On ∇-Polynomials of Links

By Fujitsugu Hosokawa

In 1934 H . Seifert [3] proved that the Alexander polynomial $\triangle(t)$ of a knot is a symmetric polynomial of even degree and $|\triangle(1)|=1$. And moreover he proved that for a given symmetric polynomial $f(t)$ of even degree, if $|f(1)|=1$, then there exists a knot which has $f(t)$ as its Alexander polynomial.

In 1953 G. Torres [1,2] proved that for the Alexander polynomial of a link of multiplicity μ, whose components are $X_{1}, X_{2}, \cdots, X_{\mu}$, it holds

$$
\triangle\left(t_{1}, t_{2}, \cdots, t_{\mu}\right)=(-1)^{\mu} t_{1}^{\nu_{1}} t_{2}^{\nu_{2}} \cdots t_{\mu}^{\nu_{\mu}} \triangle\left(t_{1}^{-1}, t_{2}^{-1}, \cdots, t_{\mu}^{-1}\right)
$$

for suitably chosen integers $\nu_{1}, \nu_{2}, \cdots, \nu_{\mu}$. Further he proved that it holds

$$
\triangle\left(t_{1}, t_{2}, \cdots, t_{\mu-1}, 1\right)=\left(t_{1}^{L_{1}}, t_{2}^{t_{2}}, \cdots, t_{\mu-1}^{l_{\mu}^{1}}-1\right) \triangle\left(t_{1}, t_{2}, \cdots, t_{\mu-1}\right) \quad \text { for } \mu>2
$$

and

$$
\triangle\left(t_{1}, 1\right)=\left(t_{1}^{\left.l_{1}-1\right)} \triangle\left(t_{1}\right) /\left(t_{1}-1\right) \quad \text { for } \mu=2\right.
$$

where l_{i} is the linking number of X_{i} and X_{μ} for $i=1,2, \cdots, \mu-1$, and that it holds

$$
\begin{array}{lll}
\triangle(1,1, \cdots, 1)=0 & \text { for } \quad \mu>2 \\
\triangle(1,1)=l_{1} & \text { for } \quad \mu=2
\end{array}
$$

In this paper we shall introduce a polynomial, the ∇-polynomial of a link, deduced simply from the Alexander polynomial. For this ∇ polynomial $\nabla(t)$ we shall prove the following properties:

1) $\nabla(t)$ is a symmetric polynomial of even degree.
2) $|\nabla(t)|$ is determined uniquely by the linking numbers between all pairs of μ components of the link of multiplicity μ.
3) If a polynomial $f(t)$ is a symmetric polynomial of even degree, then there exists a link of any given multiplicity μ such that its ∇-polynomial coincides with the polynomial $f(t)$.
1. We shall call a polynomial $f(t)$ symmetric (skew symmetric) if $f(t)=t^{\nu} f\left(t^{-1}\right)\left(f(t)=-t^{\nu} f\left(t^{-1}\right)\right)$ for a suitably chosen integer ν. Then integer $n-m$ will be called the reduced degree of a polynomial

$$
f(t)=a_{l} t^{l}+a_{l-1} t^{t-1}+\cdots+a_{n} t^{n}+\cdots+a_{m} t^{m}+\cdots+a_{1} t+a_{0}
$$

if $a_{l}=a_{l-1}=\cdots=a_{n+1}=0, a_{n} \neq 0, a_{m} \neq 0(n \geq m)$ and $a_{m-1}=\cdots=a_{1}=a_{0}$ $=0$. Then we have the following

Lemma. ${ }^{1)}$ Let $f(t)$ and $F(t)$ be symmetric polynomials of even reduced degree and let $g(t)$ and $G(t)$ be skew symmetric polynomials such that

$$
\begin{aligned}
& F(t)=t f(t)+(t-1) g(t), \\
& G(t)=(1-t) f(t)+g(t) .
\end{aligned}
$$

Then the difference of reduced degrees of $f(t)$ and $g(t)$ is an odd integer.
2. Let κ be a link of multiplicity μ in a 3-dimensional euclidean space E^{3} and let $X_{1}, X_{2}, \cdots, X_{u}$ be the components of κ. The Alexander polynomial $\triangle\left(t_{1}, t_{2}, \cdots, t_{\mu}\right)$ of κ may be defined as usual [1].

