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Let £ be a knot in 3-sphere S* and let M, (k) be the g-fold cyclic
covering space of S° branched along k. By the use of the Alexander
polynomial A(f) the 1-dimensional Betti number of 9, (k) was calculated
by L. Goeritz [2] and the product of the 1-dimensional torsion numbers
has been calculated by R. H. Fox [1].

Now let £ be a link in 3-sphere. Then we can naturally define the
g-fold cyclic covering space of S° branched along £ (see Section 2).
The purpose of this paper is to calculate the product of the 1-dimensional
torsion numbers and the 1-dimensional Betti number of this space. These
will be done by the use of the V-polynomial defined by one of the
authors of this paper [ 3] and the results are similar to the cases of knots
(see Theorems 1, 2, and 3). The proof will be done similarly to [4] in
the case of the product of torsion numbers and to [2] in the case of
the Betti number.

Professor R. H. Fox kindly pointed out to us that the case of the
product of torsion numbers is already proved in the thesis of J. P. May-
berry [5]. As J. P. Mayberry did not use the V-polynomial, his result is
apparently different to that of ours. But these are essentially equivalent.

The calculation of the fundamental group of the complementary
domain of the link represented in Sections 3 and 4 are due to G. Torres
[8]. It is contained in this paper only for convenience of readers.

1. In this section we shall prove a lemma with respect to the
determinant.
Let the #nx#n matrix X be

0 19|
0 ..
T 0.

and the nx#» matrix £ be the unit matrix. By the simple calculation
we have
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m
1
0
X" = | LI for 0<m<n,
-_. 0
T
T 0
X" = = TE
0T
and
X" = TrX™ "k for m >un, (%)

where X°=E, T°=1 and k is the greatest positive integer such that
m—mnk is the non-negative integer.

Let f(x) be the polynomial @,+a.x + -+ +a,x™, where m=kn+1 (k=>0,
0</<m). Substituting the matrix polynomial f(X) by (*), we have

fX)=FX)=AE+AX+-+A4, X",
where A, = ay,+a, T+ +a,,T*

Ar=a+a, T+ +a,,.,T*
AI+1 = al+1+an+l+1T+ "'+d”(k_1)+1+1Tk—l

An-—l = an—1+an+n—1T+ +an(k—l)+n—1Tk—1 .
Then
Ao A1 .................. An_l
n-1

det F(X) =

AT  AT--A, T A,
Therefore we have s

det F(X) = L F(o,; ¥T),
where ; (j=0,1, ---, —1) runs the n-th root of unity. Since it is
easily shown that F(o; ¥ T)=f(»; ¥ T), we have the following

’0 Leeenne 0

Lemma 1. Let X be the nxXn matrix . | and f(x) the
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polynomial a,+ax+--+a,x”. Then det f(X)= jid f(0; ¥ T), where o;
j=0
(7=0,1, -, n—1) runs the n-th roots of unity.

2. Let £ be an oriented link of multiplicity x in the 3-dimensional
sphere S° and let F(S°—2) be the fundamental group of S*—%. If % is an
element of the fundamental group F(S°—), we shall denote the linking
number of % and £ by link (%, ). Now let

F,(S*—8) = {h; he F(5*—8), link (h, €)= 0 (mod 2)} ,

where g is a positive integer. Then F,(S°—8) is a normal subgroup
of F(S*—%). Hence there exists uniquely the g-fold cyclic covering
space M, (8) of S°—8, whose fundamental group is isomorphic to F,(S*—2).
Then, we can define naturally the g-fold cyclic covering space MM, (8) of
S?, branched along 8. M, (¥) is a closed 3-dimensional manifold without
boundary for each g

Now, we shall give a geometrical image of the g-fold cyclic
covering space M, (¥) of S° branched along ¥. It is a natural generali-
zation of the cyclic covering space, branched along a knot, defined by
H. Seifert [6], [71

Let ¥ be a non-singular orientable surface with the boundary € in S°
[6]. Consider that § be two leaves of surfaces §' and ¥ which have the
same boundary £. Now, let S, S3, --- and S? be 3-spheres homeomorphic
to S® and let Bi, &% in S3, Bi, B3 in Si, .- and F}, B2 in S? be homeo-
morphic image of & and & in S°. The closed 3-manifold M, ()=

3uS3vu---uS? which is constructed by identifying %} and JF3, ¥: and
®i, -+, §% and Fi respectively, is just the g-fold cyclic covering space
of S° branched along 2.

