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On Alternating Knots

By Kunio MURASUGI

Introduction

Let k be a knotυ in 3-sphere S3. Let k be an image of the regular
projection of k onto S2(^S3. A knot projection K is said to be alternating
if and only if it is connected and, as one follows along this knot, under-
crossings and overcrossings alternate^. A knot is said to be alternating
if it prossesses an alternating projection. There will be, of course, non-
alternating knots. In fact, the first proof of their existence was given
by Bankwitz in 1930 [3]. We do not know the general method by which
we can decide whether or not a given knot projection represents an
alternating knot. But some good methods have been found up to present.
Recently, R. H. Crowell proved the theorem (cf. Theorem (6. 5) [5]) which
much improved the Bankwitz's theorem (cf. Satz, p. 145 [3]). He showed
by means of this theorem that seven of eleven non-alternating projections,
in the Knot Table at the end of Reidemeister's Knotentheorie [11], re-
present non-alternating knots.

In a previous paper [9] we gave a necessary condition for a given
knot to be alternating by means of its Alexander polynomial (cf. [4], [8]).
In the present paper, in order to characterize the Alexander polynomial
of the alternating knot, we shall assign a matrix, called the knot matrix,
to an alternating knot. The relation between the knot matrix and its
Alexander polynomial is expressed in Theorem 1.17 which is the funda-
mental theorem of the present paper. From this theorem simply follow
the main theorems in [4], [7], [8], [9] (Theorem 3. 8, Theorem 3.13).
Theorem 3.12 is a simple application of Theorem 1.17 and it plays a
particular role in § 3.

1) A knot is an oriented polygonal simple closed curve. A link of multiplicity μ is the
union of μ ordered, pairwise disjoint knots. In the present paper we do not distinct exactly
between links and knots, except the cases 3.7 and 3.8. Thus, by a knot (of multiplicity μ) is
meant an ordinary knot or link according to μ = l or μ>l.

2) For any knot we may select a "point at infinity"^ e S3 — k and consider a Cartesian
coordinate system RxRxR=S3—^. The projection p:S3^S2 is defined by £(oo) = oo and
p(x, jy, ar) = (jτ, jO For each double point p(a)=p(b}, one of a and b with the larger z-
coordinate is called the overcrossing and the other the under crossing.
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As an application of these theorems, it will be shown, moreover, that
eleven non-alternating projections in the Knot Table [11] really represent
non-alternating knots.

§ 1. Knot Matrix

In this section we shall assign a matrix to an alternating knot.

1.1. Let k be a knot and K be a regular projection of k. Let K
be oriented by the orientation induced by that of k. Let K have n double
points D19 D2y ••• , Dn. Throughout the present paper, we may assume that

Fig. 1.

(1.1) K has no trivial double point.
By a trivial double point is meant a double point D as is shown in
ι

Fig. 1. Fig. 2.

K divides S2 into n + 2 regions r0, rί9 ••• 9rn+1. At each double point
Z)t , just four corners of four regions, say, rjy r k, TI and rm, meet. Two
corners among these four corners are marked with dots as is shown in
Fig. 2.

The segments of K connecting two consecutive double points are
called sides of K.

Now, let us divide K into some oriented Ioops3), called the standard
loops, as follows. Imagine an insect crawling along K in the positive
direction of K. This insect must always turn to the left or to the right
at a double point in the positive direction of K. Then, it will traverse
a loop L, called a standard loop. It is clear that

(1. 2) Each side of K is contained in one and only one standard loop.
If L bounds a region ri9 we say L is of the first kind and rt is

bounded by L. Otherwise, L is of the second kind. If K has no standard
loop of the second kind, the alternating knot k is called a special
alternating one. From the rule of the marking with dots, we have
immediately,

(1. 3) The corners of the regions bounded by the standard loops of

3) By a loop is meant a simple closed curve.
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the first kind are either all dotted or all undotted. The converse is also

true (cf . Lemma 6. 3 [8]).

Let m be the number of the standard loops of the second kind of
K. We may assume that these m loops are disjoint. (We have only to

deform slightly some of these loops, if necessary.) Then, it follows

(1.4) m standard loops of the second kind divide S2 into m + 1
domains4^ (cf . Lemma 2. 4 [8]).

By the genus of a domain is meant the number of the standard loops

of the second kind bounding the domain minus 1. Then it is easy to

show that

(1.5) The sum of the genera of m + \ domains is equal to m — 1.

Now we can introduce the rules on the numbering of m standard

loops of the second kind Cj, ••• ,Cm and m + 1 domains, Eίy E2, ••• >Em+1

in such a way that the following conditions hold (cf . § 3 [8]) :

(1.6) // Ef^Ct^c^ ... ^c,., then i0 = ί and ί 1,-,/y<ί, for
i = l, ••• ym.

C£ is called the outer boundary of E{. We denote the remaining

domain by Em+l, and the outer boundary of it is defined as follows:

Let Em+1 = Cλl

}J ••• ^Cλp. Denoting λ = max(λ1, ••• ,λ^), Cλ is the outer

boundary of Em+1.
Let us denote (Ei'

uEi)rλK=Ki.
A double point such that at least two of the four regions meeting

at it are contained in E{ is called a double point contained in Kf (or

simply in K{).

(1. 7) Each double point is necessarily contained in only one of these Kit

By the sides of Kj are meant segments of K{ connecting two con-

secutive double points in Ks . Then it is clear that

(1. 8) Each K£ is a knot projection of a knot, say kiy and, in particu-

lar, each ki is special alternating.

And from (1. 1), we have immediately

(1. 9) K; have no trivial double points.

