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A Singular Non-Linear Equation

By W. FuLKSυ and J. S. MAYBEE2'

1. Introduction

To begin with, we wish to illustrate the physical problem which
leads to the following mathematical work.

Let R be a region of three dimensional space occupied by an electrical
conductor. Then each point in R becomes a source of heat as a current
is passed through R. Let u(xy t) be the temperature at the point x e R
and at time ty and suppose that a function E(x, t) which describes the
local voltage drop in R is given as a function of position and time.
Then if σ(u) is the electrical resistivity which is, in general, a function
of the temperature u, the rate of generation of heat at any point x at
time t is E2(x, t)/σ (u). Let c and K be the specific heat and thermal
conductivity of R, respectively, which we take to be constant. Then the
temperature satisfies the equation,

cut — κΔu = E2(x, t)/σ(u) ,

in the simplest case σ(u) = oίu where a is a positive constant. More
generally σ can be assumed to be a positive function of u which is
increasing with u and which tends to zero with u. Thus the differential
equation is singular in the sense that the right hand side becomes
unbounded at u = 0.

This physical problem leads naturally then to the study of the
differential equation

ut-Δu = F(x, t, u)

where Δ is the Laplace operator in EN. We will write Hu = ut — Δu and
call H the heat operator. Our equation then becomes

( 1 ) Hu = F(xy t, u) .
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We study this equation in a bounded region (open connected set —
but not necessarily simply connected) R in EN, or rather the space time
cylinder built on R. We consider both the case where the time interval
is finite and the steady state case where the time becomes infinite. In
the latter case we adjoin the improper point t = °° to the /-axis and
carry out our study in the resulting compactified space time cylinder.

We set up some standard notations which we will use consistently :

B is the boundary of R,
RT=R®(0, T) T<oo, and

0<T<oo.

Bτ will be called the lower boundary of Rτ. In general the lower
boundary of a space time cylinder will be the union of the bottom and
the sides.

In the steady state cases time dependent functions, (e.g. F(x, t, u))
which have values at t = oo will have the t variable suppressed at t = °° :
F(XJ oo, u)=F(x, u}. And by Hu(x,t)=F(x,tyu(x,t)) at t=oo we will
mean Δu(x)= —F(xy u(x)).

Throughout the paper we will make the following assumptions on
F(x, t, u). These will be referred to as assumptions A :

A : (a) For no £0>0 is F(x, t, «)=0 for 0<*<ί0.
(b) F(x, t, u)>0 (xy t) e RTy w>0.

(c) F(x9 t, u) is locally Holder continuous for (x, t)eRT, u^>G.
(In case T=°° local Holder continuity means what it says for
finite ί, and that F(x, u) is locally Holder continuous for x€R,

(d) For each £^>0, there is an M(c) for which

u — v

Finally in case T=co we also assume

(e) For each c^>0, £>Ό there are two positive numbers δ(€, c), T(θ, c)
so that

\F(x,t,u)-F(x,υ)\<e

if

\u-v\<8, />Γ, u>c, v>c.

In particular it should be noted that these assumptions place no
restrictions on the rate of growth of F near u = 0. For example
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and

F(x, t, u) = ζ(x, t)u~n , n > 0

F(x, t, u) = ξ(x,

where ξ satisfies reasonable regularity conditions are perfectly admissible
functions. On the other hand F need not grow at all, in fact F can be
zero in large portions of the space time cylinder. (The assumption A(a)
is of course a normalization rather than a real restriction.) Or of course
the growth can be mixed: of a mild even bounded character in parts
of Rτ, and of a wild unrestrained sort in other parts.

Let f=f(x9 t) be a given continuous function defined on Bτ:

φ(x) xeR, t = Q

or
xeB, 0</<oo, τ= oo .

φ(χ) = γ(χy 0) X 6 B .

We seek a solution to the Dirichlet problem

I Hu = F (x, t) 6 Rτ

u = f (x,t)eBT.

That is, we seek a function u(x, t) continuous in RT\jBT which satisfies
conditions I. In case T=oo, this means we specify that f ( x y t ) shall
converge uniformly to f(x) on B as t -> oo 9 and we ask for the solution
u(x, t) to converge uniformly to the solution u(x) of the problem

Δu = -F xeR

u == f xeB.

This will be handled by proving continuity of u(xy t) in the compact
space time cylinder R^ = R00\JB00.

