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On Alternating Knots

By Kunio MURASUGI

Introduction

Let £ be a knot® in 3-sphere S°. Let k be an image of the regular
projection of k£ onto S*C_S°. A knot projection K is said to be alternating
if and only if it is connected and, as one follows along this knot, under-
crossings and overcrossings alternate®. A knot is said to be alternating
if it prossesses an alternating projection. There will be, of course, non-
alternating knots. In fact, the first proof of their existence was given
by Bankwitz in 1930 [3]. We do not know the general method by which
we can decide whether or not a given knot projection represents an
alternating knot. But some good methods have been found up to present.
Recently, R. H. Crowell proved the theorem (cf. Theorem (6.5) [5]) which
much improved the Bankwitz’s theorem (cf. Satz, p. 145[37]). He showed
by means of this theorem that seven of eleven non-alternating projections,
in the Knot Table at the end of Reidemeister’s Knotentheorie [117], re-
present non-alternating knots.

In a previous paper [9] we gave a necessary condition for a given
knot to be alternating by means of its Alexander polynomial (cf. [4], [8]).
In the present paper, in order to characterize the Alexander polynomial
of the alternating knot, we shall assign a matrix, called the knot matrix,
to an alternating knot. The relation between the knot matrix and its
Alexander polynomial is expressed in Theorem 1.17 which is the funda-
mental theorem of the present paper. From this theorem simply follow
the main theorems in [4], [7], [8], [9] (Theorem 3.8, Theorem 3.13).
Theorem 3.12 is a simple application of Theorem 1.17 and it plays a
particular réle in § 3.

1) A knot is an oriented polygonal simple closed curve. A /ink of multiplicity x is the
union of p ordered, pairwise disjoint knots. In the present paper we do not distinct exactly
between links and knots, except the cases 3.7 and 3.8. Thus, by a knot (of multiplicity x) is
meant an ordinary knot or link according to p=1 or p>1.

2) For any knot we may select a “point at infinity” oo € S*—k and consider a Cartesian
coordinate system RXRXR=S®—co. The projection p: S?— S? is defined by p()=oc and
p(x, ¥, 2)=(x,y). For each double point p(a)=p(b), one of a and b with the larger z-
coordinate is called the overcrossing and the other the wundercrossing.
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As an application of these theorems, it will be shown, moreover, that
eleven non-alternating projections in the Knot Table [ 11] really represent
non-alternating knots.

§1. Knot Matrix

In this section we shall assign a matrix to an alternating knot.

1.1. Let %k be a knot and K be a regular projection of k. Let K
be oriented by the orientation induced by that of k. Let K have n double
points D,, D,, ---,D,. Throughout the present paper, we may assume that

(1.1) K has no trivial double point.
By a trivial double point is meant a double point D as is shown in
Fig. 1.

>

Fig. 1. Fig. 2.

K divides S? into n-+2 regions 7,, #,, *** ,#,.,. At each double point
D;, just four corners of four regions, say, 7;,7 ;, 7, and 7,,, meet. Two
corners among these four corners are marked with dots as is shown in
Fig. 2.

The segments of K connecting two consecutive double points are
called sides of K.

Now, let us divide K into some oriented loops®, called the standard
loops, as follows. Imagine an insect crawling along K in the positive
direction of K. This insect must always turn to the left or to the right
at a double point in the positive direction of K. Then, it will traverse
a loop L, called a standard loop. It is clear that

(1.2) Each side of K is contained in one and only one standard loop.

If L bounds a region 7;, we say L is of the first kind and 7; is
bounded by L. Otherwise, L is of the second kind. If K has no standard
loop of the second kind, the alternating knot %k is called a special
alternating one. From the rule of the marking with dots, we have
immediately,

(1.3) The corners of the regions bounded by the standard loops of

3) By a loop is meant a simple closed curve.
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the first kind are either all dotted or all undotted. The converse is also
true (cf. Lemma 6.3 [8]).

Let m be the number of the standard loops of the second kind of
K. We may assume that these m loops are disjoint. (We have only to
deform slightly some of these loops, if necessary.) Then, it follows

(1.4) m standard loops of the second kind divide S* into m—+1
domains® (cf. Lemma 2.4 [8]).

By the genus of a domain is meant the number of the standard loops
of the second kind bounding the domain minus 1. Then it is easy to
show that

(1.5) The sum of the gemera of m—+1 domains is equal to m—1.

Now we can introduce the rules on the numbering of m standard
loops of the second kind C,,-:-,C,, and m+1 domains, E,, E,, - , E,,,
in such a way that the following conditions hold (cf. §3 [8]):

1.e6) Ir E,-”:C,-OVC,-IU UC,-j, then i,=i and i,,-,1;<1i, for
i=1, - ,m.

C; is called the outer boundary of E;. We denote the remaining
domain by E,,, and the outer boundary of it is defined as follows:
Let EmH:C,\IU - VC Denoting A=max (A, ---,A,), C, is the outer
boundary of E,,,,. '

Let us denote (E;VE)~K=K,.

A double point such that at least two of the four regions meeting
at it are contained in E; is called a double point contained in K; (or
simply in K;).

Ap*

(1.7) Each double point is necessarily contained in only one of these K;.
By the sides of K; are meant segments of K; connecting two con-
secutive double points in K;. Then it is clear that

(1.8) Each K; is a knot projection of a knot, say k;, and, in particu-
lar, each k; is special alternating.
And from (1.1), we have immediately

(1.9) K; have no trivial double points.
Moreover, we can prove easily

4) A domain is a connected open subset of S2
5) A dot over the symbol denotes the set of boundary points.
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Lemma 1.10. The regions contained in E; can be classified into two
classes, called “black” or “white”, in such a way that every side of K; is
the common boundary of a black and a white region and that the region
having some sides in common with E‘,- is a white region and that each black
region is bounded by a standard loop of the first kind (cf. Lemma 2. 6 [8]).

