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On Mappings between Algebraic Systems, I1

By Tsuyoshi Funwara

In the previous paper [1], we have defined the P-mappings*’ and
the P-product systems®™, and shown that the algebraic Taylor’s expan-
sion theorem*’ holds between the P-mappings and the P-product systems.
And some fundamental results with respect to P-mappings have been
derived from this theorem.

The present paper is the continuation of the paper [1]. In the
section 1 of this paper, we shall introduce the concept of the By-conjugate
relation between families P and @ of basic mapping-formulas*®, and it
is a relation between P-mappings and @Q-mappings. And, by using the
algebraic Taylor’s expansion theorem, we shall show that this relation
is equivalent to the existence of some inner isomorphic mapping between
the P-product system P(B) and the Q-product system Q(B) for every
By-algebraic system B. In the section 2, we shall define the deriva-
tions between primitive algebraic systems, by using the concepts of the
(Ay, Bw)-universality* and the By-conjugate relation. And we shall
show that one of these derivations is the usual one in the case of the
commutative algebras over a field of characteristic 0. Thus the deriva-
tions can be considered as the mappings which are some natural
algebraic generalization of homomorphisms.

§1. Some relations between families of basic mapping-formulas.
Let R be a set of relations of the form
bl = Fl(au Tt am) y Tt bn = Fn(au ttty am)

on a free ¢y-algebraic system F({a,, -, a,,, b,, -+, b,}, dPw). And let By,
be a system of composition-identities with respect to W. If there exists
a set S of relations of the form

a, = F’lk(bly Tty bn) y 2ty By = Fj:”(b“ o b")
such that

*)  Cf. [1].
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F({av Gy bl’ T bn} ’ BW> R)
= F({al’ oy Qs bv RN bn} » By, S) s

i.e.,, R and S are By-equivalent, then the system of W-polynomials
(1- 1) Fl(xl’ R xm) » Tt Fn(xu Tt xm)
is said to be By-regular, and the system of W-polynomials

Fik(yu ’yn) » "t F:'r:(yl’ 7yn)

is called a By-inverse system of (1.1). From the above definitions, it
is clear that any By-inverse system is By-regular.

Let P and Q be families Py {&,, ---,£,} and Qv win, -, 7,} of
basic mapping-formulas respectively. If there exists a system of W-
polynomials

(1'2) Fl(xl’ "'7xm)7 "'7Fn(x17 "')xm)

such that, for any system {@,, -, ®,} of P-mappings from any ¢,-
algebraic system 2 into any By-algebraic system B, the system {y-, -+,
Y} of mappings, each of which is defined by

(@) = Fy(p(a), -, p,(a),

is a system of @Q-mappings, then the system (1.2) is called a By-trans-
lator from P into @. In the above definition, if the system (1.2) is
By-regular, then we say that P is By-conjugate to @, and denote it

by P2 Q.

Theorem 1.1. Let P and Q be families Py ,{&,, -, §,} and
Qv win, =, n,} of basic mapping-formulas respectively. And let

(1'3) Fl(xl? ""xm)’ "',Fn(xlf "'yxm)

be a system of W-polynomials. Then, in order that the system (1.3) is a
Byw-translator from P into Q, it is necessary and sufficient that

Fv<Pﬁlv(§1 (xl) » "t §1(xN(v)) ) y» T mev(gl(xl) y "ty El(xN(v)) \)>

Ex), o Eine))  \E(x), e £

En(x1),s s £ new)
(1 4) lj-inm,v(Fl(gx(xl) » T gm(xl)) » T Fl(El(xN(v)) y T Em(xN(v)))>

Fn(§1(x1) y Ty gm(xl)) y "t Fn(51(xN(v)) y " fm(xN(u)))
for every v=1, -« ,n and every ve V.
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Proof of necessity. Let 2 be the free ¢-algebraic system F({x,, -,
Xnwr}> Py), and B the free By-algebraic system F({£,(x,), -, E(Xnw), =+ »
E (%), E,(X*nw)}, Bw). Then it is clear by Theorem 1.3 in [1] that
there exists a system {®,, -, ®,} of P-mappings, each of which satisfies

(1.5) Pu(xn) = Eu(xy)  (N=1,--, N@)).