The region R will be called regular for Laplace's equation (Δu = Q)
if for every continuous function f(x) given on B, the Dirichlect problem
for Δu = Q has a (unique) solution, that is, if for each continuous / on
B there is a function u(x) continuous in R for which

Δu = 0 x G R,

u=f xeB.

We can now state our "Hauptsatz"

Theorem. If R is regular for Laplace's equation, and if F(xy t, u)
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satisfies assumptions Ay then problem I:

Hu = F (x, t) G Rτ

u= f (x, t) G Bτ

has a unique solution for every continuous non-negative data function f
given on Bτ for all T, 0<^T<°o.

In the case T=°° this theorem contains the convergence to the
steady state and thereby the existence of the solution of the problem

Δu = -F(x, u) x^R

u =/ x£B

if / is continuous on By and if F satisfies (b), (c), (e) of assumptions A.
For (a) is clearly superfluous and (d) will be automatically satisfied. If
we define φ(x) to be e.g. the solution to

Δu = 0 x e R

u = f xeB,
and

f(x t) =
f(χ)

then the steady state of the problem

Hu = F x^R^

u = f x^B^

leads to the desired solution of the problem posed at the beginning of
this paragraph.

Similar problems have been recently considered by Friedman [3]1},
but he does not consider the case where F becomes singular.

2. Uniqueness and Preliminary Existence Theorem

Let u and v be two solutions of Hu = F. Denote by w their diffe-
rence : w = u — υ. Then w satisfies

Hw = F(x, t, u)-F(x, t, v) = F^t,u^IF(xλt±^w
u — v

that is, w satisfies a linear equation

II Hw = cw , c < 0 ,

from which it follows (Nirenberg [5]) that w cannot attain a positive

1) Numbers in brackets refer to the bibliography at the end of the paper.
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interior maximum nor negative interior minimum without being constant
for all previous time. Hence if, as (xy t)->BT, we have for m, &X)

— m <C lim inf w(x, t) < lim sup w(x, t)<^k

then
-m< w(xy t) < k , (#, t)£RT.

In case T=°°y the previous inequality holds for all t<^°°, and hence
for £ = oo also, by passing to the limit.

This maximum principle establishes uniqueness of the solutions of
boundary value problems for Rτ in the class of functions which do not
vanish in the interior. For if u and v were two such solutions then w
would achieve zero boundary and inital values, so m and k could both
be 0.

REMARK: By virtue of the fact that F>0 any solution of Hu = F
is a super -parabolic function. And it is a well known property of such
functions that they cannot attain a minimum at an interior point without
being identically constant for all previous time. If by super-parabolic
in R^ we mean super -parabolic for t<^oa and super-harmonic at t=^y

then the minimum cannot be attained on the plane £ = oo without being
identically constant for all ty 0<V<oo. This is an easy extension of
the theorem for finite t. In particular this implies then that all solutions
of Hu = F in Rτ are larger than or equal to the infimum of their
boundary limits. (See Doob [2] for some of the ideas mentioned here.)

We turn now to existence of the solution in the finite case where
T<^°°, and where the data function / is bounded away from zero.

Let v(xy t) be the unique solution of

Hv = 0 (xy /) G Rτ

v = f (*,*)€ Bτ

where / is a given continuous data function on Bτ. v exists since R is
regular for Laplace's equation and hence for the heat equation (Tychonoff
[6], or Fulks [3]). From the regularity of R for Hu = 0 it also follows
that Green's function for the heat equation exists for R.

LEMMA 1. Let F satisfy assumptions Ay and suppose that f is conti-
nuous and /><2^>0 on Bτ (a constant). Then the solution of the Dirichlet
problem I is equivalent to the solution of the integral equation

III u(x, t) = v(xy t) + {* ( G(xy yy t-r)F(y, T, u(y, τ)dydτ
Jo JR

where dy=dy^ dyl ••• dyNy and υ(x, t) is defined above.
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This is a standard result.

LEMMA 2. Under the conditions of Lemma 1> the integral equation III
has a unqiue solution u(x, t) for 0<^t<^τ0 where TO depends only upon a,
if R is regular for Laplace's equation.