1.2. The Alexander matrix A of a knot is defined as follows. Let
four regions meet at a double point D; of K as is shown in Fig. 2.
Then we assign to D; a linear equation :

Dyr) = tr;—try+7r,—7, = 0.

From (1.1) we see j, k, / and m are different from one another. Then
A is defined to be the matrix constructed by all coefficients of these
equations. A has » rows and #-+2 columns. Each row and each column
correspond to a double point and a region respectively. Then the deter-
minant of the square matrix obtained from A by striking out two columns
corresponding to a pair of regions, which have a side in common, is
uniquely determined, freed from the factor +#. This is a knot invariant.
We call it the A-polynomial and denote it by A(f). Hereafter we may
assume without loss of generality that the constant term A(0)”>0. Here
we should notice that

(1.11) If the multiplicity p of a knot k is one, then the A-polynomial
and the ordinary Alexander polynomial are the same. If p_>1, then A(t)
=1—=0A(L, -+, t), where A(t,, -+, t.) is the ordinary Alexander polynomial
of k.

Moreover, if the knot projection is separated into two disjoint parts,
the A-polynomial is zero (cf. [1]). We have to exclude such a knot,
because we treat only the knots whose projection are connected as stated
in the introduction.

Let 2 be a special alternating knot. We shall assign a matrix M to
k by means of its projection K.

Definition 1.12. Let W,, W,, .-, W, be the white regions in K. Then
a matrix M=(a;;); j-1.....,, called the knot matrix, is defined as follows :

a;; is one half of the number of the double points lying on W®.

—a;(i==7) is the number of the dotted corners of W; at the double
points lying on W,-,\ W,

Then it is easy to prove the following

6) It is clear that @;; is an integer. (cf. Lemma 3.6 [7])
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Theorem 1.13. Two special alternating knots of s-equivalent knot
matrices are equivalent.

Two matrices M, M’ are said to be s-equivalent if one can be trans-
formed into the other by applying finitely many times the following
operations : To exchange :-th row and j-th row and, at the same time,
to exchange 7/-th column and j-th column (7, j=1, .-+, p).

ExampLE 1. The knot matrix M of the knot
as is shown in Fig. 3 is the following :

M= 1 -1 0

0 1-1
-1 0 1

(1.14) M is of the following properties :
(1) aii>0’ aijgoy (Z,jzl, "'yp» z:l:])’ Fig. 3.
(ii) :Saijzoy ﬁ]aij:(),

(iii) la;;—aul<1.

Next, we shall assign a matrix to an alternating knot.
Let K have m standard loops of the second kind C,, C,, ---,C,,. Let
E;, K; be the same as in 1.1. Then

Definition 1.15. The knot matrix M of k is defined as follows :

M = Mn M12 Ml,m+1
le Mzz Mz,m+1

Mm+1.1 Mm+1.2 Mm+1.m+1

(i) M;; are the special knot matrices assigned to the special alter-
nating knots k;.
(i) M;;=(bus) are defined as follows:
(a) If EinEj=d, My=M;;=0.
(b) Let E;AE;=C,, l=min(ij).
(i) If E; stands on the right hand side in the positive direction
of C,, then M;;=0.
(ii) Otherwise, W, E;, Wy E;, byg=\—p, where N\, u denote
the numbers of the dotted and wumdotted corners of W, at
all double points in K; lying on W, ~ W respectively.

ExampLE 2. The knot matrix M of the knot as is shown in Fig. 4
is the following :
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1 -1 \
0

1 -1 1-1 0 O
0 0 0 1-1 0
0o 0/-1 0 2 -1
-1 1 0 0-1 1

(1.16) M;; (i==j) have the following
properties :
(1) At least one of M;;, or M;;
is equal to 0.
(2) Each row and each column of M;; contain only two elements
different from 0, if these vow and column are different from
0. And one is 1, the other is —1.

(3) ; me = 0) ; bwﬁ =0.

1.3. We shall introduce the notations on matrices and determinants
used in the present paper from now on. )

Let M=(a;;)i-1.....n, j=1...... D& @ matrix. By M( bty ZJ’) is denoted
J1Jz" Ja

the matrix consisting of i, row, i,"® row, ---,7,™ row, and j,"* column, j,™
column, -+, j,™ column, of M :

Fig. 4.

M< by 2y e %p) = [ @iyjy Qiyiy "7t Qijig
Ji Jz2t Ja a a e a

izdy ®izds iziq

Aipiy Bipiy " Aipig
In particular, we may denote M (;) by M(, j). By M(;l ;P> is
1 q

denoted the matrix obtained from M by striking out i,"™ row, .- ,i,™

and j,"™® column, ---, 7, column :

M(l] ver Z.p> — M<;4'1 vee rn—p) ,

Ji*Ja S1 " Spn—a

where 7,< -+ <7, p, $<_ ++* < Sp-g> and (7, ==+ , 7, ), ($;, **+ , §,,—4) denote
the sets of (n— p), (m—q) integers obtained from the sets of », m integers
a,2,--,n), 1,2, --,m) by striking out the sets of p, ¢ integers (i,, 7,

o y1,), (Ji» Jo» +++»Jq) respectively. By M’ is denoted the ¢ransposed
matrix of M:

row,

M = (bij)izl.---,m, F=lienm where bij =Qqj; .
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Using these notations, the fundamental theorem of the present paper
can be stated as follows :

Theorem 1.17. Let A(t) denote the A-polynomial of an alternating
knot. Then,

e . T .
+ MA(8) = det {M(’.l byvee ‘.m+1>_ Y <’,1 Ly Z_m+1>}
) ¢ Gy ty e s tM bty d,,)f"
where (i) M is a suitable integer, (ii) each i, is chosen arbitrarily such that

M(Z) is contained in M,, for p=1,-- ,m+1, and (iii) M7T denotes the

following matrix
M*=/ Mi —-M;x —M§i - —Mpaa
—Mi, Mi —Mi; - —Mgpie
—Mis —Mis M;, T fn+1,3

_Mf,m+1 "Mg,m-rl _Mg,m+1 o vaa+1,m+1
Proof will be given in 1.4, 1.5.

