Hosokawa, Fujitsugu Osaka Math. J. 10 (1958), 273–282.

On \bigtriangledown -Polynomials of Links

By Fujitsugu Hosokawa

In 1934 H. Seifert [3] proved that the Alexander polynomial $\triangle(t)$ of a knot is a symmetric polynomial of even degree and $|\triangle(1)|=1$. And moreover he proved that for a given symmetric polynomial f(t) of even degree, if |f(1)|=1, then there exists a knot which has f(t) as its Alexander polynomial.

In 1953 G. Torres [1, 2] proved that for the Alexander polynomial of a link of multiplicity μ , whose components are X_1, X_2, \dots, X_{μ} , it holds

$$\triangle(t_1, t_2, \cdots, t_{\mu}) = (-1)^{\mu} t_1^{\nu_1} t_2^{\nu_2} \cdots t_{\mu}^{\nu_{\mu}} \triangle(t_1^{-1}, t_2^{-1}, \cdots, t_{\mu}^{-1})$$

for suitably chosen integers $\nu_1, \nu_2, \dots, \nu_{\mu}$. Further he proved that it holds

$$\triangle(t_1, t_2, \cdots, t_{\mu-1}, 1) = (t_1^{t_1}, t_2^{t_2}, \cdots, t_{\mu-1}^{t_{\mu-1}^{-1}} - 1) \triangle(t_1, t_2, \cdots, t_{\mu-1})$$
 for $\mu > 2$

and

$$\triangle(t_1, 1) = (t_1^{t_1} - 1) \triangle(t_1) / (t_1 - 1)$$
 for $\mu = 2$

where l_i is the linking number of X_i and X_{μ} for $i=1, 2, \dots, \mu-1$, and that it holds

$$\Delta(1, 1, \dots, 1) = 0 \quad \text{for } \mu > 2 \qquad \text{and}$$
$$\Delta(1, 1) = l_1 \qquad \text{for } \mu = 2.$$

In this paper we shall introduce a polynomial, the \bigtriangledown -polynomial of a link, deduced simply from the Alexander polynomial. For this \bigtriangledown -polynomial $\bigtriangledown(t)$ we shall prove the following properties:

- 1) $\nabla(t)$ is a symmetric polynomial of even degree.
- 2) $|\bigtriangledown(t)|$ is determined uniquely by the linking numbers between all pairs of μ components of the link of multiplicity μ .
- 3) If a polynomial f(t) is a symmetric polynomial of even degree, then there exists a link of any given multiplicity μ such that its ∇-polynomial coincides with the polynomial f(t).

1. We shall call a polynomial f(t) symmetric (skew symmetric) if $f(t) = t^{\nu}f(t^{-1})$ ($f(t) = -t^{\nu}f(t^{-1})$) for a suitably chosen integer ν . Then integer n-m will be called the *reduced degree* of a polynomial

$$f(t) = a_{l}t^{l} + a_{l-1}t^{l-1} + \dots + a_{n}t^{n} + \dots + a_{m}t^{m} + \dots + a_{1}t + a_{0}$$

if $a_{l} = a_{l-1} = \cdots = a_{n+1} = 0$, $a_{n} \neq 0$, $a_{m} \neq 0$ $(n \ge m)$ and $a_{m-1} = \cdots = a_{1} = a_{0} = 0$. Then we have the following

Lemma.¹⁾ Let f(t) and F(t) be symmetric polynomials of even reduced degree and let g(t) and G(t) be skew symmetric polynomials such that

$$F(t) = tf(t) + (t-1)g(t),$$

$$G(t) = (1-t)f(t) + g(t) .$$

Then the difference of reduced degrees of f(t) and g(t) is an odd integer.

2. Let κ be a link of multiplicity μ in a 3-dimensional euclidean space E^3 and let X_1, X_2, \dots, X_{μ} be the components of κ . The Alexander polynomial $\triangle(t_1, t_2, \dots, t_{\mu})$ of κ may be defined as usual [1].

Now we shall define the \bigtriangledown -*polynomial* $\bigtriangledown(t)$ of a link of multiplicity μ as follows:

$$\nabla(t) = \Delta(t, \dots, t) / (1-t)^{\mu-2} \quad \text{for} \quad \mu \ge 2,$$

$$\nabla(t) = \Delta(t) \quad \text{for} \quad \mu = 1,$$

where $\triangle(t, \dots, t)$ is the reduced polynomial² obtained by putting $t_1 = t_2 = \dots = t_u = t$ in the Alexander polynomial $\triangle(t_1, t_2, \dots, t_u)$ of κ .