Now we shall define the ∇-polynomial $\nabla(t)$ of a link of multiplicity μ as follows:

$$
\begin{array}{ll}
\nabla(t)=\triangle(t, \cdots, t) /(1-t)^{\mu-2} & \text { for } \quad \mu \geq 2 \\
\nabla(t)=\triangle(t) & \text { for } \quad \mu=1
\end{array}
$$

where $\triangle(t, \cdots, t)$ is the reduced polynomial ${ }^{2)}$ obtained by putting $t_{1}=t_{2}=$ $\cdots=t_{\mu}=t$ in the Alexander polynomial $\triangle\left(t_{1}, t_{2}, \cdots, t_{\mu}\right)$ of κ.
G. Torres showed that

$$
\triangle\left(t_{1}, t_{2}, \cdots, t_{\mu}\right)=(-1)^{\mu} t_{1}^{\nu_{1}} t_{2}^{\nu_{2}} \cdots t_{\mu}^{\nu} \triangle\left(t_{1}^{-1}, t_{2}^{-1}, \cdots, t_{\mu}^{-1}\right)
$$

for suitably chosen integers $\nu_{1}, \nu_{2}, \cdots, \nu_{\mu}$ [1].
From this it is easy to see that the ∇-polynomial is symmetric. Then we have the following

Theorem 1. The ∇-polynomial of a link κ is a symmetric polynomial of even degree.

Proof. We have only to prove that the degree of the ∇-polynomial is even. To prove this we shall use a mathematical induction on the multiplicity of κ. In the case of multiplicity 1, i.e. in the case of a knot, our theorem is evidently true [3].

Now suppose that our theorem is true for the case of multiplicity $\mu-1$.

Let $\bar{\kappa}$ be a regular projection ${ }^{3}$ of a link κ of multiplicity μ on a plane E^{2} in E^{3} and let $\bar{X}_{1}, \bar{X}_{2}, \cdots, \bar{X}_{\mu}$ be the projections of $X_{1}, X_{2}, \cdots, X_{\mu}$ respectively on E^{2}. We may confine κ in a cube Q in E^{2}. We choose

[^0]arbitrarily two components \bar{X}_{i} and \bar{X}_{j} of $\bar{\kappa}$ and take out parts of arcs of \bar{X}_{i} and \bar{X}_{j} from the cube Q, running parallel to each other in the same direction as shown in Fig. 1.

From this $\bar{\kappa}$ we introduce new links ${ }^{4} \bar{\kappa}_{1}, \bar{\kappa}_{2}$ and $\bar{\kappa}_{3}$ as defined in Fig. 2, Fig. 3 and Fig. 4 respectively [4]. Let κ_{1}, κ_{2} and κ_{3} be links in E^{3} such that they have $\bar{\kappa}_{1}, \bar{\kappa}_{2}$ and $\bar{\kappa}_{3}$ as their regular projections. Then it is clear that κ_{1} and κ_{3} are links of multiplicity $\mu-1$ and κ_{2} is a link of multiplicity μ. Let $\nabla(t), \nabla_{1}(t), \nabla_{2}(t)$ and $\nabla_{3}(t)$ be the ∇-polynomials of $\kappa, \kappa_{1}, \kappa_{2}$ and κ_{3} respectively.

Here we shall define $f(t), g(t), F(t)$ and $G(t)$ as follows:

$$
\begin{aligned}
& f(t)= \pm t^{p_{1}} \nabla_{1}(t), \\
& g(t)= \pm t^{p}(1-t) \nabla(t), \\
& F(t)= \pm t^{p_{3}} \nabla_{3}(t), \\
& G(t)= \pm t^{p_{2}}(1-t) \nabla_{2}(t)
\end{aligned}
$$

and
for suitably chosen integers p, p_{1}, p_{2} and p_{3}.
From the assumption of induction $f(t)$ and $F(t)$ are symmetric polynomials of even reduced degree and $g(t)$ and $G(t)$ are skew symmetric polynomials and from the constructions of κ_{1}, κ_{2} and κ_{3} we have [4]

$$
\begin{aligned}
& F(t)=t f(t)+(t-1) g(t), \\
& G(t)=(1-t) f(t)+g(t) .
\end{aligned}
$$

Hence, $f(t), g(t), F(t)$ and $G(t)$ satisfy the conditions of Lemma. Therefore, the difference of the reduced degrees of $f(t)$ and $g(t)$ is an odd integer. Since the reduced degree of $f(t)$ is even, the reduced degree of $g(t)$ is odd. By the definition of $g(t)$ the degree of $\nabla(t)$ is even. Thus, the proof of our theorem is complete.