1.4. Let W,,,:, W;,, and B;,, -+, B; ,; denote the white and black
regions in K; respectively. Let D, ., -, D;,, denote the double points in
K; and let s; denote the genera of E;i=1,---,m+1). Then we see
immediately,

(1.18) bitgi+s;i—1=m;.
We may assume without loss of generality that

1.19) (i) (p+q)+ = +(pioi+q;-)+JP column corresponds to the
white region W, ; ,
(il) (py+q)+ = +(Pici+q;_)+p; +I™ column corresponds to
the black region B;,,
(iii) n,+ - +n;_,+7™ rvow corresponds to D;,, for i =1, .-,
m+1.
(We have only to change the permutation of columns and rows, if
necessary.) For the sake of brevity, we say, for example, the column
corresponding to W, ; W, ,-column and say the row corresponding to D, ;

D; ;-row. And we denote, for example, M G) by M (%‘ )
1,1
Now, let us take a point, called the center, from each white region
and a point from each black region, and fix them. Moreover, we take

a point from each component of the complementary domain of E;(i=1,
--,m~+1), and fix them. We call it the center of the complementary
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domain. The subset G;(or G¥) of S® obtained by connecting the centers
of all the white regions (or all the black regions) with the double points
lying on their boundaries will be called the graph (or the dual graph)
of K;. The center of each white region (or each black region) is called
the vertex of G;(or G¥) and the segments of G,(or G¥) connecting two
consecutive vertices are called the sides of G;(or G¥).

Let T be a tree” in G;. The subset of G¥ consisting of sides disjoint
to T will be called the dual of T, denoted by T*. Then, we see

(1.20) If T is a maximal tree in G;, then T* is also a maximal
tree in G¥.

Let T; be a maximal tree in G; and let us fix it. Since T; contains
p; vertices, it contains p;—1 sides. Then it follows

Lemma 1.21. There exists 1-1-correspondence @; between p; vertices
except one vertex, the center of W, », say, and p;,—1 sides of T; in such
a way that each side of T; corresponds to one of vertices lying on its side
by @;. Moreover a correspondence @; is unique. In the same way, there
exists one and only one 1—1 correspondence ¥ between q;+s;+1 vertices
except one vertex, ome of the centers of components of the complementary
domain S*—E;, and q;+s; sides of T¥.

Since this lemma will be proved by induction on the number of the
sides in T;, we omit the details of proof.

®; naturally gives rise to 1—1 correspondence between W, ,,--, W, ,_,,
and D;,, -, D;p;-,, and @¥ gives rise to 1—-1 correspondence between
B;.,,B;, and s; components of complementary domain F;,, -, F;;
and ¢;+s; double points D; p;, «+, D;n; (n;=p;+q;+s;—1). We may as-
sume that @(W;,)=D,,, (pzk(Bi,F):DiJ’iﬁ—l‘fl; ¢T(Fi.v):Di,ﬁ;+qi+vA1~ (We
may have only to change the numbering of the double points, if neces-
sary.) We should note that there is no double point corresponding to
m+1 white regions W, ,, -, W,_..5,.,. We may assume, moreover, that
W, and W, »,,, have a side in common, because the outer boundary
C, of E, for some 7 is also the outer boundary of E, ,. See 1.1.

1.5. We say the transformation from a matrix M=(a;;);_,,....,.

F=1,+2.m

to a matrix M’:

7) By a tree is meant the connected subset of G which contains no loop. A tree is called
maximal if it contains all vertices of G.
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is obtained by adding essentially «,, times of the first row, - ,Q,, times
of the n'™® row to j™ row and by adding essentially «, times of the first
row, -+ , Q,, times of the n™ row to j,™ row, --- Then it will be easily proved

(1.22) The essential addition is the elementary transformation, if
Qg 0, are all x1. '

By the elementary transformation is meant the transformation obtained
by applying a finite number of times the following three operations
E or E¥):

E(E¥): To exchange two rows (or two columns).

E(E%¥): To add » times of a row (or a column) to the other row

(or column), A being integer.

E(E¥): To multiply a row (or a column) by =+1.

Two matrices are called equivalent if one can be transformed into
the other by elementary transformations.

We shall transform the Alexander matrix A.

Let D, ;,, -, D; j,, in which D; ; is contained, be double points in K;
lying on Wi,j for j=1,.-,p;,—1. Then we see

(1.23) N is even, and just ome half of all corners of W,; at these
double points are dotted. (cf. Lemma 6.3 [8])
Moreover, we have

(1.24) The signs of all elements in A(p%'l I?,"""'*l) are constant.
i1t i, P;

(cf. Lemma 3.1 [7])
Hence we can denote these elements different from 0 by é&;f or &;-1,
&==+1. Let us assume, then, A(D; ;, W, ;)=A(D; ;,, W; ;)= - =A(D;,

Ju»
Wi,j):ei'l and A(Di.jp.+1) Wi,j):A(Di,j;L+2) Wi.j): :A(Di.f“ Wi.j):‘sit;
where p=A/2. Now we essentially add &; times of D; j-row, -, D; ;.-

row to D, ;row, and essentially add —¢&; times of D; Ty TOW, -, Dy 5~
row to D; ;j-row. Thus A is transformed into a matrix A’. Then it follows
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(1.25) A’ is equivalent to A.