Moreover, we can prove easily

4) A domain is a connected open subset of S2.
5) A dot over the symbol denotes the set of boundary points.
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Lemma 1. 10. The regions contained in E£ can be classified into two
classes, called "black" or "white", in such a way that every side of Kf is
the common boundary of a black and a white region and that the region
having some sides in common with E; is a white region and that each black
region is bounded by a standard loop of the first kind (cf . Lemma 2. 6 £8]).

1. 2. The Alexander matrix A of a knot is defined as follows. Let
four regions meet at a double point Df of K as is shown in Fig. 2.
Then we assign to D, a linear equation :

From (1. 1) we see j, ky I and m are different from one another. Then
A is defined to be the matrix constructed by all coefficients of these
equations. A has n rows and n + 2 columns. Each row and each column
correspond to a double point and a region respectively. Then the deter-
minant of the square matrix obtained from A by striking out two columns
corresponding to a pair of regions, which have a side in common, is
uniquely determined, freed from the factor ± tλ. This is a knot invariant.
We call it the A-polynomial and denote it by Δ(f). Hereafter we may
assume without loss of generality that the constant term Δ(0)>0. Here
we should notice that

(1. 11) // the multiplicity μ of a knot k is one, then the A-polynomial
and the ordinary Alexander polynomial are the same. If μ^>l, then Δ(£)
= (1 — t)Δ(t, ••• , t), where Δ(t19 ••• , ίμ) is the ordinary Alexander polynomial
of k.

Moreover, if the knot projection is separated into two disjoint parts,
the A-polynomial is zero (cf. [1]). We have to exclude such a knot,
because we treat only the knots whose projection are connected as stated
in the introduction.

Let k be a special alternating knot. We shall assign a matrix M to
k by means of its projection K.

Definition 1. 12. Let W19 W2, ••• , Wp be the white regions in K. Then
a matrix M=(aij}i>j=Λ<2t...,py called the knot matrix, is defined as follows:

an is one half of the number of the double points lying on W6\
— ais(iφj) is the number of the dotted corners of W{ at the double

points lying on Wir\ Wj.
Then it is easy to prove the following

6) It is clear that afi is an integer, (cf. Lemma 3. 6 [7])
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Theorem 1.13. Two special alternating knots of s-equivalent knot
matrices are equivalent.

Two matrices M, M' are said to be s-equivalent if one can be trans-
formed into the other by applying finitely many times the following
operations : To exchange ί-th row and -th row and, at the same time,
to exchange i-th column and j-ih column (/, j = l, ••• >p).

EXAMPLE 1. The knot matrix M of the knot
as is shown in Fig. 3 is the following:

(1.14) M is of the following properties :

(ϋ)

(iϋ)

Next, we shall assign a matrix to an alternating knot.
Let K have m standard loops of the second kind C19 C2, ••• , Cn

Eiy KI be the same as in 1.1. Then
Let

Definition 1.15. The knot matrix M of k is defined as follows:

= I MnM12 " M1>m+1

M21M22 •• M2ιW+1

Λ^m+1,1 ^/m+1,2 ••' Λ^m+l,m+l

( i ) MH are the special knot matrices assigned to the special alter-
nating knots k{.

(ii) Mfj = (bΛβ) are defined as follows :

( o \ Iff ϊy 1 ϊy1 — (f) ]\/f — l\/f.. — 0
<Λ ) J J J-^jf^\J~Jjγy LV±l] LYJ Jt W*

(b) Let EiΓλEj = Cι, l = min(i j).
(i) // E£ stands on the right hand side in the positive direction

of C/, then Mf7 = 0.
(ii) Other wise y Wa(^Eiy Wβ(^Ej9 b(ύβ = '\.—μy where λ, μ denote

the numbers of the dotted and undotted corners of WΛ at
all double points in K{ lying on WΛΓ\Wβ respectively.

EXAMPLE 2. The knot matrix M of the knot as is shown in Fig. 4
is the following:
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/ 1

M = -1

1

0

0

\-ι

-1

1

-1

0

0

1

1

0

-1

0

0

-1

1

0

0

0

-1

2

-1

\

0

0

-1

I/

(1.16) Mh (i Φ/) have the following
properties:

(1) At least one of Mijy or MjΊ

is equal to 0.
(2) Each row and each column of M{j contain only two elements

different from 0, if these row and column are different from
0. And one is 1, the other is —1.

(3) ^ bΛβ = 0, Σ b<*β = 0.
a> β

1. 3. We shall introduce the notations on matrices and determinants
used in the present paper from now on.

Let M=(aij)i-_=lt...lH, j=lι...,m be a matrix. By Mi ί 1!-2 .*.'.'!̂ ) is denoted

the matrix consisting of i^ row, i2

th row, ••• ,ip

th row, and j^h column, j2

th

column, ••• ,;Vh column, of M:

\
i, ί2 - ip\

J1 J2'~JJ

- ailjq

In particular, we may denote Mi j by M(i, j).
Jl'"

s

denoted the matrix obtained from M by striking out i^ row, ••• ,//h row,
and j\th column, , jq

th column :

where <jrn.py ^ _ ^ , and , rn-p\ (s19
denote

the sets of (n—p), (m — q) integers obtained from the sets of ny m integers
(1, 2, ••• , «), (1, 2, ••• , m) by striking out the sets of p, q integers (i19 i2,

•• >^)> (Ji9J2> " 9 J e ) respectively. By M* is denoted the transposed
matrix of M:

M* = (6 fV) f==lf....m. /=!,....„, where btj = ajΊ .
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Using these notations, the fundamental theorem of the present paper
can be stated as follows:

Theorem 1.17. Let Δ(ί) denote the A-polynomial of an alternating
knot. Then,

= det
l '2

(i) λ is a suitable integer, (ii) each ip is chosen arbitrarily such that

is contained in Mpp for p = \,~ ,m + \, and (iii) Mτ denotes the

following matrix:

Mτ= Mix -MJx -Mix

Γi2 M|2 -MS2

Γί3 -M£3 M£3•

Proof will be given in 1. 4, 1. 5.

