Π (λ -λ,(ί, *, I)). We define
y=ι

))λ KO, 0, f) ,

then \f>s GC(1 * g) for f φ O and are homogeneous of order 1 with respect
to ξ.

Set L*(ί, *, λ, ξ)= fί(\-\*s} = f] A*,(ί, #, I1) I? ^λw-^ and define the
y=ι y=o

associated operator L^,s by

m ow -

(4. 14) I*.f =

where //"£, are singular integral operators with σ (Hf>s) = iJ'hf,s which are
of type Cβ (β=oo) in the sense of A. P. Calderόn and A. Zygmund [2].

Then, by the definition it follows that

(4 15)
σ(Hft.) = σ(fff) for (ί, Λ) GΩ2 r o, f € car.

Taking the number ^ sufficiently large we may assume L f ( t , x, λ, ξ) have
the form (0. 2) on the whole unit sphere and for every (t, x), and the
condition (0.3) of M. Matsumura is satisfied for (/, Λr)6Ω 2 r o and
I1 Gear. as(ξ).

Theorem 4. L^/ differential operators in (0. 1) and (0. 4) satisfy the con-
dition stated in §0. Introduction respectively. Theny the inequalities (2. 4)
0/ Theorem 1 ##</ (2. 9) 0/ Theorem V hold respectively.

Proof. We shall prove the theorem only for the operator in (0. 1), the
proof for the operator in (0. 4) is played quite similarly.

Let a function u = u(t, x) be of class f$j££ (hz + K2<^rl}. We consider
asu (s=l, •••,£) defined by (4.12) and for each oίsu we operate L*>s

defined by (4. 14).
Considering the process of the construction of L*)S we can write the

associated polynomials L$tS(t9 x> λ, ξ) as

L£.,(t, x, λ, ξ) = Π (λ-λft(f, jc, D) Π* (λ-λj?ί(ί, x, D)
, =ι y=ι

so that λft and λ^2^ may satisfy the conditions of Theorem 1 for every
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( t , x , ξ ) (fφO), but the condition (0.3) or (2.3) of M. Matsumura is
satisfied only for (t, x) 6 Ω2ro and ξ 6 car. &s(ζ).

Now, we consider the operators /£ί =
dt

(i = l, ••• ,k)

)Λ (; = l,-,m-£) where Pft + *Q£ and Pf>

iQ^l are singular integral operators with the symbols — i\lll\ξ\~1 and
— iλ^l ξ I'1 respectively.

Then, by Lemma 3 and Lemma 6 we get for u G %£κ

j>^ιι2Λ^
O J o

and for a positive constant C2

dt

= 1, ••• ,ί y = l , ••• ,m-ks).

Using the above inequalities we proceed the same step with the proofs of
Lemma 5 and Theorem 1, then we get

,,sasu\\2dt^C3 ΣS h
rn

SrllaJÎ
(5 = 1, -.,ί; C3,C4>0; «6g^).

We write oίsLmu (5 = 1, ••• ,^) as

then estimating (asL^u — L*pcs}u by (1.2) and (L* — Lί f j r)of5M by Lemma
6 we get important inequalities

(4.16)
ί+|μ|=τ^»»-ι

asu -

(s = l, ,p; Cs, C6>0; «eSΓi).

On the other hand we have for oίQLm and u G %£*
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and

Since α0(.ίf*Λ—AH*) and «0Λ are bounded operators we have for a constant

a™-1

^C7

As a special case of Lemma 3 (P=Q = 0) we get

(h

 2n\:
(h 2n

V

and so on we get

J o «=o

J h

o

(~Ϋ 1/

ar
gw-l^

3tm'1 °

2 Ch

\
J 0

/// (C ^>(T)α^ V^β^w

a / a \
a/ ^3tm~1 /

dt

(C9, C10>0).

By (4.13) we get \\Lmu\\2= Σ \\<*,Lmu\\2, and
.»

Σ
s^O

since

we get for ί and /Λ (/+ | / Λ | =τ)

9τ
α -oίu

a^Όjt:μ

Hence, combining (4.16) and (4.17), and remarking \\(L — L^u\\2

we get

(4.18) ^r~2n\\Lu\\2dt^C13 ^ Σ ^"2(m~

(r=t+h; C1S, C14>0; weδΓi),

so that we get (2, 4) of Theorem 1 for sufficiently small fixed h. Q.E.D,
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