On Wendt's Theorem of Knots, II

By Shin'ichi Kinoshita

1. Recently R. H. Fox introduced in his paper [1] an operation τ called a single twist. Using this operation τ, we introduce now a numerical knot ${ }^{1)}$ invariant $\overline{\bar{s}}(k)$ defined as the minimal number of τ^{n} which change the given knot k to the trivial one, where the natural number n is not fixed. By definition of $\bar{s}(k)$ and $s(k)^{2)}$

$$
\overline{\bar{s}}(k) \leqq \bar{s}(k) \leqq s(k)
$$

Then the purpose of this note is to prove

$$
(*) \quad e_{g} \leqq(g-1) \overline{\bar{s}}(k),
$$

where e_{g} is the minimal number of essential generators of the 1 -dimensional homology group of the g-fold cyclic covering space of S, branched along k. From the above inequality ($*$) it follows that

$$
e_{g} \leqq(g-1) \bar{s}(k), \quad e_{g} \leqq(g-1) s(k)
$$

where the former is proved in [2] and the latter is due to H. Wendt [3].
2. Now we prove our inequality (*). Let k be a knot. Suppose that k is deformed into k^{\prime} by τ^{n}. Then we are only to prove that

$$
e_{g}\left(k^{\prime}\right) \leqq e_{g}(k)+(g-1)
$$

Let $F(S-k)$ be the fundamental group of $S-k$. By [1] we may assume that

$$
\begin{gathered}
F(S-k)=\left(a, b, A, B, x_{1}, x_{2}, \cdots:\right. \\
\left.a=A, b=B, r_{1}=1, r_{2}=1, \cdots\right) \\
F\left(S-k^{\prime}\right)=\left(a, b, A, B, x_{1}, x_{2}, \cdots:\right. \\
\left.\quad a=A, b=A^{n} B, r_{1}=1, r_{2}=1, \cdots\right)
\end{gathered}
$$

The 1-dimensional homology groups of $S-k$ and $S-k^{\prime}$ are infinite cyclic. We denote by t a generator of either group. Then abelianization of $F(S-k)$ or $F\left(S-k^{\prime}\right)$ maps A into t^{q} and B into 1 , where q is an integer. By usual methods the presentations of $F(S-k)$ and $F\left(S-k^{\prime}\right)$ can be transfomed to the following one:

[^0]\[

$$
\begin{aligned}
& F(S-k)=\left(t, \bar{a}, \bar{b}, \bar{A}, \bar{B}, \bar{x}_{1}, \bar{x}_{2}, \cdots:\right. \\
& \left.\quad \bar{a}=\bar{A}, \bar{b}=\bar{B}, \bar{r}_{1}=1, \bar{r}_{2}=1, \cdots, t f_{1}^{-1}=1\right) \\
& F\left(S-k^{\prime}\right)=\left(t, \bar{a}, \bar{b}, \bar{A}, \bar{B}, \bar{x}_{1}, \bar{x}_{2}, \cdots:\right. \\
& \left.\quad \bar{a}=\bar{A}, t^{n q} \bar{b}=\left(t^{q} \bar{A}\right)^{n} \bar{B}, \bar{r}_{1}=1, \bar{r}_{2}=1, \cdots, t f_{2}^{-1}=1\right) .
\end{aligned}
$$
\]

Furthermore we may suppose that $f_{1}=f_{2}$. Then the 1 -dimensional homology group of the g-fold cyclic covering space of S, branched along k, is given by the matrix :

and that of S, branched along k^{\prime}, is given by the following one:

Putting $\sum_{i=0}^{g-1} a_{i}=\alpha$, we can transform (1) and (1^{\prime}) to the following one, respectively:
(2)

(2^{\prime})	($\begin{array}{rl}11 & \\ 1 & 1 \\ \cdots & 1 \\ \cdots & \\ \cdots\end{array}$	0	$\begin{gathered} \alpha \cdots \cdots \alpha \\ a_{g-1} \cdots a_{g-2} \\ \cdots \cdots a_{0} \\ a_{1} \cdots \cdots a_{0} \end{gathered}$	0
	0		*	

$\left(2^{\prime}\right)$ is equivalent to
(3)

1	0	$\begin{aligned} & 0 \cdots \cdots 0 \\ & a_{g-1} \cdots a_{g-2} \\ & \cdots \cdots \\ & a_{1} \cdots \cdots a_{0} \end{aligned}$	0
0		*	

From (2) and (3) it is easy to see that

$$
e_{g}\left(k^{\prime}\right) \leqq e_{g}(k)+(g-1)
$$

Thus our proof is complete.
(Received September 29, 1958)

References

[1] R. H. Fox: Congruence classes of knots, Osaka Math. J. 10, 37-41 (1958).
[2] S. Kinoshita: On Wendt's theorem of knots, Osaka Math. J. 9, 61-66 (1957).
[3] H. Wendt: Die gordische Auflösung von Knoten, Math. Z. 42, 680-696 (1937).

[^0]: 1) A knot is a polygonal simple closed curve in the 3 -sphere S.
 2) $\bar{s}(k)$ and $s(k)$ are defined in [2].