Moreover, we have

(1.26) A'D,;, W.;) = aiji]-(]-_t)) A'(D;;, Wii) = aijil_tailij ’
where a;;;; denotes the number of the undotted corners of W; ; at all double
points in K, lying on W, 7» and where a; ;, denotes the number of the dotted
corners of W, ; at all double points in K; lying on W,, N W, e

Thus it follows

’ Di.l ot Di,P,‘—l — b; )
aen 4y )= 1))

i1t i -1
Moreover, we can prove

(1. 28) A’( L gf»m-ﬂ):o, for i =1, ,m+1.
z 1 ,49;

Proof. Because the common part of a black region and a white region

has only to contain the consecutive two double points, q.ed.

Since double points lying on the boundary of a black region of E;

are contained in K;, we have obviously

(1.29)
A/<D1,1‘"Dl,nl"'gi—1,1:::Di—1,n,'_lr Di+1.1"'Di+1,n,‘+1"'Dm+1,1"'Dm+1>nm+1> =0 ,
i1 i,49;

for i =1, ,m+1.
Next, we shall decide the form of the matrix
o/ Dy Dipil\ i . s
y=A <W, 1 W].f:j 1> (¢ =+17).

Since Pj; is transformed from P;;:
= Di,l o Di'),'—1>
Pz] A<Wj,1 vee Wj,pj ’
we shall first decide the form of P;;. From the definition, we have

(1. 30) If E; [\Ej =¢, A( V%,l Di""”) =0.

in Wi,
Let E‘,-,\E,:C,, /=min(Z, j). Then elements of P,;; are given as
follows :

1.31) (i) If D, does not lie on WJ-,“, then
A(Di.m Wj,l") =0.
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(i) The case where D; , lies on Wj_,,b.
(@) If E; stands on the left hand side in the positive
direction on C,,
A(D;, Wj-u) = &;-1.
(b) Otherwise, A(D;,,, W;.) = &L
Hence, we can decide the elements of P;; as follows :

(1.32) Let D;g, - be the double points except D;, in K; lying on
Wi,u-f\ Wj-lb-
(i) If E; stands on the left hand side in the positive divection on
Cl, A/(Di,m Wj,ﬂ-):A(Di,m Wj.p)-lr‘?;A(Dé,s, Wj,p-)"""-
(ii) Otherwise, A'(D; \, W; ) =AD;\, W;u)—EAD; g, Wju)—--.
Thus, we have from (1. 32),

(1.33)
(i) If E; stands on the left hand side in the positive direction on
C;, then A'(D;, W, )=a—5,
(ii) Otherwise, A'(D;,,, W; ) =(a—B)t,
where &, B denote the numbers of the dotted and undotted cormers of Wi,
at all double points in K; lying on W;, ~ W, . respectively and p==p;.
Thus it follows

won w( )< mlg) ). s

Let A” be a matrix obtained from A’ by adding all W, ,-column, ---
W;. p;-,-column to W; ,-column for i=1,.--,m+1. Then it is clear that

’7 Di,l Di,ﬁ,-—l —
(1. 35) A ( o ) —0.
Moreover, we have
(1. 36)

A//<D1.1"'Dx.P;—f"Di—1,1"'DJ'—1.1’j_1—1, Di+1,1ﬁj+1—1”'Dm+1,1"'Dm+1.Pm+1—1> =0.
Jj.bj

N
Because A”(D;,, W; p,-)=21 A'(D;,, W;u)=0.
=1
Let E; consist of the outer boundary and s; standard loops of the
second kind C; , -+, Cis,.' C;, are the outer boundaries of E;,. Then let A"/
be a matrix obtained from A” by arranging s; columns W; ,, -column, ---,

Wi, ps'fcolumn, after B;,—column. We should note that W, ,-column
and W,,., s,,,-column do not move. Let us denote

g,/,(Wr,Pr’ Wm+1,ﬁm+1) = Ao ’
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Then it follows by noting that @¥ in Lemma 1.21 is unique,
D: 4. - D. .

1.37)  det A0< i.0i "+ Dini ) R

(1.37) e Bis+ Bigy Wi, = Wi oy, +

where v is a suitable integer.
Moreover, if g(E;)=0, E; is bounded only by its outer boundary.
Hence we have

(1.38) If the genus g(E;) of E; is zero, then

AO<D1,1"'D1,111—1"'Di—l,l"'Di—l.P,-_l—1’ Di+1.1"'Di+1,ﬂ;+1—1Dm+1.1'"Dm+1,11m+1—1> =0.

L eee .
i1 i4;

If E,(i-+m+1) are bounded by C;
Di,ﬁj Di,nj

B, e Bi,q,-Wil.ﬁ. Wis.,ﬁs.

following : & P

(1. 39) det A =det ; A(t) B,(t) - B,,,..(%)

Bz1(t) Az(t) BZ.m-I—l(t)

Bis®) Bonro) -+ Ayr(®)

<, C;,., C;, then i, 4, -, 15, <4, and
=0. Thus we have at last the

1?2

hence A,

where

— Di,l"' Di, i-1) — A’ Di.1 i Di. i-1
Ai(t) N AO<W¢'.1 Wz‘j,'—i) =4 (Wi.l Wi.i;—l) ’

Bit) = Ay ) = A e ).

j.pj-1 sttt J.bj-1

Thus the proof of Theorem 1.17 is complete.
1. 6.
Corollary 1.40. If we set

D) = det (b7 ) (B )

R P (SRR Pt

then
m+1 - Z‘j
D) = T det M,.j(l.j).
Proof. It is sufficient to prove that D(O);ﬁlAj(O). Since one of

B;;(0) or B;;(0) is always O, noting the numbering of E;, we obtain the
required result.

This corollary expresses that the special alternating knots play an
important role in the studying of D(0).
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§2. Determinant

2.1. The square matrix M=(a;;);.j......., is called the matrix of special
type on the rows (or the columns) if it satisfies the following conditions
(i), (i) (or (ii)*):

(i) a“>0, a,-j_ﬁ_o, fOI' Z‘, j:]., b ,n, i»#—’j.