1.4. Let Witl9 ••• , TFf,*,. and β, (1, ••• , β, >(7z. denote the white and black
regions in K£ respectively. Let Di>ly^- ,DLni denote the double points in
Kg and let sf denote the genera of Eg(i = l, ••• , m + 1). Then we see
immediately,

(1.18)

We may assume without loss of generality that

(1.19) (i) (pι + Qι)+ ••• +(A-ι + ̂ *-ι)+yth column corresponds to the
white region WLj ,

(ii) (A + ̂ ι)+ " +(A-ι + ̂  -ι)+A + ̂ th column corresponds to
the black region Bi>ί9

(iii) «j+ ••• H-w^i + r*11 row; corresponds to Di>r, for ί = 1, ••• ,

(We have only to change the permutation of columns and rows, if
necessary.) For the sake of brevity, we say, for example, the column
corresponding to Witj Witj- column and say the row corresponding to DitJ

Di,j-row. And we denote, for example, ML ) by M( -r^1 ).
V 1/ \ ^1,1/

Now, let us take a point, called the center, from each white region
and a point from each black region, and fix them. Moreover, we take
a point from each component of the complementary domain of Ei(i = 'L,
•• ,m-fl), and fix them. We call it the center of the complementary
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domain. The subset G,(or Gf) of S2 obtained by connecting the centers

of all the white regions (or all the black'regions) with the double points

lying on their boundaries will be called the graph (or the dual graph)

of K{. The center of each white region (or each black region) is called

the vertex of Gt (or Gf) and the segments of G^or Gf) connecting two

consecutive vertices are called the sides of Gf(or Gf).

Let T be a tree7) in G,. The subset of Gf consisting of sides disjoint

to T will be called the dual of T, denoted by T*. Then, we see

(1.20) If T is a maximal tree in Gif then T* is also a maximal

tree in Gf.

Let Tg be a maximal tree in G, and let us fix it. Since Tf contains

pi vertices, it contains pf — l sides. Then it follows

Lemma 1. 21. There exists \-\-correspondence φf between pi vertices

except one vertex, the center of WiιPi sayy and />,• — ! sides of T£ in such

a way that each side of Tf corresponds to one of vertices lying on its side

by φf. Moreover a correspondence <p{ is unique. In the same way, there

exists one and only one 1 — 1 correspondence φf between qi^Γsi + \ vertices

except one vertex, one of the centers of components of the complementary

domain S2—Eiy and #,- + $,• sides of Tf.

Since this lemma will be proved by induction on the number of the

sides in T, , we omit the details of proof.

q>ι naturally gives rise to 1 — 1 correspondence between Witl, , WitPi_ly

and Dgtl, — ,DitPi-ί9

 an(* ^* gives rise to 1 — 1 correspondence between

Bitl9 -,Bgιg. and sf components of complementary domain Fiιl9 ••• >FitS.

and qg + Si double points DitPi, , Di>ni (ni=pi^qi + si — l). We may as-

sume that φi(Wi,λ) = Dί,λ, 9>?(B,,μ) = A,Λ +μ-ιV ^?(^,v) = A.ίί+ffί+v-1. (We
may have only to change the numbering of the double points, if neces-

sary.) We should note that there is no double point corresponding to

m + 1 white regions WltPί, ••• , Wm+1,Ptn+ί. We may assume, moreover, that

Wr>Pr and Wm+l,Pm+1 have a side in common, because the outer boundary

Cr of Er for some r is also the outer boundary of Em+l. See 1.1.

1. 5. We say the transformation from a matrix M=(

to a matrix M':

7) By a tree is meant the connected subset of G which contains no loop. A tree is called

maximal if it contains all vertices of G.
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Mf =

n

S1

Σ */**!! Σ tf/Λ, It-

is obtained by adding essentially tfn fo'mes o/ the first row, ••• , tflw times
of the nth row to yt

th r0w #wrf by adding essentially OLΆ times of the first
row, •-•, cί2n times of the nth row to j2

th row, ••• Then it will be easily proved

(1.22) The essential addition is the elementary transformation, if
Λι,Λ> ••' yai,n are all ±1.

By the elementary transformation is meant the transformation obtained
by applying a finite number of times the following three operations
£, (or E Ϋ ) :

E^Ef): To exchange two rows (or two columns).
E2(Eί): To add λ times of a row (or a column) to the other row

(or column), λ being integer.
£3(jE?): To multiply a row (or a column) by ±1.
Two matrices are called equivalent if one can be transformed into

the other by elementary transformations.
We shall transform the Alexander matrix A.

Let Dijl9 ••• , A.y λ> in which Ditj is contained, be double points in Kf

lying on WitJ for j = \ , •-• , pi — 1. Then we see

(1. 23) λ is even, and just one half of all corners of Wij at these
double points are dotted, (cf. Lemma 6. 3 [8])

Moreover, we have

(1.24) The signs of all elements in Ai-fy'1"'. w ' P ι are constant.
\ " »,ι ** i.Pί /

(cf. Lemma 3.1 [7])
Hence we can denote these elements different from 0 by 8J or θf.-l,

£f.= ±l. Let us assume, then, A(DiJl9 Wi,j) = A(Di>J2, WitJ)= ••• =A(DitJμt9

Wi,j} = SiΛ and A(Di,j^+ly Wi,J) = A(Dί,J ̂ 2ί WLJ)= - = A(DiJχy Wi,j} = 8it,

where μ = \/2. Now we essentially add 8{ times of D^y-row, ••• , D^j^-

row to Z)t ,y-row, and essentially add — £, times of Z^ .y^-row, ••• ,D l t/λ-

row to DitJ -row. Thus A is transformed into a matrix ^4/. Then it follows
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(1. 25) A' is equivalent to A.
Moreover, we have

(1. 26) A'(Ditjy W,.,) = <v/l-f), A'(Dit/, Witl) = 0,,,,-te,,,, ,

where aijΊJ denotes the number of the undotted corners of W£,j at all double
points in K{ lying on Wi>jy and where aijil denotes the number of the dotted
corners of Witj at all double points in K£ lying on Witir\Witi.