In fact, over each point of S° except for 8, there are g points
of M, (R) and over each point of ¥ there is only one point of WY ().
And for each closed curve of I, (%), which does not intersect &, there
corresponds a closed curve of S*® whose linking number with £ is a
multiple of g. Therefore the fundamental group of M, (¥)—2L is isomor-
phic to the given normal subgroup F,(S°—2). Since the cyclic covering
space of S°—&, which has F,(S°—2) as its fundamental group, is deter-
mined uniquely [7], 9 (8)—2% is homeomorphic to N, (R). Hence, W, (L)
is a g-fold cyclic covering space of S° branched along <.

3. Let £ be an oriented link of multiplicity & in S*and L,, L,, ---, of
L, be components of £. The Alexander polynomial A(Z,, ¢,, -+, £,) of & is
defined by R. H. Fox [1]. Let A(#)=A(, ¢, -+, t), where t=¢,=t,=+=4,.
One of the authers of this paper has defined the V-polynomial V(#) as
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follows [3]:
V(@) = A@)/(L—BF  for p>2
and V() = A(P) for w=1.

Let $ be an orientable surface of genus % in S* whose boundary is .
Consider a Seifert projection of £ [8] (Fig. 1). We shall compute the
fundamental group F(S*—2) of S*—8 by the use of this projection.

Contracting the center disk of § to a point P and the bands to lines
(Fig. 2), we have the graph G consisting of {a,}. Let us denote by a;,,
ey a;j; (6=1,2, -+, 2h+p—1) the arcs of the projection of @; such as
these in the usual Wirtinger’s method.

To each arc a;; there correspond two arcs x;; and x7; of the pro-
jection of &, where x;; is the arc which has the same orientation to that
of a;; and lies on the right side of it, and x;; is the arc which has the
opposite orientation to that of a;; and lies on the left side of it (Fig. 3).
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Let us also denote by x;; and xi; (=1, ---, 2h+p—1, j=1, .-+, j;) the
generators of F(S°—%) which correpond to the arcs x;; and x7; respec-
tively.

For each crossing of @, over a; we have two defining relations R;;
and S;; of the following forms:

Rij = (%pq %) 15 (Fpa Xpe) " A7, <j=1, 2, e, ji—1 )
Sii = (Xpa %) %3 (Xpa pe) *#Lfa, \E= 1 20 Zhp—

where &=+1 when a, crosses a; from left to right and
&=—1 when a, crosses a; from right to left.

Besides these relations we have the relations :

V4 - / —1
211 = ¥X2;-1,1%2;,1

, -1
T;, = xzz.lxgz—l,ju_l
T _ ;-1 (=12, -, h)
2l-1 — le—l.jz[_leZ,jzl
— —1
T,y = Xy ju%zaa

and
Q) = %47 (E=2h+1, -, 2h+p—2)
= xpaxis sy (F=2h+1, -, 2h+p—1).

Then the group F(S°—2) has the presentation

i, %50 Rijy Sijy Torsy, Ty Thioy, Thyy Qf, Q1)
where
i =1,2 -, 2h+pu—1
J=1,2 -, j;—1
1=1,2 -, h
t=2h+1, -, 2h+pu—2
'=2h+1, -, 2h+p—1.
Note that @,,..., is already eliminated, for it is the consequence of
the other relations.

Let us introduce generators ¢, s;; and si; (=1, 2, -+, 2h+p—1,
j=1,2, .-+, j;) defined by means of the relation W,,=t¢"'x,;s7}, Wi;=
t'x;,S,;" and W=t"%p1n-1spru_,- Using W;; and Wi, we obtain from
R;;, Sijy Ty, Ty Ty, Thy, @, Qi Wiy, Wiy, and W the relations
Rij = (Sz,m—lsm)g tsii(szc;lsm)_esi—,l)-tlt_l ’
Sii = (S03"800)" 1515 (Spa "Spe) " 1 Jat ™,

=12, -, 2h+p—1, j=1, 2,--+, j;—1)
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T — o —1
T3y = S2-115701
4 / -1
27 = szl lszl—l jz[ -1
(I=1,2, -, k)
? bl

- N /-1
TZI—I = S5, Jor- 1821 Ja

T, = szl,ngsZI-H,l ’

Q, = St 757411, t=2h+1, -, 2h+p—2)
Dt = SLaSir s t'=2h+1, -, 2h+p—1)
W= Sontn-1ioptrpy *

Since generators x;; and x;; appear only in the relations W;;, Wi,
and W, we can eliminate the generators x;; and xi; and the relations
Wi, Wiy and W (=1, 2, -+, 2h+p—1, j=1,2, -, 7).