[^1]3. Given a link κ of multiplicity μ, κ can be spanned by an orientable surface F of genus h, represented by a disk to which is attached $2 h+\mu-1$ bands $B_{1}, B_{2}, \cdots, B_{2 h+\mu-1}$, whose corresponding projection si named by Torres the Seifert projection.

Let $B_{1}, B_{2}, \cdots, B_{2 h}$ be canonical bands and let $B_{2 h+1}, \cdots, B_{2 h+\mu-1}$ be extra bands ${ }^{5}$. Let $a_{1}, a_{2}, \cdots, a_{2 h+\mu-1}$ be simple closed curves which are drawn along each $B_{1}, B_{2}, \cdots, B_{2 h+\mu-1}$. The curves $a_{1}, a_{2}, \cdots, a_{2 h}$ are oriented such that $a_{2 i-1}$ crosses $a_{2 i}$ from left to right ($i=1,2, \cdots, h$). The curves $a_{2 h+1}, \cdots, a_{2 h+\mu-1}$ have the same orientation as the orientation of X_{1} as shown in Fig. 5.

Fig. 5.
Then it is clear that a_{i} intersects a_{j} if and only if $i=2 k-1$ and $j=2 k(1 \leq k \leq h)$. If $a_{2 k-1}$ intersects $a_{2 k}$, we can life $a_{2 k-1}$ in a neighborhood of the intersection and let the new curve be denoted by $a_{2 k-1}^{\prime}$. Let $v_{i, j}(i, j=1,2, \cdots, 2 h+\mu-1)$ be equal to the number of times that a_{i} crosses over a_{j} from left to right minus the number of times that a_{i} crosses over a_{j} from right to left. Then we have easily the following relations:

$$
\begin{aligned}
& v_{i, j}=v_{j, i}=\operatorname{link}\left(a_{i}, a_{j}\right) \quad \text { if } \quad a_{i} \cap a_{j}=\phi \\
& v_{2 k-1,2 k}=v_{2 k, 2 k-1}+1=\operatorname{link}\left(a_{2 k-1}^{\prime}, a_{2 k}\right) \quad \text { if } \quad 1 \leq k \leq h,
\end{aligned}
$$

where link $\left(a_{i}, a_{j}\right)$ denotes the linking number of a_{i} and a_{j}.
Then the ∇-polynomial $\nabla(t)$ of κ can be written as follows [1]:

[^2]

Conversely if $v_{i, j}(i, j=1,2, \cdots, 2 h+\mu-1)$ are given, then the ∇ polynomial, $\nabla(t)$, and a link of multiplicity μ, which has $\nabla(t)$ as the ∇-polynomial, can evidently be determined.

Now we have
Theorem 2. Let κ be a link of multiplicity μ and let $X_{1}, X_{2}, \cdots, X_{\mu}$ be the components of $\kappa . L$ Let $l_{i, j}$ be the linking number of X_{i} and X_{j}, i.e.

$$
l_{i, j}=\operatorname{link}\left(X_{i}, X_{j}\right) \quad(i \neq j, \quad i, j=1,2, \cdots, \mu)
$$

Let $\nabla(t)$ be the ∇-polynomial of κ. Then $\pm \nabla(1)$ is equal to the ($\mu-1)$-minor determinant of the following matrix A :

$$
A=\left(\begin{array}{cccccc}
-\sum_{k=2}^{\mu} l_{1, k} & l_{1,2} & \cdots & l_{1, j} & \cdots & l_{1, \mu} \\
l_{2,1} & -\sum_{k=1, k \neq 2}^{\mu} l_{2, k} & \cdots & l_{2, j} & \cdots & l_{2, \mu} \\
\vdots & \vdots & & \vdots & & \vdots \\
l_{j, 1} & l_{j, 2} & \cdots & -\sum_{k=1, k \neq j}^{\mu} l_{j, k} & \cdots & l_{j, \mu} \\
\vdots & \vdots & & \vdots & & \vdots \\
l_{\mu, 1} & l_{\mu, 2} & \cdots & l_{\mu, j} & \cdots & -\sum_{k=2}^{\mu-1} l_{\mu, k}
\end{array}\right) .
$$