Now, let {y,, -, y,} be the system of mappings from 2 into B, each
of which is defined by

\lr\,(x) = Fv(wl(x) > "t ¢m(x)) .

Then {y,, .-, Y,} is a system of @Q-mappings from A into B, because
the system (1.3) is a Bpy-translator from P into Q. Hence we have
the following computation :

FV(P£10(¢1(x1) y T Wl(xN(v)) \) y 7T PEmv<¢1(x1) y "ty ‘p1(xN(u)) ))

Po(X1) 5 s P Xne) Po(X1) 5 s PolXnc)
= F(@,(0(xy, =5 Znw))s s Pru(0(Xy, 5 X))
= Y @(x;, 5 Tnad))
= Q,,,,u(‘l’l(xl), P (Ena)s s P, e (X))
= Q,,v,,<F1(fpl(x1) s Pul2)s s Fl(e(Xnvan)s ‘Pm(wa)))\)

Fn(¢1(xl) [ ?m(xl))’ T Fn(¢1(xN(v))’ Tt (pm(xN(v)))

Hence, by (1.5), the identity
Fv<P€1v(§1 (xl) y 51(xN(v)) )» Sty Pljmv<$1(x1) » " é?l(xN(,,)) ))
\fm(xl)r Tty gm(xN(v)) Em(xl)7 Tt gm(xN(v))
= quv<Fl (El(x1)> Tt 'Sm(xl))) Tt Fl ('—'{:1(xN(v)), Ty Em(xN(v)))>

..................................................................

Fn(gl(xl) LI Sm(xl))’ T Fn(fl(xN(v))7 B fm(xN(v)))
is valid in ®B. This identity can be considered as the one with respect

B . .
to =, because B is a free By-algebraic system.

Proof of sufficiency. Let A be any ¢y-algebraic system, and B any
By-algebraic system. And let {@,, -, ®,} be any system of P-mappings
from A into B. Moreover, let yr,, -+, Y, be the mappings from 2 into
B, each of which is defined by

¥u(a) = F(p(@), -, p,(a) .

Then, by using (1.4), for any v€ V and any a,, -+, aye, €2, we have
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‘!"v(v(al’ R aN(v)))
=F, (‘pl('v(an s aN(v)))» Tt (pm(v(av tty aN(v))))
- F <P51v<¢1(a1) ) ?1(aN(v)) ) y T P5m0<¢1(a1) y "t (pl(aN(U)) ))

........................

(pm(al) ) q)m(aN(v)) ¢m(a )) Tty ¢’m(aN(v))
'nw(F (?’1(“1) ', ‘pm<al)) , Fy (¢1(61N<u>) ) Pol@ne)
F ((pl(al) ) q)m(al)) F ((pl(aN(u)) T q)m(aN(u))))
Qm,v(\]fl(al), R ll"l(aN(u))r T ‘l"n(al)’ T ‘!’n(aN(v))) .

Hence {yr,, «--,,} is a system of Q-mappings from 2 into B. This
completes the proof.

Let P be a family Py ,{&,, -, %,} of basic mapping-formulas, and
let B be a ¢Py-algebraic system. Now let y» be a mapping from P(B)
into B. If there exists a W-polynomial F(x,, -:-, x,,) such that

"I"(Ebu R m]) F(bl’ B bm)

for every element [b,, -, b,] in P(B), then + is called an inner mapping
defined by F(x,, -+, %,,). Moreover, let @ be a family Qy w{7,, -, 7,}
of basic mapping-formulas. And let 4, ---, 4, be mappings from P(B)
into B, and ¥ the mapping from P(B) into Q(B) which is defined by

\y([bn T bm]) = [‘pl([bn T bm])’ T l\pn([bl’ s bm])]

for all elements [b,, -+, b, ]€ P(B). If each 4, is an inner mapping
defined by a W-polynomial F,(x,, -, x,,), then ¥ is called an inner
mapping defined by the system of W-polynomials F,(x,, -, x,,) (v=1,
-, n).