Now we must remark that the linking numbers of the generators s;;,
s;; with the link € are all equal to zero.

Then we have the following presentation of the group F(S°—2)

/ 7 ald rald A A 17
{S:‘j) si}: t Ru: Sl]) 2l-19 Tzl, T21—1; TZI) Qt; Q;’, W} .

Now we compute the fundamental group F (M, (8)—2%) of M, (L)—L,
where M, (R) is the g-fold cyclic covering space of S°, branched along
R, Let s;;,=1%s;;#7% and s;,=1t"s;;¢7* (¢=0,1, 2, -+, g—1) and T=t¢%.
Then it is easily shown that s;;,, si;, and T represent simple closed
curves in M, (¥)—L and that the generators of F(M,(8)—L) consist of
these S;ju, Sije (¢=1,2, -+, 2h+p—1, j=1,2, -, j;, @=0,1,2, -+, g—1)
and 7.

On the other hand, since the linking numbers of the relation words
R, Sijy Tusy Tuy, Thiy, Th, @y, @i, and W with & are all equal
to zero, R;;,= t‘”R’ A7 Sija=t25;t7% Toyo=t"Ty 7% Ty.=t"Tout™?
Th 1 a=t" Th it -1 ba=tT4t Qt,m:tmétt_w 01 »=1*Qt™* and Ww
=$*Wt are expre331ble by words which consist of at most $;;,, Siju
and 7, and they are the relation of F(IM,(¥)—2L). Therefore we have
the following presentation of F(M,(¥)—=2):

{Sija> Sisar T3 Eingijw Tzl—l,szl,wTél—l,w Néz th wQ a.}
fi =12 -, 2h+p—1
i=12 j4—1
1 =1,2, -,k
t =2h+1, -, 2+ pu—2

=2h+1, -, 2h+p—1
a=0,1,2 - g—1.

From this presentation we can compute the fundamental group
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F(,(8)) of M,(R). Namely, to add & to M, (¥)—L induces the new
relations, so-called the branch relations [1], B,=(x} ;)¢ (k=2h+1, -,
2h+p—1) and T=1. From the relations Wi ;, (k=2k+1, -+, 2h+p—1)
we have B,=(£s} ;) =Sk ip1*Stipz""" """ Stipg-1" Sk ipor

Therefore the presentation of F(IM,(R)) is

{Sijar Stsar T'; Rz‘jaﬂ Sijcw Tor-rar Totas Tél—m, T4
Qt.an Q;’,m, Wan By, T}

! i =1,2 -, 2h+pu—1
L =12, 51
1 =1,2, -,k
Vot =2h+1, -, 28+ p—2
t'=2h+1, -+, 2h+pu—1
k=2h+1, -, 2h+p—1
=012 ., g—1.

4. In this section we shall obtain the Alexander matrix of  from

the presentation of F(S*—2).
Replace the multiplication by the addition and put

jtxs—jt = xt's,

where s is any generator of the form s;; or s;;. Furthermore suppose
that the addition is commutative. Then, for each of the relations of
F(S*—%) we have the following relations :

Ri; = &0—1)(Spa—Spa)+15:;—18; s <z':1, 2, -, 2h+,b_1,>
S = &(1—1) (Spg—Spq) +1SI5— 187,544 j=1 ST

Thio= Stin—Sus

7_‘51 = 341.1‘Sé1—1,j21_1 (=1,2, -, k)

Tu,= S2l—1,j21_1—sél.j21

Tzl = Sat,5y;  S2l411

Q: = Stj,— St (t=2h+1, -, 2h+ p—2)
Q. = Sit,1— St/ iy t'=2h+1, -, 2h+p—1)
w = Sonu-1dopqpmoy

Let us introduce generators a;; defined by means of the relations
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Aij=si;—sty—a;; ((=1,2, -, 2h+p—1, j=1,2, -, j;). Using Aij, we
obtain from R;;, S;; the relations

R, = E(L—1)ap +18;;—18;, 1
St = &l =)@y, +tsiy—ts) 1, -

Since I?,-j and S;; are the consequences of A,;, R’, and S;,, we can
eliminate R;; and S;; from the relations. Furthermore we obtain from
R,, S}, and A;; the relations

vi; = ta;;—ta;;, =0a; ;—Q;, jis -
From 7;; (j=1, 2, ---, j;—1) we obtain
at',l = ai.Z = eee — ai.ji .