Proof : We will need the following well known properties of Green's
function G(x, yy t) for the heat equation for R :

( i ) HxtG(xy y, t) = HytG(x, y,t) = Q for x G R, y G Ry ί>0
(ii ) G(x, y,t) = Q if either % e B or y e B
(iiϊ) 0<G(x, y, t)<k(x-y, t) for x e R, y e Ry />0

where k is the fundamental solution for the heat equation :

k(x-y, t) = (4^)-^2exp {-[Σ (*y-J>/]/40

We solve the integral equation III by iteration. Let u0 = v, and for
n>0 set

( * ) uu+1 = v+\( G(x, y, t-r)F(y, T, un(y, r))dydr .
Jo JR

Now since our boundary values / are bounded away from zero :
/>tf0>0, so is v>a and hence so is un>a^>Q for all n.
Denote sup \un-un_,\ by \\un~un^\\to

\un+1-un\< G\F(y,r,un)-F(y,r, un_1)\dydr
Jo R

Then

o JR

Hence for any t0<^T

\\Un+ι-un\\tQ< \\un- un^\\toM(a) f ° f Gdydr
Jo J R

But ( Gdy<( kdy<( kdy=l, so that
JR JR JEN

\\un+ί-un\\to<\\un-un^\\toM(a) t0.

Hence if we take tQ to be any fixed number <V0=l/M(tf) we will have
uniform convergence for 0<^</0. The limit function u is clearly a
solution to the integral equation III for 0<J<V0, for one can pass to
the limit in (*) since F is bounded because WM><X

This proves the existence. The uniqueness has already been estab-
lished.
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LEMMA 3. // F satisfies assumption A, and if f is continuous and
a^>Q on BT (a constant], then problem I has a unique solution for T< °̂°.
If T<τ0 of Lemma 2 the proof is complete. If T>r0 then let

u±(x, t) be solution defined for 0<£<V0. Now choose any t0<^τ0 and
pose the problem

u2(x, t0) = u^x, f0)

u2(x, t) = f(x, t) x 6 B, t > f 0 .

By Lemma 2 this has a solution for tQ<,t<^tQ + rQ. By iterating this
procedure we build up a function, continuous in RT\jBT, in a finite
number of steps. It obviously takes on the appropriate boundary vlues,
and initial values. But is it a solution of the equation ? In each layer
this is clear. But to see that it is a solution compare u^ and u2 in the
interval ίoΌOo They achieve the same values at f = f 0 , and they
achieve the same boundary values. Hence by the uniqueness argument
given earlier they are identical, so that u2 is a continuation of u^ into
the second layer in such a manner as to make the resulting function a
solution of Hu = F across the plane f=τ 0 . By induction the argument
proceeds from one layer to the next.

We wind up this section with the following :

LEMMA 4. Let uly u2y ••• , uny ••• , be a sequence of solutions of Hu = F
in a space time cylinder Rτ, and suppose that on each compact subset of
Rτ we have un converging uniformly to a non-vanishing limit function u,
then u is also a solution of Hu=F in Rτ.

Proof: Let (x0,t0) be a point in Rτ (if T=°° the case £0=°° will

be handled later). Then let S be a sphere centered at x0 with S entirely
in R. We consider the space time cylinder built on S from time t0 — 6
to £0 +

 6> where 8 is sufficiently small that the closed cylinder lies in Rτ.
On the lower boundary of this cylinder, i.e., for #eS, t = t0 — £ and for
jt GθS, t0—S<^t<^tQ-\-€, un defines a continuous function. Let vn be the
solution of the problem Hv=0 in the interior and v=un on the lower
boundary of the cylinder. Now since vn converges uniformly on the
boundary, then by the maximum principle it must do so in the interior.
And if G'(x> yy t) is the Green's function for S for the heat equation,
then

\ \ G'(xy y, t-r)F(y, T, un(y, r))dydτ .
tQ-S JS

Now since un is bounded away from zero in this cylinder F(yy T, un)
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converges uniformly to F(y, T, u) so passing to the limit on both sides
we get

G(x, y, t-r)F(y, T, u(y, r))dydτ

so that u is a solution of Hu=F at (x09 ί0), and hence for all (xy t) in
Rτ for finite time.

If T is infinite we discuss the surface t= °° separately. There un

solves the equation Δu= — F(x, u). Then the same sort of analysis based
on the equation

un(x) = VH(X)+( G'(x, y)F(y, un(y))dy
JS

where G' is the Green's function for Laplaces equation for the sphere S,
yields the same result. This proves the lemma.