Proof. From the definition of $v_{i, j}$ it is easy to see that

$$
\begin{aligned}
& l_{i, j}=v_{2 h+i-1,2 h+j-1}=v_{2 h+j-1,2 h+i-1}=l_{j, i} \quad \text { if } \quad i, j>1 \quad i \neq j \\
& l_{1, i}=-\left(v_{2 h+i-1,2 h+1}+\cdots+v_{2 h+i-1,2 h+i-1}+\cdots+v_{2 h+i-1,2 h+\mu-1}\right) \quad \text { if } \quad i>1
\end{aligned}
$$

Hence, we have

$$
v_{2 h+i-1,2 h+i-1}=-\left(l_{1, i}+l_{2, i}+\cdots+l_{i-1, i}+l_{i+1, i}+\cdots+l_{\mu, i}\right) .
$$

If we set $t=1$ in (*), we have

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
v_{2 h+1,2 h+1} & \cdots & v_{2 h+1,2 h+\mu-1} \\
\vdots & & \\
\vdots & & \\
v_{2 h+\mu-1,2 h+1} & \cdots & v_{2 h+\mu-1,2 h+\mu-1}
\end{array}\right| \\
& =\left\lvert\, \begin{array}{cccc}
-\sum_{k=1, k \neq 2}^{\mu} l_{2} \cdot i & & l_{2,3} & \cdots
\end{array} l_{2, \mu}\right. \\
& l_{3,2} \\
& \vdots \\
& \vdots
\end{aligned}
$$

Since it is clear that the rank of matrix A is $\mu-1$, the ($\mu-1$)-minor determinants of A coincide with $\pm \nabla(1)$. Thus the proof is complete.

Finally, we shall prove the following theorem.
Theorem 3. Let $f(x)$ be a symmetric polynomial of even degree whose constant term is different from zero. Then there exists a link of any given multiplicity μ whose ∇-polynomial is $f(x)$.

Proof. In order to construct a link κ of multiplicity μ whose ∇ polunomial is $f(x)$, we shall determine $v_{i, j}(i, j=1,2, \cdots, 2 h+\mu-1)$ in ($*$).

To begin with, let

$$
\begin{aligned}
& v_{1,4}, v_{3,6}, \cdots, v_{2 h-3,2 h} \quad \text { and } \\
& v_{2 h+2,2 h+2}, \cdots, v_{2 h+\mu-1,2 h+\mu-1} \text { and } v_{2,2 h+1}
\end{aligned}
$$

be equal to 1 , let

$$
v_{1,3}, v_{3,5}, \cdots, v_{2 h-3,2 h-1} \text { and } v_{1,1}
$$

be undetermined, let

$$
v_{2 h+1,2 h+1}
$$

be equal to $-f(1)$, and let the others be equal to zero.
Then we have

$$
\begin{aligned}
& M_{h, \mu}(t)= \\
& \qquad \left.\begin{array}{ccccccc|cccc}
v_{1,1}(1-t) & t & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
-1 & 0 & \cdots & 0 & 0 & 0 & 0 & (1-t) & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0 & t & v_{2 h-3,2 h-1}(1-t) & (1-t) & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & -1 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & v_{2 h-3,2 h-1}(1-t) & 0 & 0 & t & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & (1-t) & 0 & -1 & 0 & 0 & 0 & \cdots & 0 \\
\hline 0 & 1 & \cdots & 0 & 0 & 0 & 0 & -f(1) & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 1
\end{array} \right\rvert\, .
\end{aligned}
$$

Interchange the second column with the $(2 h+1)$-th column and add the $(2 h+1)$-th row multiplied by $-t$ to the first row. Then, we have
$-M_{h, \mu}(t)=\bar{M}_{h, \mu}(t)=$

$$
\left\lvert\, \begin{array}{ccllccc}
v_{1,1}(1-t) & f(1) t & \cdots & 0 & 0 & 0 & 0 \\
-1 & 1-t & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & t & v_{2 h-3,2 h-1}(1-t) & (1-t) \\
0 & 0 & \cdots & -1 & 0 & 0 & 0 \\
0 & 0 & \cdots & v_{2 h-3,2 h-1}(1-t) & 0 & 0 & t \\
0 & 0 & \cdots & (1-t) & 0 & -1 & 0
\end{array} .\right.
$$

Now we shall prove our theorem by a mathematical induction on the degree of $f(t)$.