Here let us introduce generators a; defined by a@;=a;=--=a;; (=1,
2, *, 2h+p—1). Then we can eliminate the relations 7;; and the
genertors a;; (i=1,2, ---, 2h+p—1, j=1,2, ---, ;). Now, let us rewrite
a;; to a; in the remaining relations. Moreover we can eliminate Siy,
since S, is a consequence of R/, and A;;. And since s}, (=1, 2, -,
2h+p—1, 1<7j<j;) appears only in A;;, we can eliminate A;; and the
generators s}, (1=1, 2, -+, 2h+p—1, 1< j<j;). Furthermore the genera-
tor s;, appears only in R} =&;,(1— t)ay;, +ts;,—ts;, and R, =&,(1—t)ap,,+ ts
—ts;, and from R}, and R}, we obtain R{=(1—£) (E,@p;+ Eip;,) + ESii—Sis.
Therefore we can eliminate R, and R/, and the generator s;,. Similarly
the generator s,, appears only in R}{ and E;szeia(l—t)apierts,-a—ts,-4 and
from R}{ and Rj, we obtain R}’ =(1—1) (E:ap;, + Einp;,+ Eisln;) + 1S:— 1S,
therefore we can eliminate R}; and R}, and the generator s;;. By the
iteration of this process, introducing

R-i = (1—1) (Ena@p;, + Eis@p;y+ -+ + i sy 1) 1S, — 1855,
G=1,2, -, 2+ p—1),

we can .eliminate the relations R}, =1, 2, -, 2,+p—1, j=1,2, .-+, j;—1)
and the generators s;; (¢=1, 2, -+, 2h+ p—1, j=2, ---, j;—1).
ji—1

If we set w;(a)= 37 &;4a5,,, then
k=1
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Ri = (1-toia)+ts;— 18;j; .

Therefore we have the generators s;,, s;j;, @; (=1, 2, ---, 2h+ p—1) and the
relations R;, A;,, A;;; (1=1,2, -, 2h+p—1) Ty_y, Tor, Thiy, Th (=1,
2, h), Q ¢=2h+1, -, 2h+pu—2), Qy (¢'=2h+1, -, 2h+p—1) and W.

Since the generator sj,_,, appears only in the relation T3,-, and
A, .., from T4,_, and A,,_,, we obtain

Uzl—1 = Sa1-1,1— S,y A2t -1 -

Therefore we can eliminate the relation A,,_,,, T4,-, and the generator
St1-1,. Similarly from T,,_, and A, we obtain

Uzl = SZI—l.jgl__l_ SzI,J'ZI +ay

and from Tj,, A,,, and A,,_, j,_, we obtain

V= Sot,1— Aot — Sp1-1,55y T i -y
and form @/, A,,, and A,;,, we obtain
Py = Sy, =Sty -
Therefore we have the generators
a;, Si, Sij; (t=1, -, 2h+p—1)

and the relations

E‘. = (1—t)a);(a)+tsi1—tsi.ji ’

2l-1 = Sar-1,1— S2t,1— Aot -1 »

20 = Szl—l.]'21_1_82’vf21+02’ ’
Vi = Sar1— Aot — Sa1-1,Ggy T Aot 5
_2, = 821,75 7 S2041,1 5
Qt = Stj; — Sti11>
Pt’ = S/ St1jyr

W = Szh—HJ-—l.J'g;H.p,_l .
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i =1,2 - 2h+pu—1

I =1,2 -k

¥ = 2h+1, -, 2h+p—1
t o= 2h+1, -, 2htp—2.

From R, (# =2h+1, ---, 2h+ p—1) and P, we obtain
Ry = (1-t)ou(a),
and from R,,_, (=1, -+, k), V,, and U,,_, we obtain
Ry, = (1—bo,_(a)+tay,
and from R,, (/=1, ---, k), V,, and U,, we obtain
R, = (1—t)o,la)—tay_, .
From these relations and generators we have the following relation

matrix

a; Sir Sij;

M) = R, A(Y) | 0 } 2h+p—1

T, C B 2(2h+ p—1)

2h+p—1 22h+p—1)

The submatrix B of M(#), corresponding to the generators s;,, s;;; ((=1,
2, -, 2h+u—1) and the relations U, _,, Vi, Uy, Tu, Py, @,y W (I=1,
2, o by ¥=2h+1, -+, 2h+pu—1, t=2h+1, -+, 2h+ p—2), is the following:
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Now let us consider about the word w,(@). We can easily show that
the coefficient of a,(¢ == j), which appears in (@), is the number »;; which
is equal to the number of times that a; crosses over a; from left to right
minus the number of times that a; crosses over ¢; from right to left [6],
[8] Therefore, the submatrix A(¢) of M(¢), corresponding to the generators
a; (1=1,2, -, 2h+p—1) and the relations R; (i=1, 2, -+, 2h+pu—1), is
of the form on page 343.