3. Certain Steady State Problems

We begin with the study of the steady state solution of

(2) Hu = g(x,t).

This is covered by recent work of A. Friedman [3] but the proof pre-
sented here is of a more elementary nature.

We assume that g(x, t) is given as a bounded continuous function
in R00> and that as ί-^oo we have g(xy t) converging uniformly to g(x, <χ>)
= g(x) for xeR. We also assume that g(x, t) is locally Holder continuous
in R^. By this we mean that it is locally Holder continuous in Rτ for
every finite T and that g(x) is locally Holder continuous in R. We then
can prove

LEMMA 5. Let R be regular for Laplace's equation, and let f be
continuous on B^. Then the Dirίchlet problem

Hu = g (x, t) <Ξ R^

u = f ( x , t ) £ B^

has a unique solution in B^y if g satisfies the conditions of the previous
paragraph.

For finite t the solution is given by

u(x, t) = υ(xy f)+ Γ ( g(Xy y, t-r)g(y, τ)dydr
Jo JR

where, as before, v is the solution of
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Hu = 0 (ΛΓ, ί) e #„ ,

w = / (*, /) e B_ .

For f = o o the solution is given by

u(x) = v(x) + ( G(x, y) g(y) dy ,
J R

where v(x) is the solution of

AH - 0 #£#

and G(#, y) is Green's function for Laplace's equation for R.
Our task is to prove that as f-»<x>, u ( x 9 t ) converges uniformly to

u(x).
It is known (Tychonoff [6]) that v(x, t) converges uniformly to v(x),

and, from the same source, that

(~G(x,y9t)dt = G ( x 9 y ) .
Jo

Actually Tychonoff proved this relationship between G(xy y, t) and
G(x, y) only for N=3. But the proof is valid without change for N^>3
and is not difficult to establish for N=2 and N=l.

It is therefore sufficient to establish the uniform convergence to
zero of

I=(t{ G(x,y,t-r)g(y,τ)dydr-( G(xy y) g(y)dy.
Jo JR JR

We write this in the form

/ = ( { ΓC(*, Λ t-r)g(y, r)dτ-g(y) (*G(x, y, t-τ)dr}dy
JR I Jo Jo J

+ \Rg(yϊ { ^G(x, y, t-τ)dr-G(x, y)}dy

= /!+/2 respectively.

Now

( g(y) (Όix, y, t-τ)drdy = ( g(y) \*G(x, y, τ)dτdy,
JR Jo JR Jo

and the integrand of the outer integral, namely

g(y)
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is monotone increasing. By the monotone convergence theorem we can
pass to the limit under the integral sign to obtain

g(y)G(x,y)dy

for each fixed x. To see that the convergence is uniform we note that
the left hand side is converging monotonically to the right hand side.
Both sides are continuous functions of x in R. Thus by a theorem of
Dini (Courant-Hilbert Vol. 1 [1]) the convergence is uniform. That is,
/2 converges uniformly to zero.

We now consider the integral 7lβ Let

and given

Then for

M = max I G(x, y) dy .
xζR JR

choose T so large that

if />Γ.

Now

\g(y,t)-g(y)\<- for all y
2M

we have

/i = ( f '~ΓG(*, Λ s)lg(y, t-s)-g(y)]dsdy
JR Jo

G(x,y,s)lg(y,t-s)-g(y)']dsdy

G(x,y)dy

R Jt-T

/4 respectively.

< — uniformly for
<u

If Mf is a bound for g(xy t) in R^ and if V is the volume of R, then

I Λ I < ( Γ 'JR Jt-Tt-T

<2VM' [' k(x~y,s)ds
Jt-T

)t-T

(logt/(t-T)
const J i i

\ (t-T)1

if

if
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These two estimates prove uniform convergence by the Cauchy criterion.
This establishes the lemma for ΛC>2. For Λ^l it is not difficult to

J t
G(x, yy t) dt converges uniformly as / -> °o for x e R (which is

0
now an interval). This is sufficient by the Cauchy criterion to again
guarantee that 74 can be made uniformly small for t large. This secures
the lemma for the case N=ί.