Thus it follows

Moreover, we can prove

(1. 28) A'ίζ' * '" ζ' *-1) = 0 , for i = 1, - , m + 1 .
Wί.l '" ni,9i I

Proof. Because the common part of a black region and a white region
has only to contain the consecutive two double points, q.e.d.

Since double points lying on the boundary of a black region of E£

are contained in K{, we have obviously

(1. 29)

^WA,Γ A,nι 'A -ι,ι A-ι,»ί_ι> A>ι,Γ 'A>ι, «,>!*• An+ι,ι '"An+ι,ww+Λ = Q

\ Bg.i ~ Bi.ii I
for i = 1, •••

Next, we shall decide the form of the matrix

Since Pi , is transformed from P(j :

we shall first decide the form of Pί7. From the definition, we have

(i. so) // E, A E, = Φ , A ;;; * = o .

Let Eir^Ej = Cl9 l = mm(i,j). Then elements of P{j are given as
follows :

(1.31) (i) If A,λ does not lie on Wj,μy then
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(ii) The case where Diιλ lies on WJ>μι.
(a) // EI stands on the left hand side in the positive

direction on C/,

(b) Otherwise, A(Ditλ, WJtlt) = V*
Hence, we can decide the elements of P^ as follows :

(1.32) Let Dj.ξy be the double points except DitK in K-% lying on
W ^Wj,,.

(i) If Eg stands on the left hand side in the positive direction on
C,, A'GD,.A, WJ,μ) = A(D£,λ, W/ίμ) + egA(Dg.t, TFy.μ)+. .

(ii) Otherwise, A'(DitK, WJ,lί) = A(Di,λ, WJtμ)-€fA(D^9 Wy.μ)- .
Thus, we have from (1. 32),

(1. 33)
(i) If Eg stands on the left hand side in the positive direction on

C,, then A'(DLλ, TFy,μ) = <*-£,
(ii) Otherwise, A'(DitK, Wy,μ) = (α-/3)/,

where oί, β denote the numbers of the dotted and undotted corners of Wiιλ

at all double points in Kt lying on WiιλΓ\Wj>μ. respectively and
Thus it follows

a iA\
34)

Let A" be a matrix obtained from A by adding all WL ̂ column, •••
to Wit ^.-column for / = !, ••• ,m + l. Then it is clear that

α ocΛ
}

Moreover, we have

(1. 36)

l>ί

 m Dίtpi-l Dj-ίll Dj-lιpj_1-19 Dj+lt^pj+1_1^ Dm+lιl Dtn+lιp _
~

Because A"(D{,K, TFy,/,.)=Σ ^(A.λ, ̂  ,μ) = 0.
μ,=l

Let jBj consist of the outer boundary and sz standard loops of the
second kind Cfl, ••• , Cz s . Cit are the outer boundaries of Eir Then let Ax//

be a matrix obtained from A" by arranging s, columns WiΛ P. -column, ••• ,
11 *ι

Wi p -column, after Bi>q. -column. We should note that Wr p -column
sϊ si ' l ' r

and Wm+ltpm+1- column do not move. Let us denote



288 K. MURASUGI

Then it follows by noting that φf in Lemma 1. 21 is unique,

(i. 37) det

where v is a suitable integer.
Moreover, if g(Ei) = Oy E{ is bounded only by its outer boundary.
Hence we have

(1. 38) // the genus g(E{) of Et is zero, then

A (Dι,ι "Dltp1-1 Di-ltl Di-ltpi_1_l9 Di+ltl Ds+ltp.+1-.1Dm+ltl Dm+llpm+l-ι\_ Q
°\ Bitl — Bi>q. )

If Ei(iφm + l) are bounded by Cil9 ••• ,C,V, C t, then ily i29 ••• ,ί5< </, and

hence Λ( Dj.pr" D' »J \ = Q.' Thus we have at last the
YSv i ••• £> ίr ώ " Ws I\B{1 Biβ.Witt - W{ p

following:

(1. 39) det A = det

0 A« -B2,m+1(t)

....(0 Bm+,2(t) - Am+1(t)

where

A.m^/A ( 1

j,ι J,Pj-ι

Thus the proof of Theorem 1. 17 is complete.

1.6.

Corollary 1.40. If we set

D(t) = det

D(Q) = Π det M

Proof. It is sufficient to prove that D(0) = Π Aj(ϋ). Since one of

Bij(ϋ) or Bji(G) is always 0, noting the numbering of Ejy we obtain the
required result.

This corollary expresses that the special alternating knots play an
important role in the studying of D(0).
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§ 2. Determinant

2. 1. The square matrix M=(aiJ')ί,J ^lt...tn is called the matrix of special
type on the rows (or the columns) if it satisfies the following conditions
(i), (ii) (or (ii)*) :

( i ) tfίf >0, tf, /^0, for i, y = l, — , w, ί Φ;.
w

(ii) Σ0ί/ϊ£θ, for ί = l, ••• , ny

((ii)* ΣXv^O, for J = l> ->»)•

Moreover, M is said to be of (Py property on the row (or £/z£ column)
if it satisfies the following condition :

n
(iii) There exists an i such that

((iii)* There exists a ./ such that Σtf
< = 1

M is called the matrix of strongly special type on the row (or the column),
if it is the matrix of special type on the row (or the column) and

Λfr 1 ""*.*) (l^'1< <z* <w) are of (P)-property on the row (or the
\*1 *" *p/

column). We first state a well-known result about matrices of this type.