Similarly the submatrix C of M(t), corresponding to the generators
a; (=1, 2, -, 2h+pu—1) and the relations U,,_,, V,;, Uy, Ty, Py, @y, W
(=12, h, t'=2n+1, -, 2h+p—1, t=2h+1, -+, 2h+p—2) is the
following :

@ a, Aop-1 Qop Qopyy *0" Aoppip—1
C = [_J—} -1 O-eevecnes 0 0

Vz T 0 0

Uz 1 Oeecveeens 0 0 |
Tz 0 Qeeovenens 0 0 :
: ' 0

Uzh—l 0 0 ...... _. 1 O

Vzh 0 0 ........ 1 — 1 ‘E

U,, I 1

_2h 0 Qeeveeneer 0 0

ch-l-l

Q2h+1

i 0 0

Q2h+ll-—2

P2h+lb—1

w i

Then, the matrix M(¢) is the Alexander matrix of the oriented link 2
of multiplicity p.

5. In this section we shall obtain the relation matrix of the 1-dim.
homology group of M, (¥). Firstly let »,, », and 7, be relations with the
forms
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7, = vsw,

ot
|

= pist™'w,
¥, = vswis 't 'u,

where s is a generator and #, v, w are words which consist of genera-
tors except s. Making use of the abridged notation (see the first of the
section 4), these can be written in additional forms

7, =T+S+wW
7,=T0+1is+W
7, =0+(1—Ds+w+a.

Now let 7;s=2f7;4"% (8=0, 1, ---, g—1), T=¢* and s,=1st"? (8=0, 1,
--», g—1). Then
7’1,5 = vﬁtﬁst_3w5 = l)ﬂs,;wﬁ
Vo = VP TSE B Owg = w55 wg  (B=0, 1, -+, g—2)

78 = UptPst PwgtPts 't~ B 0y, = vpSa00p85 110
and
Vig-1 = Ug 1S Wy s
Vogor = Vg 1S, T 'w,_,
Vagos = VgorSg- W TS5 T Uy, ,
where v, wg and #, (8=0, --+, g—1) are suitably transformed words from

v, w and u respectively. Therefore, again by the use of the abridged
notation

JjT+s—jT = x+T’s,

we have
7.8 = Ugt+ Sg+W;g
Pop = Dg+Sp,,+Wp B=0,1,2, -, g—2)
Vsp = Ug+Sg— Spy +We+ g

and

g1 = Ug 1+ Sy + Wy
Pog—1 = Ugoy+ TSy+W,_,

Pags = Vg + Sy — TS+ Wy +8,_,.

On the Alexander matrix of € in S® the terms corresponding to the
generator s and the relations 7,, 7,, 7, are the following :
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S
7,1
7
7, | 1—¢

and on the Alexander matrix of £ in 9 (®) the terms corresponding to
the generators s, s,, -, S;—, and the relations 7;,, 7;,, «*-, 7;, .-, ({=1, 2, 3)
are the following :

SO Sl Sz ...... Sg—l
_1 0 1 0 0 ......... O
711 0 1 Oeevvennes 0
71,2 0 Teeeeoenn. 0
%1,g~1 0 0 0 ......... 1
720 0 1 Qeevvennns 0
721 0 0 Toeoerenne 0
7,2 0 0 Q ' Q
M g : . li
?2 g-1 T 0 Oeeeveees ..O
73,0 1 -1 Qeeeveeees 0
75, 0 1 —1eeeeeenns 0
75z 0 o0 1 0

P i
i;‘3 g-1 - T O 0 -------- ‘.1

Therefore the relation matrix of the latter is the matrix which substitute
1 and ¢ by E and X respectively in the relation matrix of the former,
where E is the gx g unit matrix and X is the gx g matrix
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0 1.0
P
Teeeeen. 0

Since the relations of F(S°—L) and F(WM(L)—L) have the above
properties, we have easily the Alexander matrix M'(T) of the F(M,(¥)—L)
as the following :

M(T) = H AT ‘ H g2h+ p—1)
H ” 2g(2h+,u, 1)

2+ p—1) 282h+ p—1) )

where A'(T), B’, C’ are the submatrices substituting E and X for 1 and ¢
of the submatrices A(f), B, C of M(?).