If the degree of $f(x)$ is 2 , i.e. if

$$
f(t)=c_{0} t^{2}+c_{1} t+c_{0}
$$

then we set $h=1$.
Since

$$
\bar{M}_{1, \mu}(t)=\left|\begin{array}{cc}
v_{1,1}(1-t) & f(1) t \\
-1 & (1-t)
\end{array}\right|=v_{1,1} t^{2}-\left(2 v_{1,1}-f(1)\right) t+v_{1,1}
$$

if we set $v_{1,1}=c_{0}$, then $|\nabla(t)|=\left|\bar{M}_{1, \mu}(t)\right|=|f(t)|$.
Suppose that our theorem is proved for the case where the degree of $f(t)$ is $2(n-1)$.

Then let

$$
f(t)=c_{0} t^{2 n}+c_{1} t^{2 n-1}+\cdots+c_{n-1} t^{n+1}+c_{n} t^{n}+c_{n-1} t^{n-1}+\cdots+c_{1} t+c_{0}
$$

We set $h=n$.
Let $\bar{M}_{n, \mu}^{\prime}(t)$ be the $(2 n-1)$-minor determinant which is deduced from $\bar{M}_{n, \mu}(t)$ by striking out ($2 n-1$)-th row and $(2 n-1)$-th column. By a simple calculation we have

$$
\bar{M}_{n, \mu}^{\prime}(t)=-(1-t)^{2} \bar{M}_{n-1, \mu}^{\prime}(t)
$$

and since $\bar{M}_{1, \mu}^{\prime}(t)=(1-t)$, we have further

$$
\bar{M}_{n, \mu}^{\prime}(t)=(-1)^{n-1}(1-t)^{2 n-1}
$$

Developing $\bar{M}_{n, k}(t)$ at the ($2 n-1$)-th column, we have

$$
\begin{aligned}
\bar{M}_{n, \mu}(t) & =v_{2 n-3,2 n-1} t(1-t)^{2} \bar{M}_{n-1, \mu}^{\prime}(t)+\left\{t \bar{M}_{n-1, \mu}(t)-(1-t)^{2} v_{2 n-3,2 n-1} \bar{M}_{n-1, \mu}^{\prime}(t)\right\} \\
& =t \bar{M}_{n-1, \mu}(t)-(1-t)^{3} v_{2 n-3,2 n-1} \bar{M}_{n-1, \mu}^{\prime}(t) \\
& =t \bar{M}_{n-1, \mu}(t)+(-1)^{n-1} v_{2 n-3,2 n-1}(1-t)^{2 n} .
\end{aligned}
$$

In order that

$$
\bar{M}_{n, \mu}(t)=f(t)=c_{0} t^{2 n}+c_{1} t^{2 n-1}+\cdots+c_{1} t+c_{0}
$$

it is sufficient that it holds

$$
(* *) \quad \bar{M}_{n-1, \mu}(t)=\frac{c_{0} t^{2 n}+c_{1} t^{2 n-1}+\cdots+c_{1} t+c_{0}+(-1)^{n} v_{2 n-3,2 n-1}(1-t)^{2 n}}{t}
$$

If we set $v_{2 n-3,2 n-1}=(-1)^{n+1} c_{0}$, then the degree of the right hand side of $(* *)$ is $2(n-1)$. Hence, by the assumption of induction we can determine $v_{1,1}, v_{1,3}, \cdots, v_{2 n-5,2 n-3}$ satisfying ($* *$). Therefore, $v_{1,1}, v_{1,3}, \cdots$, $v_{2 n-3,2 n-1}$ can be determined such that $.|\nabla(t)|=\left|\bar{M}_{n, \mu}(t)\right|=|f(t)|$.

Hence, we have a link of multiplicity μ whose ∇-polynomial is $f(t)$, and the proof is complete.

Kobe University.
(Received September 29, 1958)

References

[1] G. Torres: On the Alexander polynomial, Ann. of Math. 57 (1953), 57-89.
[2] G. Torres and R. H. Fox: Dual presentations of the group of a knot, Ann. of Math. 59 (1954), 211-218.
[3] H. Serfert: Über das Gaschlecht von Knoten, Math. Ann. 110 (1934), 571592.
[4] Y. Hashizume and F. Hosokawa: On symmetric skew unions of knots, Proc. Japan. Acad. 34 (1958), 87-91.

[^0]: 1) See [4].
 2) A reduced polynomial is by definition a polynomial with non vanishing constant term.
 3) See p. 60 of [1].
[^1]: 4) A knot is considered as a link of multiplicity 1.
[^2]: 5) See p. 63 of [1].