Lemma 2. 1. If M is a matrix of special type on the row (or the
column) and if M is of (P)-property on all rows (or all columns) :

(2. 2) Σ aί3 > 0 for all i ,
y=ι

then detM>0.

From this Lemma, it follows

Lemma 2.3. If M=(aiJ)iιJ^1>...tny is a matrix of special type on the
row (or the column), then det MJ>0.

Proof. Let N(t) = (biJ)i>^,l,...,nί where bfi = aii9 ftίy = teίy. Since N(t)
satisfies the condition (2. 2) for 0<^/<1, it follows det N(t)^>0. Moreover,
since det N(t) is a continuous function of t, it follows det M=det N(l)

q.e.d.

We shall prove the following

Lemma 2.4. If M is of strongly special type on the row (or the
column), then

( i ) detM>Q,

(ii) (-ir^M^O, (i,j=l, ,n)

(iii) det det M (ί,; = l, -,«).
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Proof. Since (ii), (iii) are proved in the same way as used in the
proofs of Satz 2, Satz 3 in [3], we omit the details. We shall prove (i)
by induction on n. The case n = 1 is clear. Suppose that Lemma is true
for the case n — ί. We may assume without loss of generality

(2.5) tfn + tf12+' + tflw>0.

We may assume that at least one of a21, 03ι, ••• , anι is different from

0. For otherwise, it follows det M=auάet ML ]>0. Let #21ΦO.

Now, let us denote

detM - det/0n 0 0

021 ^22 ^23

031 #32 #33

\anl bn2 bn3

0 \ = #n det M' = an det (bu) ,

bnJ
where

(2.6)

To prove Lemma, it is sufficient to show that M' is a matrix of
strongly special type on the row. From (2. 6), it follows immediately

that ί«>0, £,7^0. Moreover, it follows Σ b*j = Σ(*w-^ή = Σ <*tj
i=2 j=2\ au I y=2

— -̂  Σ «ιy = Σ «f y — -
0ιι y=2 y=ι Λ n y

0ι j ̂  0. In particular, b22 H ----- 1- 62w > 0. Thus we
ι

see M7 is of (P)-property on the row. Next, we shall prove that

are of (p)_prθperty on the row. Suppose M'(l l '" l * be not
vΊ •" ipl V i ' "p

of (P)-property on the row. For the sake of brevity, we shall prove the

Then we seecase on

(2.7)
+ ^34

Since 6/3 + — +^,ί

/> + !, and since βn

(2.8) 0

— (<212H ----- H«1

+0y,,+1 = 0,

b3,p+1 = 0 ,

*4.#+ι = 0 ,

-^+l./>+l = 0 .

ι-— («ιs+ —
011

), we have

for j' = 3, •

= 0, for ; = 3,
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Thus, it follows M(~, .'••' Λ + l) *s not °̂  (^)~Pr°Perty> which contra-

dicts the assumption. Thus, Mf is a matrix of strongly special type, q.e.d.

2. 2. A matrix M= (a^) of strongly special type is said to be k-
strongly special type if it satisfies the conditions

(2.9) \ais-asi\ <1, for all ij.

We can first prove

Lemma 2. 10. Let M=( a ,] be a matrix of k-strongly special type on

the row and the column, a, b, c, d being integers. If deΐM=p, then a or
d<^,p. If, in particular, p = 3, then matrices without s-equivalent admit
only the following 7 matrices :

1 ) f 3 0 ) I z-1}
l A V o i A \-ι 2 A0 3 A \- l 4

3 -3\ / 3 -3\

-2 3 A \-3 4 A

Proof. If < z = | £ or d=\c\, then it is clear that a=\b\<Lp or
= d^p. Let 0>|δ|, <Γ>|c|. Set a= —b + £, d= —c + η, where £, ?;ϊ^l.

Since p = ad—bc = aη — ce^aη, it follows a^p. The latter half of this
Lemma will be easily shown.

Our main theorem in this section, which is an extension of Lemma
2. 4, is the following

Theorem 2.11. // M=(aij)i>j^t...,n, a{j being integers, is a matrix
of k-strongly special type on the row and the column, then

dpt l\/f ^^ WIIM //7 n n \U,VI, 1VJ. ^-ΐϊl,l,fl \Un , U22, y Unn)

Proof. Let detM=A Theorem will be proved by induction on p
and n. The case n = 2, the theorem is the same as Lemma 2.10.

Suppose that the theorem holds for the matrix Λf such that degree of
N=n — l and that detN<^p. We may assume without loss of generality

~ ίi\that #„ +<z12H hαlM">0. Let us set A = ( —1) det M -, , for & = !,•••,«.
\J-/

Then, it follows from Lemma 2.4 that p1^pi and AΞ^O. Now, if
~ /1\Pi^pj then the theorem is proved by applying the assumption to Ml -. ).

Otherwise, it follows a^^p. For, let an^>p. Then since p^^Pi and
^iz^O (ίΦl), we have tflz A^Ξ#ιz A Thus it follows P = allpl + al2p2λ—
+ ainPn^(an + ai2^ ^-GinϊPi^Pi^P This is a contradiction. Thus we
have an^p, q.e.d.