Next we compute the relation matrix of the 1-dim. homology group
H(M,R) of M,(L), changing the multiplication to the addltlon, which
is commutative, in the branch relations B; ({=2hr+1, -+, 2k + p—1).

£-1 ~ ~
Namely, we have B}= ﬂgosé,,-,.,e. From B} and A;j,s=5;j;8—Si.j;.8—ai.p

(8=0,1, .-+, g—1) we obtain
B, = :‘Qj(s;,j,.,s—a,.,ﬁ), G=2h+1, -, 2h+ p—1).

Let the (#—1)x3(2k+px—1) matrix D be of the form on page 343,
and D’ the (u—1)x3g(2h+ x—1) matrix substituting by ¢ of D the 1x g
matrix (1, --+, 1), and let the {3g(22+ ux—1)+ p—1} x {3g(2h+ p—1)} matrix
M'(T) be the following :

o(Ty=| ATy | o

c B’
-

If we put T=1 in the M’(T), then the resulting matrix M’(1) is the
relation matrix of the 1-dim. homology group of M (8).
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6. In this section we shall investigate the 1-dim. torsion numbers
of the g-fold cyclic covering space M, (8) branched along L. In the
previous section we have proved that the relation matrix of the 1-dim.
homology group of M, (8)is (3g(2h+ u—1)+ p—1)x (3g(2h+ x—1)) matrix
M'(1).

By an elementary transformation on a matrix we mean one of the
following transformations :

I) Multiplication +1 to a row (or column)

II) Multiplication of an arbitrary real number to a row (or a column),
followed by the addition of this row (or column) to another
row (or column).

It is easily shown that by elementary transformations on M’(1) the
value of the 3g(2k+ x—1) minor determinant is invariant up to the
factor 1.

Put

Suppose that a matrix N(¢) is obtained from M(#) by a finite number
of elementary transformations, and a matrix N’(T) is obtained from N(#)
substituting 1 and ¢# by E and X. Then we can easily show that N’(1)
can be obtained from M’(1) by a finite number of elementary transforma-
tions.

Now we consider the (3(2k+ p—1)+ u—1) % (3(2h+ w—1)) matrix M(2).

First of all, by additions of suitable multiples of the (24+1)-th row
of M(t) to the other rows of the submatrix A(f) of M(¢), all of the
(2h+1)-th column of A(#) except (1—#)0,, 1.201,, Which may qe described
by (1—#)«, from now on, may be made equal to 0. Next, by additions
of suitable multiples of the (2k+2)-th row of M(¢) to the other row of A(?),

all of the (2h+2)-the column of A(f) except (1—¢) <vzh+2,2,,+2_’3@iw)

vzh+1.2h+1
which may be described by (1—#)«, from now on, may be made equal

to 0. By repeating this process, we can transform our matrix M(?) into
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the matrix whose submatrices B, C and D remain invariant and whose
submatrix A,(#) corresponding to A(¢) satisfies that every elements of the
(2h+j)-th column (j=1, 2, ---, p—1) except for the diagonal one (1—1¢)x;
are all equal to O.

Furthermore, by addition of suitable multiples of the (244 j)-th
column to the non-zero other columns of A,(#) all of the (2k+ j)-th row
except (1—%)«@; may be made equal to 0(j=1, 2, -+, u—1).

Then we obtain the matrix of M,(¢) whose submatrix B and C remain
invariant and whose submatrix A,(¢) corresponding to A,(¢) satisfies that
every elements in the (2k-+j)-th row and in the (24 + j)-th column except
for (1—1?)a; are all equal to 0(j=1, 2, --, x—1) and whose submatrix D,
corresponding to D satisfies that the #-th column (z_>2k) remains invariant.

Therefore M,(¢) is the following matrix:

- 2h
_ ——
Ml(t) = [
2h 1 * 0
| d—a, 0 0
0
0 (1-da,,
C B
J —e 0 0e ‘
p—1 * .
1 0 —e ‘ 0e

Substituting 1, # and e of the M(¢) by E, X and 1x g matrix (1---1),
we have the following matrix M{(T);
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(T) = * 0
a; —a, 0
0 —a,
—Teay w; 0
0
@1 -y 0
‘_al‘--l
—Tap_, Xp-1
1 -1
1] 1
1 -1 0
1] —1
* 0
1 -1
0 1] —1
1
—_— '1
—1- —1 | 0---0 | 1---1 |
P
[ _1 | 00 11
Now consider the gXx g submatrix
A2, —A-
aE-x)=| W% 0
: a; o,
: t—a;
o L TR TRITPIP PR,

for 7=1, 2, ---, p—1. Add the g-th column to the (g—1)-th column and
next add the (g—1)-th column to the (g—2)-th column, ---, and add the
second column to the first column, then the submatrix is transformed to
the following :
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0 —a 0

0 0. °

: : 0 .._ai
A=Ta; @y .

