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On a Deformation of Riemannian Structures
on Compact Manifolds

By Hidehiko YAMABE

1. The purpose of this paper is to prove that every compact C°°-
Riemannian manifold with at least 3 dimensions can be deformed conform-
ally to a C°°-Riemannian structure of constant scalar curvature.

Let S be a rf-dimensional C°°-Riemannian manifold with di>3, and
denote its fundamental positive definite tensor by gijΛ Throughout this
paper we will use the definitions and notations of the book " Curvature
and Betti numbers" by K. Yano and S. Bochner, unless otherwise stated.
The volume element is written as dV. The total volume is assumed to
be 1.

Here we are going to present the outline of the proof. Consider a
conformal transformation of a Riemannian structure

(1.1) &, = *'&,-

Then the connection coefficients ΓJΛ corresponding to ~gis are expres-
sed asυ

(1. 2) Γ}A =

where

(1.3)

From (1.2)

(1. 4) R]kl = R'J

where

(1- 5) Pjk = Pj.

Hence

(1. 6) RJΛ = Rjk-(d-2}p.k-gjkP«a

and

1) see [5] page 78.
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(1.7) R = e-2p(R-2(d-l)p«Λ) .

Here R]kι> Rjk and R denote the curvature tensor, the Ricci tensor
and the scalar curvature, respectively, of the new structure.

Now let Δ denote the Laplace-Beltrami operator corresponding to
gij. Then (1.7) can be written as

(1.8) R = e-2p(R-2(d-l)p%)

Set

(1. 9) ΰ = e^2-^

or

(1. 90 (ΰYM-2^ = e2p ,

and then

(1. 10) -R(ΰ)«+2**-v = - .

Conversely, we are going to prove

Theorem A. There exists a positive C™ -function ΰ satisfying

(1. 100 - (ΰYd+2^d-^C0 = -R& + ̂ 4—ϊΓ Δ^
Uf — £

where C0 is a constant.
If such a function ΰ be found, we have only to set ^y=(M)4/crf~25£f y

to obtain the desired structure.
On the other hand, if there exists a positive extremal v^ minimiz-

ing a variational function (#2^2)

(1. Π)

G «

to a value μc<7), then this function satisfies the corresponding Euler's
equation

(1.12)
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Here

(1.13)

In order to prove Theorem A, we shall prove the following two
theorems.

Theorem B. For any q<^2d/(d—2), there exists a positive function
v^ satisfying (1.12).

Theorem C. As q tends to 2d/(d—2), a uniform limit ΰ of such
v^^s exists, is positive and satisfies (1.100 with C0 = μ<:2d/cd_2^.

Theorem A is an immediate consequence of Theorem C.

2. Let 6 be a positive number less than 4=/(d—2). Set

(2.1) p, = (2d/(d-2)-S),

(2.10 Pi = A / ( A - D >

and

(2. 2) FCM«) = f.(«) =

(2.3) \\u\\, =

By Lp we denote the Banach space of real functions with the norm

Lemma 1. Let {ui} be a sequence of C°° -functions with 11^/11^ = 1 such
that

(2. 4) lim f Ft(«f ) = μtpt, = CQ(8) = MinM Fβ(u) .

Then the sequences { |M, |} possess a similar property except that
I Ui I might not be differentiable at the zero points of u{ .

Proof is almost evident if one notices that

(2.5) l w ! 2 H v ( W ) l 2 ,

except at zero point of u with non-vanishing Δ#. The measure of the

set of such points is zero. By the measure we understand the measure
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with respect to dV.

Lemma 2.2) There exists a positive constant C± such that for pz^
2d/(d-2)

(2.6) in fc l lK-ΊU.^CJI l v « l H 2 >

where c is an arbitrary constant and u is assumed to be a smooth function.
This lemma is similar to Sobolev's lemma. The proof is omitted

because a minor modification of the proof of Lemma 4 is sufficient for
this lemma. However, it should be noted that even when £=0, the
lemma is valid but this is not necessary for the present paper.