Moreover, it follows
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Lemma 2.12. If M=(aiJ)itJ=lt...tn is a matrix of strongly special type
on the row and the column, then

(2. 13) Σ det ΛΓV..,,. > 0 , for p = 1, - , n ,
l^ί^ .̂ ί̂ - * P

where

Proof. We may assume without loss of generality that

(2. 14X

(2. 14)2

(2-14). *.,„>(>.

First, -Niv .i // *.". ) is a matrix of special type on the column, because

M is a matrix of special type on the row and the column. Thus it
follows from Lemma 2. 3 that

(We should note that Nilt...,ip( " ' } is not necessarily a matrix of strongly

special type.) We have to prove that one of the terms in summation
has a positive value, that is, it is of strongly special type. To do this,
we shall prove that N12...P (for p = l, ••• , n) is a matrix of strongly special
type. Set N=N12...p. Then N is of (P)-property on the column from

the assumption (2. 14)j . Next, N( -. ) is of (P) property on the column

from (2. 14)2. In the same way, we can generally prove that N[ 19 "\ι^ •••

(<1<^P) are of (P)-property. Moreover, ^(19 •••Λ/ ^s °̂  (̂

because it is the same as M( 19 "" ^). In the same way, N(r "" s\
\1^ ••' /?/ \Λ ••' ύ/

is of (P)-property from (2. 14)! . Thus it follows that N is a matrix of
strongly special type, q.e.d.

§ 3. Applications to knot theory

In this section, we shall apply the results obtained in §§ 1, 2 to the
knot theory.
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3.1. When an alternating knot k is divided into m + 1 special alter-
nating knots k19 ••• ,km+1 by m standard loops of the second kind, we say
k is the ^-product of k19 ••• , &w+1, and denote by

(3. 1) k = k&k& ••• *km+l .

We have first to prove the following

Theorem 3.2. Let M=(aij}i>j=lt...tny be the knot matrix of a special
~ /Aalternating knot k. Then M(Λ (/ = !,•••,«) #r£ matrices of k- strongly

special type on the row and the column.

Proof. It will be shown from (1.14) that Mr.) are matrices of
w

special type and that these are of ^-property. Hence we have only to

show that MΓ j are matrices of strongly special type. We shall show

that MΓ.̂ .1 *" -^"M is of (P)-property on the row and the column. Now
Wi •" Jλ-i/

suppose the contrary. For the sake of brevity, we assume that / = !,
Jι = 2, ••• , < / λ _ 1 = λ. Then it follows

(3. 2) f Λ λ+1, λ+1 + 0λ+1. λ+2 H ----- h «λ+1, M = 0 ,

λ+2, λ + 1 + #λ+2, λ+2 + * * ' + <^λ+2, « — ^ >

«,λ+l +«»,λ+2 + "+0n>l l = 0 ,

or

(3. 3) f ^λ+1, λ+1 + ̂ λ+2> λ+1 H ----- h an> λ+1 = 0 ,

And it follows, moreover,

(3. 4) // one of (3. 2) <m</ (3. 3) holds, then it follows the other.

Because, let (3.2) hold. Then, it follows (<zλ+ι,λ+ιH ----- l-^.x+jH ----- h
~ /1 \

(<3rλ+lιWH ----- h<2M,J = 0. Since ML J is a matrix of special type, the value

of the sum in each bracket is 2^0. Hence we have (3. 3).
Thus, we have from (3. 2), (3. 3)

n,i = an,2 = •- = #n,\ = 0,

and



294 K. MURASUGI

= °

( * I 0 \
-7̂ - 1 . This shows that the knot projection
0 * /

is separated into two parts, which contradicts the assumption in 1.2.
The proof of Theorem 3. 2 is thus complete.

From (1. 14), it follows, moreover,

(3.5) detM(^\ =

3.2. Let k=k^ ••• *km+1, and denote the Λ-polynomial of k by
i. Then, it follows in the same notations as used in corollary 1. 40,

Lemma 3.6. D(0)>0.

Proof. Since D(0) = Π^O), it is sufficient to prove Ag(0)
ί=l

= detMίί(Pi]^>0, where Mu denote the special knot matrices of k{.

From Theorem 3.2, it follows MZ-/^M are matrices of ^-strongly special

type on the row and the column. Thus, we have det M^ ί ̂ ')>0, q.e.d.

On account of this Lemma, the fundamental theorem 1. 17 can be
stated as follows :

(3. 7) Δ(ί) = D(f) = det

Now, Lemma 3. 6 is equivalent to the following theorem which is
obtained in [4, p. 265] [7], [8].

Theorem 3. 8. The degree of the A-polynomial of an alternating
knot k plus one equals twice its genus plus its multiplicity μ.

Proof. Applying the same notations as used in § 1, Lemma 3. 6 is
equivalent to the following.

(3.9) The degree of Δ(f) is equal to (A + l)+ — + (AW+1-1) = (A+ —

On the other hand, Seifert showed that k is spanned by an orient-
able surface without singularity with genus hy where 2h = n1-\

(See [12].) Hence it follows,
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2h = (n1-q1)+

Thus we have

(3.10)

Denoting the genus of k by g, it follows (cf. [12])

(3. 11) The degree of Δ(t)<2g+μ-l.

Hence, it follows from (3.9) (3.10) (3.11), 2gΛ-μ-l~^the degree of
= (p1-\ ----- \-pm+l} — wι — \=2h + μ — l^Zg+μ— 1, which is the required

result, q.e.d.

Theorem 3. 12. If k is a special alternating knot of multiplicity 1,

then Δ(l) = l.