Moreover, by addition of all rows, except g-th row, to the g-th row we
have the following :

0 —a; 0

0 0"

—Q;
A=T)A,;  Oereernrerenne 0

By the above elementary transformations M’(T) is transformed to the
following matrix N’(T):

N(T)=| = 0
0, ~m 0
: ‘:—“1 0
ATy -0 0

0 0 '“.wy._l 0

0

Ty

(1—T)a;p‘71 ...... 0

Lo
1] —1
T -1 0
1] 1
* 0
L
0 1] —1
1-
1
—g, —g+1,-, —1] [ 0]1eeeeee 1]
0 .

[—g —g+1,-, -1 l() ...... O[L-eet 1



Covering Spaces of Links 351

All of the elements of (2khg-+ g)-th row, (2hg+2g)-th row, ---, and (2hg+
(#—1)g)-th row of N’(1), which are obtained by the substitution of T by
1 in N’(T), are equal to zero. Eliminating the (2kg+ g)-th row, the
(2gh+2g)-th row, ---, and the (2hg+(u—1)g)-th row, we obtain a
(8g(2h+ p—1)) % (3g(2h+ p—1)) square matrix M'(1).

Now we can easily show that

det /(1) = g (det M(T)/ T a,(1—T))...
On the other hand the determinant of Alexander matrix M(Z) of link
L is equal to +#2(1—¢)*"'V(¢), where p is a suitably chosen integer, and by
Lemma 1 the determinant of M’(T) is equal to &+ 77(1— T)"‘lg'lil1 V(w; 5/ T),

where o;(j=0,1, ---, g—1) is a g-th root of unity.
And the product a,xa,x - xXa,_, is equal to V(1).
In fact, since the determinant of the matrix

VUshi1.2n+1 z)2h+1.2h+lll'—1

Uohip-1,20+1 ** Vzpip-1,2h4 -1

is equal to V(1)®, it is easily seen by the process of elementary
transformations of the matrix M(#) that the submatrix

(1_t)a1 0
0 (-t

can be transformed from the matrix

A=) Vsnrr2merm e A=D1 2h1m-1

A =0onsp-riznrs " (L= Eshrp 1 omips
Thus we have immediately
det /(1) = +g** T V(wy).
Since the det M’(1) coincides with the product of the 1-dim torsion
numbers of M, (8) we have the following

Theorem 1. Let & be a link of multiplicity u in 3-sphere zmdv let
M,(R) be the g-fold cyclic covering space branched along 8. If the 1-dimen-

sional Betti number of M) is equal to zero, i.e. gfIlV(m].)#O, then the
ji=1

product of the 1-dimensional torsion numbers of WM, (8) is equal to
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&-1
g I V(w;),
j=1

where o, @,, -+, o,_, are the distinct g-th roots of unity except 1.

7. In this section we shall consider the case that the 1-dim. Betti
number of M,(¥) is not zero. In this case we can not yet compute the
product of the 1-dim. torsion numbers of ,(2), but we shall compute
the 1-dim. Betti number of M (%).

Let M(t), M(¢), M'(T), M'(T), N’(#) be the matrices in the previous
sections. M'(T) is transformed to N’(T) by elemetary transformations.
We transform the matrix M’(T) by the same elementary transformations.
Let us denote this matrix by N/(T). Then N'(T) the matrix obtained
from N’(T) by the elimination of 3g(2k+u—1)+j-th row (j=1,2, -,
p—1), i.e. those rows corresponding to the branch relations.

Clearly

rank of M’(1) = rank of N’(1)
and rank of M’'(1) = rank of N'(1).

Since all of the 24g+jg-th row and (2hg+1-+(j—1)g)-th column (j=1,2,
-, p—1) of N'(1) are equal to zero, the rank of N'(1) is smaller than
3g(2h+p—1)—(w—1). But in N’(1), only one element of (2kg+1+(i—1)
g)-th column (j=1,2, -+, u—1) is not zero and this element is in the
(3g2h+p—1)+7)-th row (j=1,2, -, p—1).