Theorem 1.2. Let P and Q be families Py, {&,, -, §,} and
Qv win, =+, 1.} of basic mapping-formulas respectively. And let

(16) Fl(x17 ""xm)’ "'>Fn(x1a :xm)

be a system of W-polynomials. Then, in order that the system (1.6) is a
By-translator from P into Q, it is necessary and sufficient that, for any
By-algebraic system B, the inner mapping V from P(B) into Q(B), which
is defined by the system (1.6) of W-polynomials, is a homomor phism.

Proof of necessity. Let B be any By-algebraic system. And let
®,, -+, @, be the mappings from P(®B) into B, each of which is defined
by

¢I4([b1’ R bm]) = bp,
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Then it is clear that {®,, ---, »,} is a system of P-mappings from P(B)
into B. Now let 4, -+, 4, be mappings from P(B) into B, each of
which is defined by

"‘P‘V([bl’ "ty bm]) = F‘v(¢1([b1) B bm])! M) ¢'m([b1» Sty bm])) ’ i-e-)
"P"u([bxr R bm]) = Fv(bu T bm) .

Then, {y, -,,} is a system of @Q-mappings from P(B) into B,
because the system (1.6) is a By-translator from P into Q. Hence, by
Theorem 1.1 in [1], the inner mapping

v [bl’ R bm] g [F1<bl7 tty bm)y R Fn(blv EA) bm)]
is a homomorphism from P(B) into Q(B).

Proof of sufficiency. Let 2 be any ¢,-algebraic system, and B any
By-algebraic system. Now suppose that {p,, .-, @, } is a system of
P-mappings from 2 into B. Then, by Theorem 1.1 in [1], the mapping

P: a—Ma) = [pla), -, P.(a)]
is a homomorphism from % into P(B). Since the inner mapping
v: [b,,0b,]—[F(,, -,b,), -, F,(b, - ,5,)]
is a homomorphism from P(B) into Q(B), it is clear that the mapping

Yo: a— \I,(IJ(a) = [F1<(P1(a), R} ¢m(a))’ R Fn(¢71(d), T (pm(a))]

is a homomorphism from 2 into Q(B). Hence, by Theorem 1.1 in [17,
the system {yr,, .-, 4.} of mappings from 2 into B, each of which is
defined by

"I’v(a) = Fv(¢)1(a)’ R (Pm(a)) s

is a system of @Q-mappings. Thus, the system (1.6) of W-polynomials
is a By-translator from P into Q. This completes the proof.

Theorem 1.3. Let P and Q be families P, &, -, &} and
Qv win, -+, n,} of basic mapping-formulas respectively, and let
(1 7) Fl(xlv ot ’xm)) Ty Fn(xu "’,xm)

be a By,-regular system of W-polynomials. And let B be any By-algebraic
system. Now suppose that the inner mapping ¥ from P(B) into Q(B),
which is defined by the system (1.7) of W-polynomials, is a homomor phism.
Then Y is an isomorphism from P(B) onto Q(B), moreover the inverse
mapping V' is an inner mapping defined by a By-inverse system
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(18) Fik(yl» -",J’n)y "',F:,:o(yl» "')yn)
of the system (1.7).

Proof. Let [d,, ---,b,] be any element in P(B). Then, by the
definition of the inner mapping ¥, we have

Y([b,, -, b,]) = [Fb,, -, b)), F,(b, =, b)].
On the other hand, it is clear that
FXF(b,, - ,b,), -~ ,Fb, b)) = b, (p=1, ,m).
Hence we have
Y (Ley, 6] = PLers 5 €, D)

for every element [c,, -+, c,] in the domain of ¥, where ® denotes
the inner mapping from Q(B) into P(B) which is defined by the By-
inverse system (1.8). Therefore the inner mapping ¥ is a one to one
mapping. Hence it is the rest of our proof to show that ¥ maps P(B)
onto Q(B). Now let [¢,, =+, c,] be any element in Q(B). Then we
have

Fy(Fi¥(c,, =, ¢,), ~, FE(c,, -, ¢,)) = ¢ (v=1,,n).
Hence we have
V(Fi(e, ), s Faien, o, e)]) = Ley, o5 6]
Therefore ¥ maps P(B) onto Q(B). This completes our proof.