Let us now return to equation (1): Hu=F. We want to examine
the steady state, i.e., the solution of the Dirichlet problem in R^. We
assume of course that F satisfies assumptions A and that />^>0 on
B^. We examine the equivalent integral equation III and iterate as
before, taking u0 = v and

u»+ι = v+ Γ ( G{F(y, r, un)dydr .
Jo JR

These iterates are each defined in Rτ for every T<^°° (though conver-
gence of the sequence was proved only for 0<f<V0 for r0 sufficiently
small). It is the behavior of these functions in R^ that we will now
examine.

Now as remarked before uQ = v(x,t) converges to a steady state
solution (Tychonoff [6]). That is UQ is the unique solution of

Hu0 = 0 (x, t) e R^

U0=f (*,i)6£L.

Hence F(xy t, uQ(xy t)) is defined, locally Holder continuous, bounded (since
UQ>CC) and F(xy t, u0(x, t)) converges uniformly to F(x, u0(x)) as ί->oo by
(e) of assumptions A and by the uniform convergence of u0(x, t) to u0(x).
Thus F(x, t, uQ(xy t)) is an admissible g(xy t) for Lemma 5, hence by this
lemma the problem

Hu =

u=f (x,t)e B^

has a unique solution. In other words u^x, t) is continuous in R^ =
ROO^BOO It is clear that by induction un+l(x, t) is continuous in R^ and
solves the problem

HuH+1 = F(x,t,uH) (x,t)£R^

u*+ι = f (x> t)£B^

for each w = 0, 1,2, ••• .
Now let \\un—un-ι\\ = \\un — un-ι\\00= §up\un — un+1\ and observe
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o JR

i t
G(xyyy s)dsdy.

0
Thus

\\un+1 —
 un\\ < \\un — ̂ n-ι\\M(oή \ G(xy y)dy.

R

Hence the sequence converges uniformly in R^ if the volume of R is so
small that

M(a)\ G(x,y)dy<\.
JR

It is clear that this condition can be achieved restricting only the
volume of Ry for if a be the radius of a sphere with the same volume
as Ry then

I Gdy<— \ ——rN~1drdω = I rdr = a212.

(If N=2 or 1, the calculations are slightly different.)
We have thus proved

LEMMA 6. Suppose F satisfies assumptions Ay and that />tf^>0 and
is continuous on B^, then there is a number v(a) depending only on a so
that problem I for T= °o :

Hu = F (x, t) G R^

has a unique solution if R is regular for Laplace's equation and if the
volume of R is less than v(a).

Suppose R is a bounded region, regular for Laplace's equation whose
boundary B is the union of two disjoint closed sets Bf and B". Then
the problem

Hw = 0 (x, t) € R^
'0 x£Ry f = 0

w = \ 0 x^B'
χζ.B"y 0</<oo

has a unique solution, which we will call wy in R^. It is of course not
continuous at the points x£B"y t = 0y but it is continuous elsewhere in
Ry and lies everywhere between 0 and 1 (see Tychonoff [6]).
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Now w(xy t) cannot attain the value 1 at any point (xy t) £ R^ : if t
were finite then w(x, t) would be identically 1 for all previous time, and
if / were oo then w(x) = w(x, oo) would be identically 1 in R. But neither
of these can obtain since w(x, t) = 0 if x£B', 0<£<oo. Thus for any
compact subset D of R there is a number q, 0<^#<^1 for which

0<>O (*,/)G0®[0, oo].

This is because the set Z)®[0;oo] is a compact set on which w is
continuous, non-negative, and everywhere less than 1.

LEMMA 7. Let R be a region regular for Laplace's equation whose
boundary B is the union of two disjoint closed sets Bf and B". Let w
satisfy equation II:

Hw = cw c < 0

in R^. Suppose further that

χlim w(x, t) = 0 if (ξ, τ)eRx {(0)}
c*i0"Kf'T) or if £<G5', 0<!<oo

and that

m = sup [ lim | w(xy t) \ ]

where ξ^B" and 0<τ< oo and the sup is taken over all such points (ξ, T).
Then for each compact subset D of R there exists a number qy

depending only on D for which

\w\<mq for (x, t) eD® [0, oo] .

Proof: Let

v = w—mw

where w is the function defined above. Now

Hu = Hw — mHw = cw = cv + cmw.