Therefore, it is easy to see that

rank of N’(1) = y—1-+rank of N'(1).

Since the 1-dim. Betti number of M, () is equal to the rank of M’(1),
we are only to compute the rank M'(1).

AQ)| 0

(0 B |

By the use of M'(1)=

and rank (B')=2g(2h+ u—1),

we shall compute the rank of A’(1).

By elementary transformations and multiplications of ## to some
rows (or columns), where p is an integer, A(f) is transformed to the
following diagonal form A*(#):

e|(?)
ex(t) 0

0 .
ezhﬂl-—l(t)



Covering Spaces of Links 353

where e,(¢), e)t), ---, and e,,,._,(f) are the elementary divisors of A(?).
Since det A*(¢)=e,()e,(t) -+ eoprn_(B)=A—1)*'V(£)==0®, we have

()0, (=1,2, -, 2h+pu—1).

Let A”*(T) be the g2h+ p—1)x g2h+ p—1) matrix which is obtained
from A*(¢) by the substitution of 1 and # by E and X. Then, it is clear
that A’*(1) is transformed from A’(1) by elementary transformations and

rank of A’(1) = rank of A*(1) = rank of ¢;(X)r,,

i=

2h+®-1
1

where ¢;(X) is a gXx g matrix obtained from e¢;(#) by the substitution of
1l and ¢ by E and X (¢=1,2, -+, 2h+ p—1).
Let ¢;(t)=af’+ai"t+ -+ +aP’t” and m=gk+I[, where k is a non-
negative integer and 0</<'m. Then by (x) of Section 1 we have
e(X) = b§’E+b" X+ - +b0, X571,
where b = af’+a’ T+ - +al?T*
b = a+al, T+ - +as, T*

(€D (%) (%) (1) k-1
bz+1 - al+1+ag+l+1T+ +ag(k—l)+l+lT

LGy () () ) k-1
bg—l - ag—1+ag-'rg—1T+ o0 +a2(k-—l)+g—1T

and
e X))y = || b6 BYY e by |
[.)fgi_)l BG even b;’;’z}
I by b |

Moreover, let1, o, »,, -+, w,_, be the g-th roots of unity and let the gx g
matrix W be

1 eeenen 1
®, [O7EEETIRRE W,y
2 2 2

1 g1
1 of ol

Since W has the non zero determinant, i.e. the rank of W is g, the rank
of the product of matrices ¢;(X),.,x W is equal to the rank of ¢,(X)r_,.
Now
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e, X))o X W=|30 b 0] e S bPwl s

Z b it Z b w] e wf] 2 b w]_y
Z b(ji) @1 Z b(ii)w{ """ ®g-1 Z bgi)wg—l
where the summation of j runs from 0 to g—1.

If w, is a root of the equation e¢;(f)=0, then o, is a root of the
equation b5 +bPx+ - +b2,x5'=0 and all of the k-th column of the
matrix e;(X),.,x W are equal to zero. And if o, is not a root of the
equation ¢;(#)=0, then all of the k-th column of the matrix ¢;(X)r_,x W
are not equal to zero.

From these it is easy to see that, if «; is the number of different
g-th roots of unity which is also the roots of the equation ¢;(¢)=0, then
we have

rank of ¢;(X)r.,= g—q;.

.By this equality we have

2h+H-1

rank of A¥(1) = g@2h+p—1)— 2 «;

i

=

Il
-

and

+

2h

rank of M'(1) = 3g(2a+pu—1)—

From rank of M'(1)+ u—1=rank of M’(1) we have

®-1
a, .,
1

rank of M'(1)=3g2h+p—1)— {”i'la,.—(,n—n} :
Therefore we have the following

Theorem 2. Let & be a link of multiplicity u in 3-sphere, let M, (L)
be the g-fold cyclic covering space branched along L and let e(t), e(?), -+,
Cuin-(t) be elementary divisors of the matrix A(t) of Section 5. If «
is the number of distinct g-th roots of unity which are also the roots of the
equations e;(1)=0 (i=1, 2, -+, 2h+p—1), then the 1-dimensional Betti

number of WM (8) is equal to 2Hzﬁjila,-“(pj—l).
i=1
By Theorem 2 and the property of the matrix A(f) we have im-
mediately the following

Theorem 3. Let V(t) be the V-polynomial of the link & and let
be the number of the common roots of the equations t¥ —1=0 and V(t)=0.
Then the 1-dimensional Betti number of the g-fold cyclic covering space
of S® branched along the link 2 is not less than «.

(Received September 7, 1960)
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