(i) 3a;,;=0, fori=1,-,n,

ji=1

((11)* éa;jzo, for ]:1, . ,n)-
Moreover, M is said to be of (P)-property on the row (or the column)

if it satisfies the following condition :
(iii) There exists an ¢ such that > a;;==0.
j=1

((iii)* There exists a j such that iaij:l:O.)
. i=1

M is called the matrix of strongly special type on the row (or the column),
if it is the matrix of special type on the row (or the column) and

M(;‘ z.i’> (1<i,<--<i,<m) are of (P)-property on the row (or the
1 ?

column). We first state a well-known result about matrices of this type.

Lemma 2.1. If M is a matrix of special type on the row (or the
column) and if M is of (P)-property on all rows (or all columns):

2.2) Sla;,; >0 for all i,
then det M > 0.

From this Lemma, it follows

Lemma 2.3. If M=(a;;); j-1....n» 1S @ matrix of special type on the
row (or the column), then det M=O.

Proof. Let N(t)=(b;;):.j-1......,» Where b;;=a;;, b;;=ta;;. Since N(Z)
satisfies the condition (2. 2) for 0<_¢<"1, it follows det N(¢)~>0. Moreover,
since det N(¢) is a continuous function of #, it follows det M=det N(1)
= }im N(t) =0, q.e.d.

>1-

We shall prove the following

Lemma 2.4. If M is of strongly special type on the row (or the
column), then
(i) det M >0, .

(ii) (—1)i+fdetM(;.>go, G, j=1, -, %)

(i) det M(i) g| det M(j) | G, =1, ,n).



290 K. MURASUGI

Proof. Since (ii), (iii) are proved in the same way as used in the
proofs of Satz 2, Satz 3 in [3], we omit the details. We shall prove (i)
by induction on #. The case n=1 is clear. Suppose that Lemma is true
for the case #—1. We may assume without loss of generality

(2 5) a11+a12+"'+a1n>0'

We may assume that at least one of a,, @, -, a,, is different from
0. For otherwise, it follows det M=a, det M G)\)O. Let a,,==0.
Now, let us denote

detM = det/a, 0 O ---0 \= a,,det M’ = a,, det (b;,),
ax bzz bza *t bzn
as baz b33 ban
A bnz bnS ot bnn
where
(2.6) bis = @y — "0 (1),
a;.a,; ..
bi,-:a,-,-~7’ (Z:{:])

11

To prove Lemma, it is sufficient to show that M’ is a matrix of

strongly special type on the row. From (2.6), it follows immediately
that b;,>0, b,;=<0. Moreover, it follows éb” =i}<a,-j—€’;i‘j> = ia,-,-
=2 j=2 11 j=2
ai n ” . n .
——3 g =3 aij—%“z a,;=0. In particular, b,,+---+b,, >0. Thus we
j=1

a, i=2 1=t

see M’ is of (P)-property on the row. Next, we shall prove that

M ’(,z.l :-P> are of (P)-property on the row. Suppose M ’(ﬁ-l 21") be not
1 b 1 ?
of (P)-property on the row. For the sake of brevity, we shall prove the

case on M’@g §> Then we see

2.7) by, +by, +tby,, =0,
b43 +b44 +"'+b4,p+1 =0,

bp+1,3+bp+1,4+"'+bl,+1_l,+1 =0.
. a; .
Since bja+"'+bj.p+1:aja+"'+aj,p+1_a—]l(a13+"'+ax,p+1):01 for j=3,
1
-, p+1, and since a,, > —(a,+ - +a,,), we have

(2.8) @y +aj;,+-taj ., =0, for j =3, ,p+1.
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Thus, it follows M (gi gii) is not of (P)-property, which contra-

dicts the assumption. Thus, M’ is a matrix of strongly special type, q.e.d.

2.2. A matrix M=(a;;) of strongly special type is said to be k-
strongly special type if it satisfies the conditions

(2.9) la;;—a;| <1, for alli,j.

We can first prove

Lemma 2.10. Let M= <Zg) be a matrix of k-strongly special type on

the row and the column, a, b, ¢, d being integers. If det M=p, then a or
d<p. If, in particular, p=3, then matrices without s-equivalent admit
only the following 7 matrices:

(o) (L) ) G (L)
(272 (a7)

Proof. If a=1|b| or d=|c|, then it is clear that a=|b]|<p or
lcl=d<p. Leta >|b|,d >|c|. Seta=—b+¢&, d=—c-+n, where & n=1.
Since p=ad—bc=an—cs=an, it follows a<p. The latter half of this
Lemma will be easily shown.

Our main theorem in this section, which is an extension of Lemma
2.4, is the following

Theorem 2.11. If M=(a;;); j.1....n, @;; being integers, is a matrix
of k-strongly special type on the row and the column, then
det M = min {a,;, @y, *** ,Q,,} .

Proof. Let det M=p. Theorem will be proved by induction on »
and #. The case n=2, the theorem is the same as Lemma 2. 10.

Suppose that the theorem holds for the matrix N such that degree of
N=n—1 and that det N<_p. We may assume without loss of generality

that @, +a,+ - +a, >0. Let us set p,=(—1)""" det MG), for =1, - ,n.
Then, it follows from Lemma 2.4 that p,=p, and p,=0. Now, if
p,<p, then the theorem is proved by applying the assumption to M G>

Otherwise, it follows a,<p. For, let a, >p. Then since p,=p; and

a,;<0 ({==1), we have a;p,<a,;p;. Thus it follows p=a,p,+a,.p.+

+a,p,=(ay+a,+ - +a,)p,=p, >p. This is a contradiction. Thus we

have a,<p, q.e.d.
Moreover, it follows
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Lemma 2.12. If M=(a;;); j-1...., 1S @ matrix of strongly special type
on the row and the column, then

(2.13) S detN,..,>0, forp=1,-,n,

1§i1<"'<"p§”
where

Ml.'“.ip =Gy Ayt Qipy 2t Gy

021 LRy ail,z cee aip,z “ee aZ”

a, ail.n aip.n A

Proof. We may assume without loss of generality that

(2 14)1 a11+alz+'°'+aln>0)
(2 14)2 Ao+ erz,, :> 0 ’
(2.14),-, Qporin-1t @y >0,
(2.14), a,,>>0.