Theorem 1.4. Let P and Q be families P, i, --+,§&,} and
Qv win, - ,n, of basic mapping-formulas respectively. Then the follow-
ing three propositions are equivalent :

(a) P is By-conjugate to Q.
(b) There exists a By-regular system of W-polynomials
(]- 9) Fl(xl? ""xm)» '"»Fn(xu -~-,xm)

such that, for any By-algebraic system B, the inner mapping from P(B)
into Q(B), which is defined by the system (1.9), is an isomorphism from
P(B) onto Q(B).

(¢c) There exists a By-regular system of W-polynomials
Fyx,, =, x,), =, F(x, -, x,)
such that
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................................................

‘-i:m(xl)v Tt Em(xN(ll)) gm(‘xl)’ R Em(xN(u))
&VQ'I,VD<FI (El(xl)’ Ty é:m(xl))’ B F1 (El(xN(v)) » " E;«n(xN(v))))

FV(PEIv('Sl(xl) > T é:1(-xN(v)) ) y "ty Psmv(gl(xl) y T §1(xN(v)) >>

..................................................................

Fn(gl(xl)’ ) Sm(xl))’ T Fn(§1(xN(u))y R Em(xN(v)))

for every v=1, .- ,n and every vE V.

Proof. (a) = (c) is clear from Theorem 1.1. (a)< (b) is obvious
from Theorems 1.2 and 1. 3.

. . By . .
Theorem 1.5. The By-conjugate relation L s an equivalence ve-
lation.

Proof of reflexive law is easy.
Proof of symmetric law. Let P and @ be families P, {&,, -+, &}
and Qy win, -, 7, of basic mapping-formulas respectively. Now

B
suppose that P 2 Q. Then, by Theorem 1.4, there exists a By-regular
system of W-polynomials '

(1_ 10) Fl(xl, e, xm), e, Fn(x1> e xm)

such that, for any By-algebraic system 9B, the inner mapping ¥ from
P(B) into Q(B), which is defined by the system (1.10), is an isomor-
phism from P(8B) onto Q(B). Moreover, by Theorem 1.3, ¥~ is an

B
inner mapping defined by a By-inverse system of (1.10). Hence Q )
follows from Theorem 1.4, because the By-inverse system is By-regular.

Proof of transitive law. Let P, Q and R be families Py, {&,, .-+, £,.},
Qv win, -, n,} and Ry »{&, -, &} of basic mapping-formulas respec-

B
tively. Now suppose that P A“—TfQ and Q fB\WfR. Then, by Theorem
1. 4, there exist two systems
(1.11) F(x,, =, x,), -, F(x,, -, x,) and
(1' 12) Gl(yU Ty, J’n) y Ty Gl(y1) Sty yn)
of W-polynomials such that, for any By-algebraic system B, the inner
mappings ¥: P(B)—-Q(B) and O: Q(B)— R(B), which are defined by
the systems (1.11) and (1. 12) respectively, are onto isomorphisms. Hence

it is clear that the mapping ®¥ is an isomorphism from P(B) onto R(B)
and it is an inner mapping defined by the system of W-polynomials

G1(F1(x1, T xm)? T Fn(xu R xm)) ’
(1.13) e T ,
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Now let
Fik(yn Tty J’n), Ty F':l;(yn R yn) and
Gik(zw R 2’1) » T GT(ZI y T ZI)

be By-inverse systems of the systems (1.11) and (1.12) respectively.
Then it is easily obtained that the system of W-polynomials

FX(GHGz, -+, 21), =, GXzyy =, 21))

is a By-inverse system of (1.13). Hence the system (1.13) is By-

regular. Therefore Pﬂ‘:R follows from Theorem 1.4. This completes
the proof.

Finally we shall introduce the concept of By-similarity as a special
case of the concept of By-conjugate. Now let P and @ be families
Py, &, ,E) and Q. win, -, 7n,} of basic mapping-formulas respec-
tively. If, for any ¢,-algebraic system 2 and any By-algebraic system
B, any system of P-mappings from 2 into B is a system of @Q-mappings,
and conversely, then we say that P and Q are By-similar. As an easy
consequence of the above definition we obtain

Theorem 1.6. Let P and Q be families P, y{%, --,%5,} and
Qy.win, -+, n,.} of basic mapping-formulas respectively. Then, in order
that P and Q are By,-similar, it is necessary and sufficient that

\

) . Bw
PE,w(yl 19 s N N(v)): Qnﬂz; YViis s N N(v))

\JIm1s s VYN \‘ymly s VN

for every u=1, -, m and every veV.