G. Torres showed that

$$\triangle(t_1, t_2, \cdots, t_{\mu}) = (-1)^{\mu} t_1^{\nu_1} t_2^{\nu_2} \cdots t_{\mu}^{\nu_{\mu}} \triangle(t_1^{-1}, t_2^{-1}, \cdots, t_{\mu}^{-1})$$

for suitably chosen integers $\nu_1, \nu_2, \dots, \nu_{\mu}$ [1].

From this it is easy to see that the ∇ -polynomial is symmetric. Then we have the following

Theorem 1. The \bigtriangledown -polynomial of a link κ is a symmetric polynomial of even degree.

Proof. We have only to prove that the degree of the \bigtriangledown -polynomial is even. To prove this we shall use a mathematical induction on the multiplicity of κ . In the case of multiplicity 1, i.e. in the case of a knot, our theorem is evidently true [3].

Now suppose that our theorem is true for the case of multiplicity μ -1.

Let $\bar{\kappa}$ be a regular projection³⁾ of a link κ of multiplicity μ on a plane E^2 in E^3 and let $\bar{X}_1, \bar{X}_2, \dots, \bar{X}_{\mu}$ be the projections of X_1, X_2, \dots, X_{μ} respectively on E^2 . We may confine κ in a cube Q in E^2 . We choose

 $\mathbf{274}$

¹⁾ See [4].

²⁾ A reduced polynomial is by definition a polynomial with non vanishing constant term.

³⁾ See p. 60 of [1].

arbitrarily two components \overline{X}_i and \overline{X}_j of $\overline{\kappa}$ and take out parts of arcs of \overline{X}_i and \overline{X}_j from the cube Q, running parallel to each other in the same direction as shown in Fig. 1.

From this $\bar{\kappa}$ we introduce new links⁴⁾ $\bar{\kappa}_1$, $\bar{\kappa}_2$ and $\bar{\kappa}_3$ as defined in Fig. 2, Fig. 3 and Fig. 4 respectively [4]. Let κ_1 , κ_2 and κ_3 be links in E^3 such that they have $\bar{\kappa}_1$, $\bar{\kappa}_2$ and $\bar{\kappa}_3$ as their regular projections. Then it is clear that κ_1 and κ_3 are links of multiplicity $\mu - 1$ and κ_2 is a link of multiplicity μ . Let $\nabla(t)$, $\nabla_1(t)$, $\nabla_2(t)$ and $\nabla_3(t)$ be the ∇ -polynomials of κ , κ_1 , κ_2 and κ_3 respectively.

Here we shall define f(t), g(t), F(t) and G(t) as follows:

$$\begin{split} f(t) &= \pm t^{p_1} \nabla_1(t) ,\\ g(t) &= \pm t^p (1-t) \nabla(t) ,\\ F(t) &= \pm t^{p_3} \nabla_3(t) ,\\ G(t) &= \pm t^{p_2} (1-t) \nabla_2(t) \end{split}$$

. .

- . . .

and

for suitably chosen integers p, p_1 , p_2 and p_3 .

From the assumption of induction f(t) and F(t) are symmetric polynomials of even reduced degree and g(t) and G(t) are skew symmetric polynomials and from the constructions of κ_1 , κ_2 and κ_3 we have [4]

$$F(t) = tf(t) + (t-1)g(t),$$

$$G(t) = (1-t)f(t) + g(t).$$

Hence, f(t), g(t), F(t) and G(t) satisfy the conditions of Lemma. Therefore, the difference of the reduced degrees of f(t) and g(t) is an odd integer. Since the reduced degree of f(t) is even, the reduced degree of g(t) is odd. By the definition of g(t) the degree of $\nabla(t)$ is even. Thus, the proof of our theorem is complete.

⁴⁾ A knot is considered as a link of multiplicity 1.

3. Given a link κ of multiplicity μ , κ can be spanned by an orientable surface F of genus h, represented by a disk to which is attached $2h + \mu - 1$ bands $B_1, B_2, \dots, B_{2h+\mu-1}$, whose corresponding projection si named by Torres the Seifert projection.