First, N,l,p/> is a matrix of special type on the column, because
M is a matrix of special type on the row and the column. Thus it
follows from Lemma 2.3 that
det N,,....,( 1) 0.

(We should note that N, ... ; p<> is not necessarily a matrix of strongly

special type.) We have to prove that one of the terms in summation
has a positive value, that is, it is of strongly special type. To do this,
we shall prove that N,,., (for p=1, .-, #) is a matrix of strongly special
type. Set N=N,,.,. Then N is of (P)-property on the column from

the assumption (2.14),. Next, N G) is of (P)-property on the column

from (2.14),. In the same way, we can generally prove that N Gg g)

(g<’p) are of (P)-property. Moreover, NG%g) is of (P)-property,
12 .-- p

because it is the same as M<12 p>’ In the same way, N<: i), (r>1)
is of (P)-property from (2.14),. Thus it follows that N is a matrix of

strongly special type, q.e.d.
§3. Applications to knot theory

In this section, we shall apply the results obtained in §§1, 2 to the
knot theory.
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3.1. When an alternating knot £ is divided into m+1 special alter-

nating knots k,, --+, k,., by m standard loops of the second kind, we say
k is the x-product of k,, .- ,k,.,, and denote by
3.1) k= kxkx - %k, .

We have first to prove the following

Theorem 3.2. Let M=(a;;); j......, be the knot matrix of a special
alternating knot k. Then M (;) (=1, -+ ,n) are matrices of k-strongly

special type on the row and the column.

Proof. It will be shown from (1.14) that A <;> are matrices of

special type and that these are of k-property. Hence we have only to
show that M <;> are matrices of strongly special type. We shall show

that M (Z‘ ;*“) is of (P)-property on the row and the column. Now
1 A—1
suppose the contrary. For the sake of brevity, we assume that =1,

51=2, - ,j,_,=M\. Then it follows

(3.2) [ Griiarit Gainaiet o iy, =0,
$ @rizanrt Auinaiat o F e, =0,
Ay \+1 +an-)\+2 +'"+an.n = O’
or
(3.3) ( Apiratri T Oioarrt o+ 0pri, =0,

1 @yiiaiztOuianat ot =0,

Arirn FOizn +o+as, =0.

And it follows, moreover,

(3.4) If ome of (3.2) and (3.3) holds, then it follows the other.
Because, let (3.2) hold. Then, it follows (@, 4y i1+ +@pprs)+ -+

(@1, o+ +a,,)=0. Since M G) is a matrix of special type, the value

of the sum in each bracket is =0. Hence we have (3. 3).
Thus, we have from (3.2), (3.3)

{ Ari11 = Apirz = = Gyipp = 0,

LBy T By = 0 = A\ = 0;

and
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i Aint1 = Qopt1 = *°° = Ay a1 = 0,
al,n —_ aZ.n = eees — a}\'" = O .
Hence M is of the form M =(3||2> This shows that the knot projection

is separated into two parts, which contradicts the assumption in 1.2.
The proof of Theorem 3.2 is thus complete.
From (1. 14), it follows, moreover,

(3.5) @uﬁ@):&uﬂ@>=nu=@uW@)

3.2. Let k=Fkx---xk, ,, and denote the A-polynomial of k& by
A(#). Then, it follows in the same notations as used in corollary 1. 40,

Lemma 3. 6. D(0) >0.
Proof. Since D(O)zrfi_ilA;(O), it is sufficient to prove A;(0)
:detM,-,-<p f>>0, where M;; denote the special knot matrices of k;.

b

From Theorem 3.2, it follows M,,(f}‘) are matrices of k-strongly special

type on the row and the column. Thus, we have det M,-,-(g’:>>0, q.e.d.

On account of this Lemma, the fundamental theorem 1.17 can be
stated as follows :

3.7) M”ZM”ZWAMG”%WJJM%@”@ﬂ}
Lyt U (2T P
Now, Lemma 3.6 is equivalent to the following theorem which is
obtained in [4, p. 265] [7], [8].

Theorem 3.8. The degree of the A-polynomial of an alternating
knot k plus one equals twice its genus plus its multiplicity p.

Proof. Applying the same notations as used in §1, Lemma 3.6 is
equivalent to the following.

(3.9) The degree of A(t) is equal to (p,+1)+ - +(p,.—1)=(p,+ -
+pm+1)_(m+1)‘

On the other hand, Seifert showed that %k is spanned by an orient-
able surface without singularity with genus %, where 2h=mn,+ -+ +n,,.,
—(g,+ - +qt+m—p+2. (See [12].) Hence it follows,
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2h = (= @)+ -+ + (M1 = i) =M — pp+2
=p+s— D+ + Dt Spn—1)—m—p+2
= (Pt DPps) F (S F o +5,0) —(m+ 1) —m—p+2
=p++Pptm—1—m—1—m—pu+2
=D+ D —m—p.

Thus we have

(3.10) 2h+p—1 = p,+-+pp—m—1.
Denoting the genus of % by g, it follows (cf. [12])
(3.11) The degree of A(t)<2g+p—1.

Hence, it follows from (3.9) (3.10) (3.11), 2g+u—1=the degree of
A)y=(p,+ -+ pp)—m—1=2h+p—1=2g+p—1, which is the required
result, q.e.d.