Corollary.

(2. 8) F(u) ̂  -- supP€S I R(P) I -1.

Let ψ(x) be a function over the unit square Ed={x\ — ί<^xm<L
w.= l, 2, ••• , d] in a ί/-dimensional Euclidean space with the property

(2.9)

where
Consider the multiple Fourier (trigonometrical) series of

(2.10) ^(x) = Σ(#/ι " id

 cos π(i\^-\ \-idXd)

= Σ(#/ cos π ^ Λ x y + ̂ / sin 7Γ </,#».

Here / denote a "vector" (iι, ,id) with integer components and
</, jc)> an inner product of / and another "vector" (x\--, xd). Define
I / I by

(2.11) 1 1 \ = (if + -+/2)1/2.

Lemma 3.

where q' = q/(q — I).

REMARK. This is the Hausdorff-Young inequality for multiple Fourier

series.

2) see [4]
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Proof. Let Ef be the discrete space of lattice points in a rf-dimen-
sional space. Define a one to one operator T onto a functional space
over E from another functional space over E'xE' by

(2. 13) (T- W> /) = (*/, */)

at a point (/, /) in Er x Er. The space E is given the ordinary Lebesgue
measure while in E'xE 7 a weight 1 is assigned to each point. The
norm is defined by

Then T becomes simultaneously of the type (2.2) and (1, co), to
which we can apply the Calderon-Zygmund's generalization^ of M.
Riesz's convexity theorem. Hence for any q between 2 and infinity,

(2.15)

where q/ = q/(q — l). This proves the lemma.

3. It is well known that there are countably many non-positive eigen-

values of the elliptic operator * , ~~ ' A diverging to — oo. We write
ct — ̂

them in non- increasing order, — \, — λ2, ••• , — λm, ••• . To each λm is
attached an eigenf unction φm with ||ΦJ|2 = 1. These φm's are mutually
orthogonal in the sense of L2. The first eigenvalue λ1-=0 and the corre-
sponding function Φ! = L Then every square integrable function u(P)
can be expanded into the Fourier series with respect to {Φm}. In
particular

(3. 1) Ui = Σr-ι*,/f>y .

Lemma 4. Suppose that ψN's are smooth functions on S with
^oo, such that for integer j between 1 and N>

(3. 2) f ^NΦ4V = 0 .

More generally, if ΨWI('Ψwll/> ι r is weakly close to 0, then for any given
small δ<^0, there exists an integer NQ such that if N^N0, then

(3.3) infc\\γN-c\\Ps^δ\\ |Δ^| ||2.

Proof. Without loss of generality we may assume that ||̂ ||̂ f is
uniformly bounded as Λ^ tends to infinity.

3) See Theorem D in page 117 in "On the theorem of Hausdorff and Young" in [2].
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Firstly, we consider the case when the carrier of ψN is contained
in a coordinate neighborhood E. In this case we can consider the trigo-
nometrical expansion of ψN. Take a sufficiently large integer M, so
that for a preassigned small δ']>0,

(3. 3) (Σι/ι ;>M! I\

This is possible whenever 8 is positive because

We set £ = <
Lemma 3,

(3. 6)

where

(3.7)

Set

(3. 8)

and

(3.9)

By a simple calculation

(3.10)

d-2

(and δ0 is always assumed to be zero). By virtue of

, < (Σ/(k/K+ I

The second term of the right hand side of (3.6) will be dominated by

(3.11) (Σi/isMdβ/l' ' + l δ /

i a/ ι i-

(Σι/ι SM! / 1 ' I grad

where

(3.13)
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On account of the uniform ellipticity of g£J\ there exists a constant
C2 such that

(3.14)

and

(3.15) C^HI Igrad^l 111,^11 IvψΊ II 2 <C 2 | | | Igrad^l

Combining (3.11) and (3.15), we have

(3.16)