Proof. As is well-known, Δ(l)=±l. Thus it is sufficient to prove
^0. It follows from (3. 7),

where £ίy = 0,y-0yί, Si~-8ji, q.e.d.
We see from the above Lemma that there are knots which cannot

be transformed into the special alternating. The knot shown in Fig. 4
is one of these knots, for Δ(f) = l-5/ + 7f2-5f3 + /4 and Δ(l)=-l.

Theorem 3. 13. Let Δ(ί) = c0 + c1ίH ----- Vcp_Jp~^ be the A-polynomial of

a special alternating knot, then it follows ( — l)ycy]>0, /or .7 = 0,1, ••• ,^—1.

Proof. From (3. 7), we have

Then since (-l)jc~ A.Γ* Δ(ί)] , it follows from Lemma 2.12 that
j l LdtJ Jί=o

(3.14) (-iχc, = A- Σ ^V ί l.....<y>0, q.e.d.
! ϊ^i^ ^j^t-i '
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3.3. Let 3ΐ be a ring of all polynomials f(ΐ)-=a^-\-aλtΛ ----- \-ant
n

y a{

being integers, satisfying the following conditions :

(3.15) tf0>0, a{ = (-ΐ)nan-i, for ί = 0, — , w .

We introduce a semi-order, denoted by Ξ^, in 5R. Let f(f) = a0

b0 + blt+-< + bmtm. By f(t)^g(t) is meant that

(3.16) n^tn and |0f.|^|if.| for / = 0, — , m .

Then, as is shown in [6], [12], it follows

Lemma 3. 17. SR coincides with a ring of all A- polynomials of knots.

Proof has been given in [12] in the case that the multiplicity μ of
knots is equal to 1, and given in [6] in the case μ>l.

Let us denote, moreover, the subring of all polynomials satisfying
the conditions

(3.18) (- !)••*,>(), for all i ,

by Si.
Now, let an alternating knot k=k^ ••• *km+1. Let the ^.-polynomials

of k, k, , ••• , km+1 be denoted by Δ(f), Δ^f), •-• , Δm+1(f). Then it follows,

Lemma 3. 19. Δ(/) ̂  Δ,(ί) ... Δm+1(ί) .

Since the proof of this Lemma has been given in [8, pp. 247-248],
[9, pp. 181-185], we omit the details.

Hereafter we shall symbolize these as follows :

(3.20)

From Theorem 3. 13, Lemma 3. 19, we have immediately,

(3.21) Δ(-l) ^Δ^-l) ... Δm+1(-l) .

Moreover, we have,

Lemma 3. 22. The totality 35 of all A- polynomials of alternating
knots is contained in St. [9]

In the following, it will be shown

(3. 23) Si Φ S3 .

3.4. The main theorem of this section is the following

Theorem 3. 24. The special alternating knots with Δ(0) = 1 admit
only elementary torus knots or their products.
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By an elementary torus knot is meant
a special alternating knot whose graph or
dual graph of its projection is a polygon.
(See Fig. 5)

Proof. Let M=(aiJ)i,J=lt...tn be the
knot matrix of a knot satisfying the con-
dition in this theorem. Then, we see from
Theorem 2.11 that at least two of a119 •••, ann

are equal to 1. We shall prove the theorem
by induction on n. If n = 2, it follows

Fig. 5.

^ -A from which the theorem follows. Now suppose that

the theorem is proved in the case n — 1. We may assume without loss of
generality that

(3. 25) 0U = 1 , tf12 = -1 , tfis = ••• = aln = Q.

Then it follows that

Let N=

N is the knot matrix of a special alternating knot k1 , where k± is
transformed from k by applying in its projection the following operation
as is shown in Fig. 6 :

Fig. 6.

Denoting the A-polynomial of k1 by Δ^f), it follows

Thus we see from the assumption of the induction that k^ is an
elementary torus knot or their product. Hence k must be also an ele-
mentary torus knot or their product, q.e.d.

(3. 26) The A-polynomial of an elementary torus knot is of the form :
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The converse of (3. 26) is also true. That is,

Lemma 3.27. An alternating knot whose A-polynomial is of the
form, 1 — 1-\ ----- h( — l)ntn, is an elementary torus knot.

Proof. Let k = kί^"'^km+ιy and denote the A-polynomials of ky

*ι> >*»+ι by Δ(0> Δι(0> *•• >Δ™+ι(0 Then, we see from Lemma 3.19
and (1.40) that Δ1(0) = =Δm+1(0) = l. Hence it follows from Theorem
3. 24 that ki are elementary torus knots or their products. Then,

which implies m = 0. Hence k is an elementary torus knot or their pro-
duct. It is clear, however, that k is not a product knot, q.e.d.

3. 5. From Theorem 3. 24, (3. 26), Lemma 3. 27, we have the follow-
ing

Theorem 3. 28. An alternating knot with Δ(0) = 1 is represented as
the *- product of some elementary torus knots.

This theorem will follow Lemma 3. 30 about the number of the
double points in a knot projection. Before Lemma 3. 30 is stated, we
state the following

Lemma 3.29. Let k = k±* ••• *km+19 and denote the numbers of the
double points in K{ by n{. Then the number of the double points in K
equals n^Λ ----- \-nm+1.

Thus k possesses an alternating projection, in which there are at
most n^λ ----- \-nm+1 double points. From Lemma 3.29, it follows

Lemma 3.30. An alternating knot k with Δ(0) = l possesses a projec-
tion, in which there are at most 2n double points, n denoting the degree

of Δ(ί).

Proof, k can be represented as the ^-product of at most n special
alternating knots. Then, every ^-component is an elementary torus knot
whose ^.-polynomial is 1 — t. Since the number of the double points of
it is 2, it follows the number of double points in K is 2n. If k can be
represented as the ^-product of m(<^n) special elementary torus knots,
then the number of double points in K is less than 2n, q.e.d.