Let B_1, B_2, \dots, B_{2h} be canonical bands and let $B_{2h+1}, \dots, B_{2h+\mu-1}$ be extra bands⁵⁾. Let $a_1, a_2, \dots, a_{2h+\mu-1}$ be simple closed curves which are drawn along each $B_1, B_2, \dots, B_{2h+\mu-1}$. The curves a_1, a_2, \dots, a_{2h} are oriented such that a_{2i-1} crosses a_{2i} from left to right $(i=1, 2, \dots, h)$. The curves $a_{2h+1}, \dots, a_{2h+\mu-1}$ have the same orientation as the orientation of X_1 as shown in Fig. 5.

Then it is clear that a_i intersects a_j if and only if i=2k-1 and j=2k $(1 \le k \le h)$. If a_{2k-1} intersects a_{2k} , we can life a_{2k-1} in a neighborhood of the intersection and let the new curve be denoted by a'_{2k-1} . Let $v_{i,j}$ $(i, j=1, 2, \dots, 2h+\mu-1)$ be equal to the number of times that a_i crosses over a_j from left to right minus the number of times that a_i crosses over a_j from right to left. Then we have easily the following relations:

$$\begin{aligned} v_{i,j} &= v_{j,i} = \text{link} (a_i, a_j) & \text{if} \quad a_i \cap a_j = \phi \\ v_{2k-1,2k} &= v_{2k,2k-1} + 1 = \text{link} (a'_{2k-1}, a_{2k}) & \text{if} \quad 1 \le k \le h , \end{aligned}$$

where link (a_i, a_j) denotes the linking number of a_i and a_j .

Then the ∇ -polynomial $\nabla(t)$ of κ can be written as follows [1]:

⁵⁾ See p. 63 of [1].

						1		
	$\cdots v_{1,2h+\mu-1}(1-t)$	$\cdots v_{2,2h+\mu-1}(1-t)$		$v_{2h-1,2h+1}(1-t) \cdots v_{2h-1,2h+\mu-1}(1-t)$	$v_{2h,2h+1}(1-t)$ $v_{2h,2h+\mu-1}(1-t)$	$\cdots v_{2h+1,2h+\mu-1}$		$ v_{2h+\mu-1,2h+\mu-1}$
	$v_{_{1,2h+1}}(1-t)$	$v_{_{2,2h+1}}(1-t)$	••••••	$v_{2h-1,2h+1}(1-t)$	$v_{{}^{2h,2h+1}}(1\!-\!t)$	$v_{_{2h+1},_{2h+1}}$		$v_{^{2h+\mu-1,2h+1}}$
	$v_{_{1,2h}}(1-t)$	$v_{_{2,2h}}(1\!-\!t)$		$v_{2h-1,2h}(1-t)+t$	$v_{{}^{2h,2h}}(1\!-\!t)$	$v_{2^{h+1,2^h}}$		$v_{2h+\mu-1,2\hbar}$
	$v_{1,2}(1-t)+t \cdots v_{1,2h-1}(1-t_1)$	$\cdots v_{2,2h-1}(1-t)$		$(-t) v_{2^{h-1},2}(1-t) \cdots v_{2^{h-1},2^{h-1}}(1-t) v_{2^{h-1},2^{h}}(1-t) + t$	$v_{2h,2}(1-t)$ \cdots $v_{2h-1,2h}(1-t)-1$ $v_{2h,2h}(1-t)$	··· U2h+1,2h-1	•••••	$ v_{2h+\mu-1,2h-1}$
()	$v_{1,2}(1-t)+t$	$t)-1$ $v_{2,2}(1-t)$		$v_{2h-1,2}(1-t)$	$v_{_{2h,2}}(1-t)$	$v_{2h+1,2}$		$v_{{}^{2h+\mu-1,2}}$
$\pm t^n \bigtriangledown (t) = M_{h,u}(t)$	$v_{_{1,1}}(1-t)$	$v_{1,2}(1-t)-1$		$v_{2h-1,1}(1-t)$	$v_{2h,1}(1-t)$	$v_{^{2h+1,1}}$	•••••	$v_{^{2h+u-1,1}}$
十 <i>t</i>]]			(*)			·····	
				\sim				

F. HOSOKAWA

Conversely if $v_{i,j}$ $(i, j=1, 2, \dots, 2h+\mu-1)$ are given, then the \bigtriangledown -polynomial, $\bigtriangledown(t)$, and a link of multiplicity μ , which has $\bigtriangledown(t)$ as the \bigtriangledown -polynomial, can evidently be determined.