§2. Families of (A,, By)-homomorphism type and families of
(Ay, By)-derivation type.

Let P be a family Py w{&,, .-+, £.} of basic mapping-formulas. If
the basic mapping-formulas of P are of the form
;:‘:M(v(xl’ Tty xN(v))) = Pf;'y,n(ézﬂv(xe ttty Ell-(xN(v))) (/1' = 17 e,m v S V) ’

then P is called a family of (¢, ¢w)-homomorphism type. Moreover
let A, and By be systems of composition-identities with respect to V
and W respectively. If P is (Ay,, By)-universal and By-similar to some
family of (¢, ¢u)-homomorphism type, then P is called a family of
(Avy, Bwy)-homomorphism type.
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Next let P be a family Py ,{&,, - ,&,,, 8} of basic mapping-formulas.
If the basic mapping-formulas of P are of the form

Eﬁ(v(xu "t xN(v))) = P&'Mv(gl#(xl) » "t ‘f#(xN(v))) (/l'zl’ e, m; VE V)

and

8(v(x1y Ty xN(v))) = Psv El(xl) y " fx(xN(v))\

........................

‘fm(xl)» Tt Em(xN(v)) (UE V) ’
S(xl) y "t B(xN(u))

then P is called a family of (¢, ¢y)-derivation type. Moreover let Ay
and B be systems of composition-identities. If P is (Ay, Byw)-universal
and By-similar to some family of (¢, ¢)-derivation type, then P is
called a family of (A, By)-derivation type.

Let P be a family of (Ay, By)-derivation type. If there exists a
family @ of (Ay, Bw)-homomorphism type such that P and Q are B-
conjugate, then P is called a family of improper (Ay, By)-derivation
type. Otherwise, P is called a family of proper (Ay, By)-derivation type.

If V=W and Ay=By in the above definitions, then we simply say
“Ay-homomorphism” or “Ay-derivation” in place of “(Ay, By)-homomor-
phism” or “(Ay, Bw)-derivation”. Let P be a family of A,-homomor-
phism (or Ay-derivation) type, and let U be a subset of V. If the
family, which consists of all the basic mapping-formulas of P concerning
all the compositions v€ V—U, is of homomorphism type, then P is
called a family of Ay,-U-homomorphism (or Ay-U-derivation) type.

Let P be a family of A,-U-derivation type. If P is A,-conjugate
to some family of Ay-U-homomorphism type, then P is called a family
of U-improper A,-U-derivation type. Otherwise, P is called a family of
U-proper Ay-U-derivation type.

Let K be a commutative field of characteristic 0, and V the set-sum
of {+,-} and K. And let R, be the system of composition-identities
with respect to V, which define the commutative algebras over K. In the
following, we shall determine the form of the family Py ,{p,, -, ®,}*
of Ry-{-}-homomorphism type, and that of the family P, ,{p, 8§}* of
R,-{-}-derivation type.

Theorem 2.1. Let P be a family Py ,{p,, -, p,} whose basic
mapping- formulas concerning the compositions different from - are of
homomorphism type. Then, in order that P is a family of Ry-{-}-homo-
morphism type, it is mecessary and sufficient that the basic mapping-

*) For convienence, we use below the letters ¢, ¢ in places of the letters &, 7.
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formulas of P concerning - are of the form

Pu(xy) = Py (Pu(%), Pu(y)) 4 P X)Pu(y), €K  (p=1,-,m).

Proof. The sufficiency can be easily obtained by Theorem 3.2 in
[1]. In the following, we shall prove the necessity. Since the com-
position-identity (x+y)z=xz+ yz is contained in Ry, and P is Ry-universal,
it follows from Theorem 3.2 in [1] that

Fopicxr X Pul2), Puly), Pu(2))
B Fosss e Pul ), PuD), Pul2)) -

Hence, by Theorem 2.1 in [1], we have

Py (Pu(x)+ Pu( ), Pu(2))
B P (Pu), P2+ P (P4 3), Pu(2)) -
Similarly we have

Py, (pu(x), Pul )+ Pu(2))
B P (@), )+ Py (9ul2), Pu(2))

because the composition-identity x(y+2)=xy+x2z is contained in R,.
Therefore we have

Ry
P¢p.- (Pu(x), Pu(9) = BuPu(2)Pu( ) » h.€e K.
This completes the proof.