But cmw<S$, c<0 and the boundary values of ^<0. We want to show
that ^<0. For suppose it were positive at some point. Then it would
assume a positive maximum at some point in Rτ. And by Nirenberg's
maximum principle it would be constant on a set which reaches out to
the boundary of the set where it is positive, but by continuity it must
vanish there. Hence we have a contradiction. Thus

or w < mw ,
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Similarly, by considering μ = w+mw one sees that μ>0 or

w > — mw ,

so that

I w I

Then on D®[0, oo] we have

I w I < mw < mq .

We can now prove

LEMMA 8. Let R be a bounded region regular for Laplace's equation
and suppose F satisfies assumptions A. Suppose also that f is a given
continuous function on B^ with /><2^>0 (a constant). Then the problem
I with T=oo :

Hu = F (x, t) G R^

u = f (#, /) e Bw

has a unique solution.

Proof : Our region R is a bounded open set and therefore has finite
volume. We can then represent R as the union of a finite number of
open sets RJ, j = Q, 1, ••• ,k, with the following properties:

(i) R**>R* ( i i) R" = R

(iii) each point of the boundary of R3 is a regular point for both
the exterior and the interior, (iv) if Vj is the volume of Rj, then

The Rj can be constructed, for example, by taking appropriate unions
of spheres.

We proceed by induction : we suppose that we can solve the Dirichlet
problem for R3\ ./>!, and we show that we can then solve it for RJ+1.
Since we can clearly solve it for R1, we are led in a finite number of
steps to R itself. We use a variation of Schwartz's alternating method.

First we note that the "rings" of the form RJ+l — RJ~l are regular
for Laplace's equation. (These "rings" may of course have high con-
nectivity, but we may visualize them as annuli.) This is because the
boundary of the ring consists of the two disjoint sets Bj+l and jf?-7""1, the
boundaries of Rj+l and Rj~l respectively. Now each point of BJl1 is a
regular point for the interiors of RJ+l and hence for the ring, and each
point of Bj~l is a regular point for the exterior of Rj~l and hence for
the ring.
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Let us denote Ri+l — Rj~l by S and its boundary by C:

S = Rj+l-Rj-1

C = Bj+1\jBJ'~l.

Now suppose / given on Bl+1, f>a, and / continuous. We want
to show that we can solve the Dirichlet problem with these boundary
values. Define a boundary function / over the lower boundary (see
introduction) of S, i.e., over €„ : for xeS,t = Q, and for x e B*+ί, 0</<oo
we retain the given values of /, but for xeBJ'~\ 0<J<oo we define
/i by

) = f(*> 0)

i.e., we extend / up the generators of the cylinder so as to be constant
on each generator. Then /i is continuous in C^ and /i><*. Now S is
a regular region whose volume is Vj^—Vj-^Vfa), so that we can solve
the problem

Hu = F (x, t) e S^

u=f, (x, t) e C^ .

Let uλ be the solution of this problem. u1 is now continuous in C^
and coincides with / for x 6 S, t = 0. Hence the function φ1 defined on
BL by

(f x£Rj, ί = 0

is continuous and ><*, and by hypothesis the solution of the problem

Hu = F (x,t)eRL

u = Φι (x, t) e BL

exists. It will be called vt. Now v1^a since it is super-parabolic in
R^ for every T, and super-harmonic in R for ί=oo.

The function /2 defined to be / for xeS, t = 0 and x£B*+1, 0<ί<oo
and to be v1 for x£BJ'~\ 0</<oo is then continuous and ><X The
problem

Hu = F (x, t) e S^
u = f2 (x, t) e CTO

has then a solution u2 in STO . This gives rise to a φ2 :

If x£Rj

y t = 0
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which leads to a solution v2 of the problem

Hu = F ( x , t ) £ R L

u = φ2 (x,t)eBL.

By continuing this alternate solving of problems for S^ and RL we
define sequences υn and un of solutions of Hu = F in RL and R^ respec-
tively. Each vn is continuous in RL and each un is continuous in STO.
Also vn coincides with / for f = 0, x£RJ', and un coincides with / for
xeS, ί = 0, and for xeB*+l, 0<ί<oo.