REMARK. If we set M= 1, we have Lemma 2 for the case when the
carrier of ψN is within a coordinate neighborhood. Namely if a0 = Q,

As for the first term of (3.6), af/\\ψN\\Pβ's and ft//||^||jg's can be
taken arbitrarily close to zero if N0 is sufficiently large, because these
coefficients are linear functionals over Lps. By virtue of (3.14), az/\\ψ>N\\p

and bj/HψffHp 's are also small, say less than -^M~dδ'. Hence

(3.17) (Σι,

However, by virtue of Lemma 2 (see the remark above),

(3.18) (Σm<M(k/K + bj\p*)Y/p '

Combining (3.6), (3.16), and (3.18),

(3.i9) ιιψwiι* β ^;δ(iι i
if tf0 = 0. Here

(3.20) δ = 8'(Cl + c2).

This concludes the proof for the case when the carrier of ψN is in
a coordinate neighborhood.

As for the general case, we decompose the manifold S into a union
of finitely many, say /O's closures of coordinate neighborhood U19 ••• , £7/0

such that Ut is a cubic neighborhood of a point in £//, and any two of
these CT/s intersect only at the boundary. The restriction of ψN over C7/
is denoted by ψjv,/. The mean of ψNιl over £// with respect to dx will
be denoted by

(3. 21)
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Then

However, the trigonometrical Fourier coefficients of a function ψ in
Lp over the coordinate systems of U^s are also linear functionals over
Lps. Hence, if N0 is sufficiently large, we can apply the result of the
previous case so that for each / and a preassigned S" = IQIS

/Q OQ \ 1 1 f I I < "̂" 5ϊff( 1 1 I _ i I 1 1 \

From this it follows that

This completes the proof of Lemma 4.

REMARK (I). If M=l, Lemma 2 follows.

REMARK (II). This S = S(N0) depends upon N0 and goes to zero as N0

tends to infinity.

4. Consider the Fourier expansion (3.1) of w/s in (2.4) with \\UI\\P?

= 1. It is easily seen that all Fε(w, )'s are bounded by a positive constant
C3. From this fact, it follows that the convex closure of the set {&,-} in
L2, and more generally in L^, is compact strongly. This will be for-
mulated in

Lemma 5. The convex closure of {Uf} compact and a limit vcp^ of
a convergent subsequence is not zero.

Proof. The latter half is an immediate consequence of the former
half because for each /, ||wί||^g = l.

Now without loss of generality we may assume that {&,-} converges
weakly to vcp^. Consider the Fourier expansion with respect to </>/s.

(4.1) tfp*> = Σl

Then

(4.2) lk- îk<Σ!£

By virtue of the previous lemma, there exists a sequence of constants
•Cg(N) such that for N^N0,

(4.3)
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It is easily seen that these Ci(N)'s tend uniformly to zero as N goes
to infinity. Now, i tends to infinity. Then the first term of (4.2)
vanishes and

(4. 4) lim, I |κ, - Ci(N) - tf**>\ \Pf ̂  2C3S(N0).

However this S(N0) can be made arbitrarily small. Hence

(4. 5) lim^lim, \\Ut-c^N)-if* >\\p9 = 0 .

By making use of the fact that lim \\u{ —v^p^\\pζ is independent of
N, we can easily obtain the relation that

lim \\Ui- if **%9 < lim^lim, c^N) = 0 .

Thus the lemma has been proved.

NOTICE. The function tfpJ, being a limit of non-negative w/s, is
non-negative.

Lemma 6. // ιfpe\ a non-negative C2 function satisfies the equation
(1.12) for q=pzy £^0, then v^ = v^ is positive.