Theorem 2.2. Let P be a family P, ,{p, 8} whose basic mapping-
formulas concerning the compositions different from - ave of homomorphism
type. Then, in order that P is a family of Ry,-{-}-derivation type, it is
necessary and sufficient that the basic mapping-formulas of P concerning

are of the form

@21)  px) = Polp(x), 9(5) = hp(x)p(y) and
2.2) 8(x3) = Py ((x), 9(3), 3x), 3())

R ap(x)p(5) + bp(x)3( 9) + b3 (x)p( 3) + dB(2)(5)
where a, b, d, he K and bh+ad="1.

Proof. The sufficiency can be easily obtained by Theorem 3.2 in
[1]. In the following, we shall prove the necessity. Now suppose that
P is a family of Ry-{-}-derivation type. Then (2.1) can be similarly
obtained as in the proof of Theorem 2.1. Next, since the composition-
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identity (x+y)z=2xz+yz is contained in Ry, and P is Ry,-universal, it
follows from Theorem 3.2 in [1] that

FS((x+y)z)(¢(x)’ 4’(3’)» ¢(Z), S(x)) 8(3’)» 8(3))
 Fataes ol 2(2), 9(3), P(2), 8(2), &), 8(2)) -
Hence, by Theorem 2.1 in [1], we have
Ps.(p(x) +(y), (2), 8(x)+8(y), 8(2))
gps-(¢(x), P(2), 8(x), 8(2))+ Ps.(P(3), P(2), 8(¥), 8(2)) .

Similarly we have ‘

Py.(p(x), 2(3)+p(2), 8(x), 8(3)+8(2))
B By (p(2), P(3), 8(x), 8(3))+ Ps. (2(x), P(2), 8(x), 8(2)) ,

because the composition-identity x(y+2)=xy+x2z is contained in Ry.
Therefore we can easily obtain

Py (p(x), 9(y), 8(x), 8(»))
B ap(x) )+ bp(2)8( )+ cd(x)p( y)+ dd(x)3(y) ,

where a, b, ¢, d€ K. Moreover we have b=c, because the composition-
identity xy=yx is contained in R,. Hence we have

2.3) Py.(p(x), P(9), 8(x), 8(y))
B ap()p(3)+ bp(x)8( ) + b))+ dB(x)3( ) -

Since the composition-identity (xy)z=x(yz) is contained in R, it follows
from Theorem 3.2 in [1] that

Fiapa(P(x), P(9), P(2), 8(x), 8(y), 8(2))
= Frcacsr (), 9(3), #(2), (), 8(3), 8(2))
Hence, by using (2.3) and Theorem 2.1 in [17], we have
bh+ad = b*.
This completes the proof.

Theorem 2.3. Let P be a family P, {p, 8} whose basic mapping-
formulas concerning the compositions different from - are of homomorphism
type. Then, in order that P is a family of {-}-proper Ry-{-}-derivation
type, it is necessary and sufficient that the basic mapping-formulas of P
concerning - are of the form
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P(x9) = Py (p(x), 2(3) F hp(x)p(y) and
8(xy) = Ps.(p(x), P(), 8(x), 8(»))
& ap(@)p(9) + hp()3(3) + WS (2)P( ),
where a, h€ K, and at least one of them is not 0.

(2.4)

Proof of sufficiency. Suppose that P is of the form (2.4). Then it
is clear from Theorem 2.2 that P is a family of R,-{-}-derivation type.
Hence it is sufficient to prove that P is not R,-conjugate to any family
Q=Q, ,{V, -, ¥, } of R,-{-}-homomorphism type, ie., there exists
no Ry-regular R,-translator from @ into P. Now, by Theorem 2.1, we
may assume that the basic mapping-formulas of @ concerning - are of
the form

2.5)  Vux3) = Qup (@), V() = i eWu(3)  (m=1, -, m).
And let

(2.6) F(x,, -, x,,), F(x,, -, x,,)

be an Ry-translator from @ into P. Then, by Theorem 1.1, we have

Fyr(0) 99, = Yr8) 9 9))
B B @)y s )+ Fun(3)s = 9(3) (0=1,2).
Hence we have :
oty o 1) x4+ o 4Bz, -, BeK (v=1,2).