Theorem 3.12. If k is a special alternating knot of multiplicity 1,
then A(1)=1.

Proof. As is well-known, A(1)=+1. Thus it is sufficient to prove
A(1)=0. It follows from (3.7),

AQ) = det {M(:’;)—Mt(g)} —det[ O G €upi \ =0,

where &;,=a;;—a;;, &;=—¢&;, q.ed.

We see from the above Lemma that there are knots which cannot
be transformed into the special alternating. The knot shown in Fig. 4
is one of these knots, for A(f)=1—5¢{+7# -5+ and A(1)=—1.

Theorem 3.13. Let A(t)=c,+c,t+ - +c, ,t?™" be the A-polynomial of
a special alternating knot, then it follows (—1)’c; >0, for j=01,---,p—1.

Proof. From (3.7), we have

a) = det{i (4) -1 (3)}.

Then since (—1)¢;= L[

il d—]A(t)] , it follows from Lemma 2.12 that
. t=0

v
B.14) (~1Ve—=L S N, ...,>0, ged.

Jlisi<iSij=r
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3.3. Let R be a ring of all polynomials f(¢)=a,+a,t+---+a,t*, a;
being integers, satisfying the following conditions :

(3.15) a, >0, a;,=(-1"a,.;, for i=0,--,n.

We introduce a semi-order, denoted by =, in R. Let f(t)=a,+a,t
4o ta,t”, g)=0b,+bt+ - +0b,t". By f({)=g(¢) is meant that

(3.16) n=m and |a;|=|b;| for ¢=0,--,m.
Then, as is shown in [6], [12], it follows
Lemma 3.17. R coincides with a ring of all A-polynomials of knots.

Proof has been given in [12] in the case that the multiplicity u of

knots is equal to 1, and given in [6] in the case p >1.
Let us denote, moreover, the subring of all polynomials satisfying

the conditions
(3.18) (=1)a; >0, for all 7,

by 2.
Now, let an alternating knot k=Fk,* --- xk,.,. Let the A-polynomials
of B k,, - ,k,., be denoted by A(¢), A(?), -+ ,A,,..(f). Then it follows,

Lemma 3.19, A=A A, (D).

Since the proof of this Lemma has been given in [8, pp. 247-248],
[9, pp. 181-185], we omit the details.
Hereafter we shall symbolize these as follows :

(3.20) Af) = By(B)x--xA,, (1) .
From Theorem 3.13, Lemma 3.19, we have immediately,
(3. 21) A(_ 1) = AI(_ 1) o Am+1(~ 1) .

Moreover, we have,

Lemma 3.22. The totality B of all A-polynomials of alternating
knots is contained in A. [9]

In the following, it will be shown
(3.23) A=+=B.
3.4. The main theorem of this section is the following

Theorem 3.24. The special alternating knots with A0)=1 admit
only elementary torus knots or their products.
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By an elementary torus knot is meant
a special alternating knot whose graph or
dual graph of its projection is a polygon.
(See Fig. 5)

Proof. Let M=(a;;);.;-1..., be the
knot matrix of a knot satisfying the con-
dition in this theorem. Then, we see from
Theorem 2. 11 that at least two of «,,, -+, a,,
are equal to 1. We shall prove the theorem
by induction on #n. If =2, it follows

M:(_% _D, from which the theorem follows. Now suppose that

Fig. 5.

the theorem is proved in the case #—1. We may assume without loss of
generality that

(3 25) a,; = 1, ay,; = —1’ Az =

Then it follows that A(0)=det M ( > et M ( )

Let N=/a,+a, a,- Aoy

aal+aaz Q33" Qs
n1+an2 ana : nn

N is the knot matrix of a special alternating knot k,, where k, is
transformed from % by applying in its projection the following operation
as is shown in Fig. 6:

Fig. 6.

Denoting the A-polynomial of k, by A(#), it follows
. o (1\ ~(12\
A0) — detN<1> - detM<12> —1.

Thus we see from the assumption of the induction that %, is an
elementary torus knot or their product. Hence k. must be also an ele-
mentary torus knot or their product, q.e.d.

(3.26) The A-polynomial of an elementary torus knot is of the form :
l—t_|_..._|_(__1)iti_|_,__ _l_(_l)ntn.
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The converse of (3.26) is also true. That is,

Lemma 3.27. An alternating knot whose A-polynomial is of the
form, 1—t+--+(—1)"t" is an elementary torus knot.

Proof. Let k=Fk*---xk,,,, and denote the A-polynomials of &,
ki, k0 by A, A(P), - ,A,.(8). Then, we see from Lemma 3.19
and (1.40) that A,(0)=.--=A4A,,,,(0)=1. Hence it follows from Theorem
3.24 that k; are elementary torus knots or their products. Then,

A(t) = A1(1") Amﬂ(t) ’

which implies m=0. Hence k is an elementary torus knot or their pro-
duct. It is clear, however, that 2 is not a product knot, q.e.d.

3.5. From Theorem 3. 24, (3. 26), Lemma 3. 27, we have the follow-
ing

Theorem 3.28. An alternating knot with A(0)=1 is represented as
the x-product of some elementary torus knots.

This theorem will follow Lemma 3.30 about the number of the
double points in a knot projection. Before Lemma 3.30 is stated, we
state the following

Lemma 3.29. Let k=Fkx - xk,,,, and denote the numbers of the
double points in K; by n;. Then the number of the double points in K
equals ny+ - +n,,.,.

Thus k possesses an alternating projection, in which there are at
most #n,+ - +n,., double points. From Lemma 3.29, it follows

Lemma 3.30. An alternating knot k with A(0)=1 possesses a projec-
tion, in which there are at most 2n double points, n denoting the degree

of A(%).