Now we have

Theorem 2. Let κ be a link of multiplicity μ and let X_1, X_2, \dots, X_{μ} be the components of κ . Let $l_{i,j}$ be the linking number of X_i and X_j , i.e.

$$l_{i,j} = link(X_i, X_j)$$
 $(i \neq j, i, j = 1, 2, \cdots, \mu).$

Let $\nabla(t)$ be the ∇ -polynomial of κ . Then $\pm \nabla(1)$ is equal to the $(\mu-1)$ -minor determinant of the following matrix A:

Proof. From the definition of $v_{i,j}$ it is easy to see that $l_{i,j} = v_{2h+i-1,2h+j-1} = v_{2h+j-1,2h+i-1} = l_{j,i}$ if i,j > 1 $i \neq j$ $l_{1,i} = -(v_{2h+i-1,2h+1} + \dots + v_{2h+i-1,2h+i-1} + \dots + v_{2h+i-1,2h+\mu-1})$ if i > 1. Hence, we have

$$v_{2h+i-1,2h+i-1} = -(l_{1,i}+l_{2,i}+\cdots+l_{i-1,i}+l_{i+1,i}+\cdots+l_{\mu,i}).$$

If we set t=1 in (*), we have

278

$$= \begin{vmatrix} v_{2h+1,2h+1} & \cdots & v_{2h+1,2h+\mu-1} \\ \vdots \\ \vdots \\ v_{2h+\mu-1,2h+1} & \cdots & v_{2h+\mu-1,2h+\mu-1} \end{vmatrix}$$

$$= \begin{vmatrix} -\sum_{k=1,k\pm 2}^{\mu} l_{2'i} & l_{2,3} & \cdots & l_{2,\mu} \\ l_{3,2} & -\sum_{k=1,k\pm 3}^{\mu} l_{3,k} & \cdots & l_{3,\mu} \\ \vdots & \vdots & \vdots \\ l_{\mu,2} & l_{\mu,3} & \cdots & -\sum_{k=1}^{\mu-1} l_{\mu,k} \end{vmatrix}.$$

Since it is clear that the rank of matrix A is $\mu-1$, the $(\mu-1)$ -minor determinants of A coincide with $\pm \bigtriangledown (1)$. Thus the proof is complete.

Finally, we shall prove the following theorem.

Theorem 3. Let f(x) be a symmetric polynomial of even degree whose constant term is different from zero. Then there exists a link of any given multiplicity μ whose ∇ -polynomial is f(x).

Proof. In order to construct a link κ of multiplicity μ whose \bigtriangledown -polunomial is f(x), we shall determine $v_{i,j}$ $(i, j = 1, 2, \dots, 2h + \mu - 1)$ in (*).

To begin with, let

$$v_{1,4}, v_{3,6}, \cdots, v_{2h-3,2h}$$
 and
 $v_{2h+2,2h+2}, \cdots, v_{2h+\mu-1,2h+\mu-1}$ and $v_{2,2h+1}$

be equal to 1, let

$$v_{1,3}, v_{3,5}, \cdots, v_{2h-3,2h-1}$$
 and $v_{1,1}$

be undetermined, let

$$v_{2h+1,2h+1}$$

be equal to -f(1), and let the others be equal to zero. Then we have F. HOSOKAWA

M_{k}	$_{\mu,\mu}(t) =$									
	$v_{1,1}(1-t)$	t	•••	0	0	0	0	0	0.	• 0
	-1	0	•••	0	0	0	0	(1-t)	0 .	• 0
	:	÷		:	:		:	:	÷	:
	0	0	•••	0	t	$v_{2h-3,2h-1}(1-$	-t) (1-t)	0	0	• 0
	0	0	•••	-1	0	0	0	0	0	• 0
	0	0	•••	$v_{2h-3,2h-1}(1-t)$	0	0	t	0	0	• 0
	0	0	•••	(1-t)	0	-1	0	0	0	• 0
	0	1	•••	0	0	0	0	-f(1)	0	• 0
1	0	0	•••	0	0	0	0	0	1 …	• 0
	:	÷		:	:	:	:	÷	:	:
	0	0	•••	0	0	0	0	0	0	$\cdot 1$.