Therefore the R,-translator (2.6) is not Ry,-regular in the case of m==2.
Hence, in the following, we may assume that m=2, i.e.,

F(=x,, -, x,,) = F(x,, x,) B ax, +6.x,,

Fyx,, -+, x,) = F,(x,, x,) 4 a,x,+ B,x, and

Q= QV,V{‘[’U T ‘f’m} = QV.V{‘PU ‘Pz} .
Therefore, by using (2.4), (2.5) and Theorem 1.1, we have

QAP D) + Biliab(x0r )
B hatr,(2)+ Btr ) 3) + B 3)

and

A halr(EN () + Bhalri XN )
B () + B ) @in(3) + Bib(9))

0l () + B RN @ 9) + Bt )

Il (%) + Bab N (9) + B 9)) -
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Hence we have

2.7 hoti—oh, =0,

(2. 8) ha1181 =0,

2.9 hB§_31h2 =0,

and

(2 10) aa%+2hala2_“2hl =0 )
(2. 11) aalﬁl +ha1132+ha2181 =0 »
(2.12) aBt+2nB,8,— Bk, = 0.

By using (2.7)-(2.12), we shall prove that the R,-translator (2.6) in not
R,-regular in any case.

(@) The case of £#=0. By the assumption of this theorem, we
have ¢=0. Hence, by using (2.7), (2.9), (2.10) and (2.12), we have
a,=B3,=0, and hence the Ry-translator (2.6) is not Ry-regular.

(b) The case of 240 and A,=h,=0. By using (2.7) and (2.9), we
have a,=8,=0. Hence the Ry-translator (2.6) is not Ry-regular.

(c) The case of 2==0, k,==0 and %,=0. By (2.9), we have B3,=0.
Hence by (2.11) we have «,8,=0, ie., «,=0 or B,=0. Therefore the
R,-translator (2.6) is not Ry-regular.

(d) The case of £==0, #,=0 and #k,=4=0. It is similarly obtained as
in the case (c) that the Ry-translator (2.6) is not R,-regular.

(e) The case of £==0, 2,0 and %,74=0. By (2.8), we have a,=0Q
or 8,=0. If a,=0, then by (2.11), we have «,8,=0, ie., &,=0 or B3,=0.
Hence, in the case of «,=0, the Ry-translator (2.6) is not Ry-regular.
If 8,=0, then by (2.11), we have «,3,=0, ie, « =0 or 8,=0. Hence,
in the case of B3,=0, the Ry-translator (2.6) is not R,-regular. This
completes the proof of sufficiency.

Proof of necessity. In Theorem 2.2, we have shown that, if P is a
family of R,-{-}-derivation type, then the basic mapping-formulas of P
concerning - are of the form

P(xy) = Po.(9(x), () 2 hp(x)p(y) and
8(xy) = Po.((x), 2(3), 8(x), 8())
B ap()p(9) + bp(x)8(3) + b8 (2)p( )+ dB(x)( ),
where bh-+ad=0b. Hence it is sufficient to show that, if the basic

mapping-formulas of P concerning - are not of the form (2.4), then P
is not a family of {-}-proper R,-{-}-derivation type in any case.
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(@) The case of d==0. Let @ be a family Qy, ,{y, ¥} of homo-
morphism type. Then it is clear from Theorem 1.4 that the system of
V-polynomials

Fl('x17 xz) = X Fz(xv xz) = bx1+dx2

is an R,-regular R,-translator from P into @. Hence, in this case, P
is not a family of {:}-proper Ry-{-}-derivation type.

(b) The case of d=0. From bk+ad=0>b’, we have that b=0 or
b=h. Hence we have that

Pyu(9(2), 2(3), 8(x), 3(3)) = ap(x)p(y) or
Py.(p(x), P(9), 8(x), 8(3)) B ap(x)P(y)+ hp(x)3( y) + hd(x)p( ) .