Corollary 3.31. Alternating prime knots whose A- polynomials are of
the form: Δ(t) = l — c1t + c2t

2—c3t
3 + t\ admit only the following knots: 5^

62, 63, 76, 77, 812.
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Hence it follows:

(3.32) Projection 820, 821, 942, 944, 945, 948, really represent non-
alternating knots.

Last of all, we shall show that 3 projections85 943, 947, 949 really
represent non-alternating knots.

3. 6. In the following, we denote knots 9n and their yl-polynomials
by kn and Δn(t) respectively. Let us denote the elementary torus knot
whose A-polynomial is of the degree ny by &Cw) and denote its A-
polynomial by ΔCw)(/).

Now, since Δ43(ί) = l-3/ + 2*2-/3 + 2r-3Γ + /6 and Δ47(/) = l-4* + 6*2

-5*3 + 6Γ-4*5 + /6, it follows that Δ43(l)=-l, Δ43(-l) = 13 and Δ47(l) = l,
Δ47(-l) = 27.

Suppose £43, &47 be alternating. Then it follows from Lemma 3. 29,
that each of &43, &47 has to be represented as one of the following
*-products:

(1)

(2)

(3)

(4)

In each case we set t=— 1. Then we have the following

(1) ΔC3)( -1) {Δα)( -1)}3 = 32 > 13, 27 ,

(2) {Δ(2)( -1)}2 {ΔC1)( -1)}« = 36 > 13, 27 ,

(3) ΔC2)( -1) {Δ(1)( -1)}4 = 48 > 13, 27 ,

(4) {ΔC1)(-1)}6 = 64>13,27.

All cases contradict (3. 21). Thus we have

(3.33) &43, &47 represent non-alternating knots.

To show that 949 represents a non-alternating knot, we require some
preparations.

3.7. In this and next paragraphs, we make an exact distinction
between knots and links.

Let M=(aij)i>J=1,...,n, be the knot matrix of a special alternating knot
k. Let N=(bij)ilJ =1 „, be a matrix obtained from M as follows:

8) It will be easily shown from theorem 3.13, Lemma 3.19 and by simple computations
that two knot projections 819, 946 represent non-alternating knots.



300 K. MURASUGI

(3. 34) bis = ais + min ( I ai} \, | afi |), (ί Φ j )

bu = an - Σ min (| afj \, ajΊ \ ) .

Then, if follows

Lemma 3.35. N is the knot matrix of a special alternating knot k0.

Proof. Let W{, Wj be two regions in K such that W{ A Wj Φ φ.
Then, by applying, as much as posible, the operation as is shown in
Fig. 7, we have a knot. It is clear that such a knot is k0.

Fig. 7.

We shall call kQ the frame knot of &. We can naturally extend this
concept to links, but we should note that link projection may be separated
into some parts. (See Fig. 8)

Fig. 8.

In all cases, it follows

(3. 36) μ = μ0 ,

where μy μ0 denote the multiplicities of k, k0.

3.8. Since Δ49(t) = 3-6t + 7t2-6t3 + 3t\ it follows Δ4β(l) = l, Δ49(-l)
=25. We shall first prove

(3. 37) // &49 is alternating, it must be a special alternating knot.

Proof. By noting Δ(l) = l, it follows that if &49 is alternating and
if it is not a special alternating knot, then Δ4β(f) must be represented
as one of the following ^-products:
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(1)
(2)

(3)

(4)

(5) (3-5ί+3ί>Δω(ί)*ΔClJ(0,
(6)

In all cases we set / = — 1. Then every value is larger than Δ49( — 1)

= 25. This contradicts Lemma 3.21. Thus &49 must be a special alter-
nating knot.

Now, for the frame knot of a special alternating knot, we can prove

the following

Lemma 3. 38. The frame knot k0 of a special alternating knot whose

A-polynomial is of degree 4, admits only an elementary torus knot k^ or

a product of two knots &C2).

This will be proved by simple computation, if we note that at least

one of bfj, bj{ in the knot matrix of k0 N=(biJ) is equal to 0.
From Lemma 3. 38, we have, moreover, by computation,

(3. 39) In the knot matrix M of a special alternating knot whose A--

polynomial Δ(f) is of the degree 4 and Δ(0) = 3, at least two of <zn, ••• , #55

are equal to 1.

Thus, it follows from Lemma 2. 10, (3. 39) and from the fact that
M is of ^-strongly special type, without ^-equivalent, that M admits

only the following :

(3.40) (1)

(2)

1 0 -1 0 0\

0 1 - 1 0 0

0 0 2-1-1

1 0 0 2 - 1

\ 0 -1 0-1 2;

/ 1 -1 0 0 0\

0 1 0 - 1 0

- 1 0 3 0 - 2

0 0 0 1-1

0 0 - 3 0 3/
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(3)

(4)

/ 1 -1 0 0 0

0 1 0 - 1 0

- 1 0 3 - 2 0

0 0-2 3-1

\ 0 0 -1 0 1 /

/ 1 0 -1 0 0\

0 1 - 1 0 0

0 0 4-3-1

- 1 0 - 2 3 0

\ 0 - 1 0 0

These matrices correspond to knot matrices of 815, 94, 97 and of a
product of 31 and 72, respectively. Thus we have the following

(3. 41) Special alternating knots whose A- polynomials Δ(£) are of
degree 4 and Δ(0) = 3, admit only the knots: 815, 94, 97 and a product of
3X and 72.

This naturally follows

(3. 42) 949 represents a non- alternating knot.

Thus, it has been really shown that all non- alternating projections
at the end of [11] represent non- alternating knots.

Hosei University

(Received July 9, 1960)
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