Let us now examine tvn=un+1 — un in S:

un1-un

Hence Hwn = cnwn, £w<0. Now wn vanishes for #GS, f = 0, and for
xeB*+1, 0</<oo, and is bounded (by Mn say) for xeB*~\ 0<ί<oo.
Then by Lemma 7 there is a #<^1, independent of ,̂ for which

\wn\<qMn for Λ: G β 7'

We next examine zΛ=vn+1— vn in RL. Now ̂  vanishes for f = 0,
xeBJ, and coincides with ^w for x£Bj

y 0</<oo. And ^n also satisfies
a linear equation of the form II :

Hzn = c'nzn , c'n<Q,

so, by the maximum principle, \zn\<iMnq in RL. But for x£Bj~l,
0</<oo, we have ^n+i^^w) ^nd on the rest of C^ we have wn+1 = 0.
Hence

Mn+l<gMn.

So, by induction

and

Consequently the sequences un and ^w converge uniformly in their re-
spective domains of definition. The limit functions, denoted by u and v
respecively, are clearly solutions of the differential equation Hu=F.
And u=ffor xeS, / = 0, and xeB>'+1, 0<t<0 and v=f for xeRJ, t = 0.

We consider now the difference un—υn in its domain of definition,
namely RL/^S^. For ί = 0 or for x€Bs, 0<£<oo the difference is zero.
For xξβJ'1, 0</<oo? unzΞΞVn+l, so there the difference is bounded by
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1. From this it follows that u=v in this domain. That is the
function ΰ defined by

-f"(v
ΰ

(x, t) G RL

satisfies both the differential equation and the boundary values. That is
ΰ is the solution of the problem

Hu = F (x,t)£RL+l

u=f (*,*)€ BL+1 .

This completes the proof of Lemma 8 and gives our general existence
theorem for boundary values bounded away from zero.

4. The Proof of the Theorem

We can now give the proof of the theorem stated in the introduction.
Accordingly we suppose that F satisfies assumptions A, that f is conti-
nuous on Bτ (0<^T<oo), that />0, and of course that R is regular
for Laplace's equation. Let αn be a decreasing sequence of constants
with limit zero. Each of the problems

Hu = F (x, t) G Rτ

has a unique solution in Rτ by Lemma 3 or 8 according as T<^ °° or
T= oo.

The differences un—un+k satisfy an equation of type II, so that by
the maximum principle

un-un+k αn-αn+k < αn.

From this we can assert that the sequence {un} is non- increasing and
converges uniformly in RT\JBT to a limit function u which must there-
fore be non-negative (since each ww>#,,^>0) and continuous.

We now show that u satisfies the proper boundary values. Consider
for arbitrary n :

0<un-u = lim(nn-un+k)<lim(αn-αn+k) = αu.
fc->°° £->°°

Let (x, t) tend to an arbitrary point (?, T) e Bτ. Then

0 </+#„— limw

and n tends to infinity we get
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0<f-\imu<f-limu<0.

This implies limu=f at each point of Bτ.
Next we prove that u does not vanish in Rτ. To see this we

observe that u is a continuous super-parabolic function since it is the
uniform limit of continuous super-parabolic functions. Hence, by the
remark in section 2, if it vanishes at a point (x0, tQ) it must vanish for
all previous time, and thus vanishes at some finite point ( x l 9 t 1 ) 9 (for tQ

may be infinite) and for all, t, 0<^t<^tl.
By assumption A(a), F(x,t,u)φQ for 0<Ύ<^, so that there is a

point (x2t2)eRtl and a number £>0 for which F(xz, t2, £)>0. Thus
by continuity there is a neighborhood of ( x 2 , t 2 ) , lying in Rtl, and a
number η >0 for which F(x, ty £)^>η in the neighborhood. Since the
sequence un converges monotonically and uniformly to 0 in Rtl, there is
an n for which

un+k<un<£ (x, t)£Rtl.
Then

F(x, t, un+k) > F(x, t, un) > F(x, /, θ) ( ,̂ ί) 6 Rtl .

Let ϋy be the solution to the problem

Hv = 0 (#, t) e I?Γ

Then

w«+*(*ι, /i) = ^+*(A:I, ίι)+ \ ' f GίAΓj, ,̂ tί-τ)F(y9 T, un+k)dydr
Jo Jj?

^(''f GF(y,r,uH+k)dydr

o Jl?

the last inequality being true since the integrand is positive in a
neighborhood.

As k tends to infinity this gives

u(x, t) > I 1 GF(y, T, 8) dydr > 0
J 0 J R

which yields the contradiction.
The proof is completed by invoking Lemma 4 to prove that u is a

solution of Hu=F in Rτ.

(Received December 1, 1959)
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