Proof. For simplicity, we shall use ̂  instead of tfp*\ Suppose that
v^ vanishes at a point P. Take the polar coordinates r, 0m, w = l, 2, ••• ,
d—1 of a normal geodesic coordinates around P. The volume element
and the Laplace-Beltrami operator with respect to the induced and nor-
malized (total volume 1) Riemannian structure on the concentric sphere

of the radius r around P will be denoted by vV(r) and
respectively. Then

(4. 6)

By integrating (4.6) over Ω(r) with the volume element \/ σdθ

ΩCr)

2{
JΩCr)

When r ranges over a small interval (0, r0), there exists a positive
constant K1 such that

I j

4) see [1]
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because q^>2. Hence

or

JΩCr)

Integrating both sides from 0 to s,

(4. 7) ( ίf^y/^(s)dθ- Π
JΩC^) JoJocr)

Jo J o JΩCP)

Now set

X(r) =

and take positive constants K2 and K3 such that both

hold for
Then, from (4.7) it follows that

(4. 8) X(s) ^ K2(*X(r)rdr+ K
Jo

In general, it can be shown that

(4. 9) X(s) < K3(K, + K2)"2-"s2"/n ! .

The proof can be given by induction on n. If (4.9) holds up to
n = N—l. Then by subtituting X(r) in the right hand side of (4.8) by
(4.9),

X(s) <

+ KlS

2N/(2(N-l)+d)2N]

Since N can be taken arbitrarily large, X(s) = 0 for all s. From this
we can conclude that ^?3 = 0 around P. This means the zero points of
^ is open. Therefore ιfn must be identically zero. This contradiction
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proves that #C(7) is positive everywhere.

Lemma 7. The v^ is a weak solution of (4.8). Here Δ is under-
stood as the extension of Laplace-Beltrami operator over L2.

Proof. Take a C°° function v on S with

(4.10) supP€S|*;(P) ^1,

and a small positive real η. Define a subset Sx of S by

(4.11)

and

(4. 12)

Set

(4.13)

S2 - S' - S, , where S7 = {P v^(P) > 0} .

*/ =( dV.
Js2

It is easily seen that η' goes to zero as η goes to zero. Take a
function

(4.14)

Then

(4.15)
v*

q vs2

However the quantity ί I \w^\qdV\ is a C2 function in η and

G V/ff / Γ \V^ /Γ
IwJ^Fj -Π (ι^^)*rfFJ -ί] (if)'d

where C4 is a positive constant.
On the other hand

(4.17)

(4.18)

1/9
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and

(4.19)

These are all obtained in the same manner as (4.15). Combining
(4.15), (4.16), (4.17) (4.18) and (4.19) we have

(4.20)

,-!) = f
J S

Now set

(4.21) H9(u) = Fz(u)\\u\\l

and let η be a real number with small absolute value. Then

(4. 22) W) - #.(*«>) - limf Ff(«,) - limf -&,(«,-) - minM F,(u) =

Hence

(4. 23) 0 ̂  (F9(wJ-F9(tf") =
\η\

where Φ, tends to zero as η goes to zero.
In order for this inequality to hold for a positive η as well as a

negative η,

(4. 24)

Since ^ can range over all C°° functions with supP | v(P) 1^1,
fC9) must satisfy

(4. 25)

in the sense of weak solution. This is the same equation as (4.8) and
(1.12).

This completes the proof.

REMARK . q has only to be larger than 2.



Deformation of Riemannian Structures 33

5. In this paragraph we shall prove that a weak solution #c<7) of
(4.25) which gives the minimal value of Fζ(u) for tf=A> is actually a
C°° function solution, and thus the gap between Lemma 6 and Lemma
7 will be closed.

Lemma 8. The non-negative function v^\ q^2, satisfying (4.25) in
the sense of a weak solution, is C2 everywhere and C°° except at zero points
of rfq\

REMARK . By virtue of Lemma 6, there is no zero point of v^\

Proof. Firstly, the boundedness of v^ will be proved.