Now it is sufficient to show that P is not a family of {-}-proper
Ry-{-}-derivation type in the case of a=0 and ~=0. Since, in this case,
we have

Py (p(x), p(9), 8(x), 8(3) 0,

it is clear that P is not a family of {-}-proper R,-{-}-derivation type.
This completes the proof.

Let P be a family P, ,{®, 8} of {-}-proper R,-{-}-derivation type.
Then, by Theorem 2. 3, the basic mapping-formulas of P concerning
are of the form

P(xy) = Po(p(x), 2(3) X hp(x)p(y) and
3(xy) = Ps.(p(x), (), 8(x), 8(y))
B ap(x)9(3) + hp(x)3(3) + k() p(5)

where a=0 or £==0 or both. Now, if #=0, then P is called a family
of trivial {-}-proper Ry-{-}-derivation type. And if %2==0, then P is
called a family of non-trivial {-}-proper Ry-{-}-derivation type.

Theorem 2.4. (1) Any family Q. ,{\y, 0} of trivial {-}-proper
Ry-{-}-derivation type is Ry-conjugate to the family P ,{p, 8} of trivial
{-}-proper R-{-}-derivation type whose basic mapping-formulas concerning

are of the form

P(xy) =0 and o(xy) = p(x)P(y).

(I1) Any family Q% ,{y*, 0%} of non-trivial {-}-proper R,-{-}-deriva-
tion type is Ry-conjugate to the family P¥ ,{p*, 8%} of non-trivial {-}-proper
Ry-{-}-derivation type whose basic mapping-formulas concerning - ave of
the form
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P¥(xy) = p*(x)p*(y) and
*(xy) = @*(x)8*(y)+8*(x)p*(y) .

(IIl) Any family of trivial {-}-proper R,-{-}-derivation type is not
Ry-conjugate to any family of non-trivial {-}-proper R,-{-}-derivation type.

Proof of (I). By the above definition, the basic mapping-formulas
of @, ,{y, 0} concerning - are of the form

(1) = Qu. (P(®), ¥(») 0 and
8(xy) = Qu.(W(x), (), 6(x), 0(3)) = ayp(x ().
Then, by Theorem 1.4, the system of V-polynomials
F(x,, 2,) = x,, Fyx,, x,) = ax,

is an Ry-regular Ry-translator from P, ,{p, 6} into Qy ,{y, 6}. Hence
P, {p, 8} is R,-conjugate to Qy {y, 6}.

Proof of (II). By the above definition, the basic mapping-formulas
of Q% {y* 6*} concerning - are of the form

PH() = Qe (PH(x), ¥H(9)) = I (x)y*(y) and
0% (xy) = Q. (Y¥(x), ¥*(), 0*(x), 0%(9))
B2 (Enr () + I (2)0%(3) + hOF(H( )
where 2=+0. Then, by Theorem 1.4, the system of V-polynomials

a

Fy(x,, %) = %xl o Fix,, x,) = xz_ﬁxl

is an Ry-regular R,-translator from P% , {p*, 6%} into Q% , {v*, 6¥}. Hence
P% ,{p*, 8%} is R,-conjugate to Q% {y*, 0%}.

Proof of (III). It is sufficient to show that P, ,{®, 8} is not R,-
conjugate to P% ,{p*, 6%}. Now let a system of V-polynomials

(2.13) Fy(x,, x,), Fyx;, x,)

be an R,-translator from P¥ , {¢* 6%} into P, ,{p, 6}. Then it is
similarly obtained as in the first part of the proof of sufficiency of
Theorem 2.3 that the V-polynomials (2.13) are of the form

Ry Ry
F(x,, x,) = a1x1+181x2 and Fy(x,, xz) = a,x,+B,%, .

Hence, by Theorem 1.1, we have
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F(p*@)@*(3), PR () + S (x)pH(3) =0,

and hence we have

A PHER)PH( )+ BAPHHF(3) + S (x)PH(3)) 0.

Therefore «,=8,=0, and therefore the system (2.13) is not R,-regular.
Hence P, ,{p, 8} is not Ry,-conjugate to P% ,{p* 6*}. This completes
the proof.
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