Interchange the second column with the (2h+1)-th column and add the (2h+1)-th row multiplied by -t to the first row. Then, we have

Now we shall prove our theorem by a mathematical induction on the degree of f(t).

If the degree of f(x) is 2, i.e. if

$$f(t) = c_0 t^2 + c_1 t + c_0 ,$$

then we set h = 1. Since

$$\bar{M}_{1,\mu}(t) = \begin{vmatrix} v_{1,1}(1-t) & f(1)t \\ -1 & (1-t) \end{vmatrix} = v_{1,1}t^2 - (2v_{1,1} - f(1))t + v_{1,1},$$

if we set $v_{1,1} = c_0$, then $|\nabla(t)| = |\overline{M}_{1,\mu}(t)| = |f(t)|$.

Suppose that our theorem is proved for the case where the degree of f(t) is 2(n-1).

280

Then let

$$f(t) = c_0 t^{2n} + c_1 t^{2n-1} + \cdots + c_{n-1} t^{n+1} + c_n t^n + c_{n-1} t^{n-1} + \cdots + c_1 t + c_0.$$

We set h = n.

Let $\overline{M}'_{n,\mu}(t)$ be the (2n-1)-minor determinant which is deduced from $\overline{M}_{n,\mu}(t)$ by striking out (2n-1)-th row and (2n-1)-th column. By a simple calculation we have

$$\bar{M}'_{n,\mu}(t) = -(1-t)^2 \bar{M}'_{n-1,\mu}(t)$$

and since $\overline{M}'_{1,\mu}(t) = (1-t)$, we have further

$$\bar{M}'_{n,\mu}(t) = (-1)^{n-1}(1-t)^{2^{n-1}}$$

Developing $\overline{M}_{n,k}(t)$ at the (2n-1)-th column, we have

$$\begin{split} \bar{M}_{n,\mu}(t) &= v_{2n-3,2n-1} t(1-t)^2 \bar{M}'_{n-1,\mu}(t) + \{ t \bar{M}_{n-1,\mu}(t) - (1-t)^2 v_{2n-3,2n-1} \bar{M}'_{n-1,\mu}(t) \} \\ &= t \bar{M}_{n-1,\mu}(t) - (1-t)^3 v_{2n-3,2n-1} \bar{M}'_{n-1,\mu}(t) \\ &= t \bar{M}_{n-1,\mu}(t) + (-1)^{n-1} v_{2n-3,2n-1} (1-t)^{2n} \,. \end{split}$$

In order that

$$\overline{M}_{n,\mu}(t) = f(t) = c_0 t^{2n} + c_1 t^{2^{n-1}} + \cdots + c_1 t + c_0,$$

it is sufficient that it holds

(**)
$$\bar{M}_{n-1,\mu}(t) = \frac{c_0 t^{2n} + c_1 t^{2n-1} + \cdots + c_1 t + c_0 + (-1)^n v_{2n-3,2n-1} (1-t)^{2n}}{t}.$$

If we set $v_{2n-3,2n-1} = (-1)^{n+1}c_0$, then the degree of the right hand side of (**) is 2(n-1). Hence, by the assumption of induction we can determine $v_{1,1}, v_{1,3}, \dots, v_{2n-5,2n-3}$ satisfying (**). Therefore, $v_{1,1}, v_{1,3}, \dots, v_{2n-3,2n-1}$ can be determined such that $|\nabla(t)| = |\overline{M}_{n,n}(t)| = |f(t)|$.

Hence, we have a link of multiplicity μ whose \bigtriangledown -polynomial is f(t), and the proof is complete.

Kobe University.

(Received September 29, 1958)

References

- [1] G. Torres: On the Alexander polynomial, Ann. of Math. 57 (1953), 57-89.
- [2] G. Torres and R. H. Fox: Dual presentations of the group of a knot, Ann. of Math. 59 (1954), 211-218.

F. Hosokawa

- [3] H. Serfert: Über das Gaschlecht von Knoten, Math. Ann. 110 (1934), 571– 592.
- [4] Y. Hashizume and F. Hosokawa: On symmetric skew unions of knots, Proc. Japan. Acad. 34 (1958), 87-91.