By G(P, Q) we denote the Green's function5' for ^~^ Δ The

Sobolev's lemma will be formulated in the following form. If

(5. 1) u,(P) = JGCP, Q)u(Q)dV(Q) ,

where u belongs to Lqry then u1 belongs to Ly where

(5.2) U/r^ίtf

and

(5.3) l l«ι l ly =

Here C5 is an absolute constant if (p')~l — (^)~1 + (2/d) is larger than
a fixed constant. Applying this to (4.25),

(5.4)

where the function A(Q) belongs to Lmι with

Hence vίn belongs to Lg{ where

(5.5) (qίΓ1 = (m1Γ
1-(2/d)

5) see [3]
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where 6 is small. Hence we can find a ql such that

(5 6) * = 7=2 + *>J=2

where ζ is a positive real number.
Now, notice that the quantity A(Q) belongs to Lm2 where

(5. 7) m2 =

Then, again by virtue of Sobolev's lemma, #c<n belongs to Lgf

2 with

(5.8, tey-^J-'

= d(d+2)-4d-2(d-2)ξ = d-2/-. _2^ ΛΛ d-2 Jr1

(2d+(d-2)ζ)d 2d \ d fe/\ 2d V '

Therefore #2 can be taken as

(5. 9) gt ̂  ̂

or in particular

2d

By repeating these procedures, we can easily show that z/'3 belongs
to LQn, with

Take an integer n large enough so that

d(5 11) a(b'11} ^

Here ξΊ is a positive real number. Then,

(5. 12) supP *"(P) < supP ||(P, 0)11^^-011^11^+ finite number.

The right hand side is bounded because the part involving the
Green's function is finite.

Once the essential boundedness is established, apply G(P, Q), and we
have the proof immediately6^

6. Proofs of Theorems B and C.

6) See Appendix.
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Theorem B follows immediately from Lemmas 6, 7, and 8. We shall
proceed to prove Theorem C.

Lemma 9. The family of functions {υ^} are uniformly bounded for

Proof. Take a positive fixed ζ2^>l. Using the procedure in the
proof of Lemma 8, starting at q1 = 2d/(d— 2) + ξ2, we can see that at each /

/β ι \ t \-\ ι - ι r _ 2 \ 8(6.1)

\d-2l

and if

then

(6.2) lltfΊU.^CΓWΊk.

Here C5 is defined in (5.3). From this it follows that

(6. 3) A(ί) ̂  suPf,||G(P,

where

(6. 4)

and C6 is an absolute constant.
However

(6. 5) (ll̂ ll

Hence for small £,

(6.6)

Notice that Λ(^) may be assumed to be ̂
Combining this with (6.3), we can see that

(6. 7) Afa) < C6Λ(<7)ί2 ,

or
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This proves the uniformly boundedness of #C(7)'s.

Proof of Theorem C. Since #(<7)'s are uniformly bounded,

(6.11)
J s

C _ ^ _ _
= ΰ

converges uniformly to a C1 function when we take a suitable sequence
of #'s. This limit ΰ must satisfy

(6. 14)

weakly. From this we can easily obtain the C2 property for ΰ because
of the boundedness of ΰ. Again, Lemma 6 is available and ΰ can be
proved to be C°° because it is bounded C2 function without zero points,
satisfying (6.14). This is nothing but the equation (1.10). Thus Theorem
C has been proved.

A direct consequnce of Therem A is that if R is everywhere non
negative, then R, the scalar curvature of the new structure, is a non-
negative constant and is zero just in case R is everywhere zero. If R
is everywhere non-positive and not identically zero, then R is negative
because it is less than
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Appendix

Supplement to the proof of Lemma 8.
Once the essential boundedness of #c<7) is established, it immediately

follows that #c<7) is C1. Hence #C(7), being a solution of an equation

is a C2 solution except at zero point of v^\ Repeating this kind of
procedures, we can see that #c<7) is C°° except at zero point of #c<7).
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REMARK . As is seen very easily, if the original structure is Ck,
and ω, then ΰ itself is also Ck> k^ί and ω.

REMARK. Prof. J. Serrin notified the author that Lemma 6 can be

proved by using E. Hopf's maximum principle (cf. [5]).

(Received January 18, 1960)
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