Proof. %k can be represented as the x-product of at most # special
alternating knots. Then, every x-component is an elementary torus knot
whose A-polynomial is 1—¢. Since the number of the double points of
it is 2, it follows the number of double points in K is 2n. If %k can be
represented as the #-product of m(< n) special elementary torus knots,
then the number of double points in K is less than 2, q.e.d.

Corollary 3.31. Alternating prime knots whose A-polynomials are of
the form: A(t)=1—c t+c,t?—c,t°+t*, admit only the following knots: 5,
62’ 63’ 76) 77’ 812'
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Hence it follows :

(3.32) Projection 8,, 8., %> 9> 9, 9, really represent non-
alternating knots.

Last of all, we shall show that 3 projections® 9,,, 9,,, 9,, really
represent non-alternating knots.

3.6. In the following, we denote knots 9, and their A-polynomials
by k, and A,(#) respectively. Let us denote the elementary torus knot
whose A-polynomial is of the degree #n, by k., and denote its A-
polynomial by A,(?).

Now, since A (f)=1-—3t+2t*—¢*+2t*—3t°+¢° and A, (f)=1—4¢+6¢7
—5* 4+ 68 —4¢°+1% it follows that A,(1)=—1, A,(—1)=13 and A,(1)=1,
Ay (—1)=217.

Suppose k,;, k,, be alternating. Then it follows from Lemma 3. 29,
that each of k&, k, has to be represented as one of the following
sx—products :

(1) koxkorkaka

(@) karkoykkarkas

(3)  kekkoykkaykkaykkys

(4)  koyrkaykkaykkaykkayxkes .

In each case we set {=—1. Then we have the following

1) Ap(—D{Aa(—1)}* =32>>13,27,
2) {Pa(—DF{Aa(-1)}* = 36>>13,27,
3) Au(—D{Aan(-1)}* = 48>18,27,
4) {A(—1)}°=64>13,27.

All cases contradict (3.21). Thus we have
(3.33) k., k, represent non-alternating knots.

To show that 9,, represents a non-alternating knot, we require some
preparations.

3.7. In this and next paragraphs, we make an exact distinction
between knots and links.

Let M=(a;;); j-1......» be the knot matrix of a special alternating knot
k. Let N=(b;;)i j-1....n» be a matrix obtained from M as follows:

8) It will be easily shown from Theorem 3.13, Lemma 3.19 and by simple computations
that two knot projections 8,9, 94 represent non-alternating knots.
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(3. 34) b;; = a;;+min (la;;l, la;l), @ ==7)

bi;; = a;;— Z’lmin(la;i’, |aji|)-
Ji
Then, if follows

Lemma 3.35. N is the knot matrix of a special alternating knot k,.

Proof. Let W;, W; be two regions in K such that W; W,=¢.
Then, by applying, as much as posible, the operation as is shown in
Fig. 7, we have a knot. It is clear that such a knot is k.

/

Fig. 7.

We shall call &, the frame knot of k. We can naturally extend this
concept to links, but we should note that link projection may be separated
into some parts. (See Fig. 8)

(DO-0OO

Fig. 8.
In all cases, it follows
(3. 36) = o,
where w, u, denote the multiplicities of &, k,.

3.8. Since A,(#)=3—6t+7t—6£*+3t", it follows A (1)=1, Ay(—1)
=25. We shall first prove

(3.37) If k, is alternating, it must be a special alternating knot.

Proof. By noting A(1)=1, it follows that if &, is alternating and
if it is not a special alternating knot, then A, (f) must be represented
as one of the following x-products :
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1) A (t)x(3—5¢+3¢t7),

(2) Ae()x3(1—1),

(3)  Ap(t)Au(#)x3(1—1),

(4) 31—y xAgy(F)xAx(2) ,

(B) (B=5t+3t)xA(B)xA(D),
(6)  B(L—1)A(B)xA(E)xA(E)

In all cases we set t=-—1. Then every value is larger than A, (—1)
=2b. This contradicts Lemma 3.21. Thus k,, must be a special alter-
nating knot.

Now, for the frame knot of a special alternating knot, we can prove
the following

Lemma 3.38. The frame knot k, of a special alternating knot whose
A-polynomial is of degree 4, admits only an elementary tovus knot k., or
a product of two knots k.

This will be proved by simple computation, if we note that at least
one of b;;, b;; in the knot matrix of &, N=(b,;) is equal to O.
From Lemma 3. 38, we have, moreover, by computation,

(3.39) In the knot matrix M of a special alternating knot whose A-
polynomial A(t) is of the degree 4 and A(0)=3, at least two of a,,, -, as
are equal to 1.

Thus, it follows from Lemma 2.10, (3.39) and from the fact that

M is of k-strongly special type, without s-equivalent, that M admits
only the following :

(3. 40) W/ 1 0-1 0 0\,
0 1-1 0 0
0 0 2-1-1
-1 0 0 2-1
0-1 0-1 2
@/ 1-1 0 0 0\,
0 1 0-1 0
-1 0 3 0-2
0 0 0 1-1
0 0-3 0 3/
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3) 1-1 0 0 0\,
0 1 0-1 O
-1 0 3-2 O
0 0-2 3-1
0 0-1 0 1
4) 1 0-1 0 O
0 1-1 0 O
0 0 4-3-1
-1 0-2 3 O
0-1 0 0 1

These matrices correspond to knot matrices of 8, 9,, 9, and of a
product of 3, and 7,, respectively. Thus we have the following

(3.41) Special alternating knots whose A-polynomials A(t) are of
degree 4 and A(0)=3, admit only the knots: 8, 9,, 9, and a product of
3, and 7,.

This naturally follows
(3.42) 9,, represents a non-alternating knot.

Thus, it has been really shown that all non-alternating projections
at the end of [11] represent non-alternating knots.

Hosei University

(Received July 9, 1960)
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