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On the Estimation of the Qualily of a Group of Lots
by the Single Sampling Inspection in
Destructive Case

By Sadao IXKEDA

Summary. A. Kolmogorov [1] considered the estimation of the
quality of a group of lots by the single sampling inspection in destruc-
tive case. The sampling inspection must be used to improve the quality
of the group of lots through the inspection, and the detailed plan must
be devised in each practical case, but it may be useful in many cases
to estimate the qualities of the group of lots before and after the
inspection. In this paper we will try to construct the estimates to
evaluate the improvement in the quality through the sampling inspection
adopted.

For this purpose, in Section 1 we extend the results of M. A.
Girshick, F. Mosteller and L. J. Savage [2] from binomial case to
hypergeometric case only for the finite regions. Some properties of the
operating characteristic curve are stated in Section 2, and we investigate
in Section 3 the estimates of three important qualities of the group of
lots inspected.

1. Unbiased estimates in hypergeometric sampling

In this section we show that the unbiased estimates obtained in
hypergeometric case analogously to those of M. A. Girshick, F. Mosteller,
and L. J. Savage [2] are unique for the simple regions. The contents
of this section are the direct extension of the results in the papers,
[2], L. J. Savage [3] and J. Wolfowitz [4] for the finite regions. The
estimates obtained here are useful for the unbiased estimation in the
sampling where the binomial approximation is impossible.

We start with the following definitions.

DEFINITION 1. A region R is a subset of all two dimensional non-
negative integer points which contains the origin, i. e.,

R = {a&a=(x,y)|x, y: non-negative integers, (0, 0) & R}.

DEerFINITION 2. The path ¢la, B) is a set of points {afi|i =0, 1,
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2, ..., n} satisfying the following conditions :

a=ay, B=a {a o, ..., a;»7'} R,
ot —(x,,y,), & =0or §=1,
& =0 implies x;,, = x;+1, y;., = ¥,
& =1 implies x;,,=x;, y;,,=¥;+1 ((=0,1,..., n—1).

The set of all ¢(, B) is denoted by K(«, B).
DErFINITION 3. The probability of path ¢(«, B) is defined as follows :

P{$} = ]7 p(agig(azy),

where for 1 =0,1, ..., n—1,
0 < p(a)) <1, p(ad) =1,
0<qg(a)) <1, g(e)) =1,
play) +q(ag) = 1.
Briefly we denote it by {[ plad)g(as).

DerINiTION 4. If there exists a path ¢(0, ®) for a point @ in R,

then « is called an accessible point, and R is the totality of the accessible
points in R.

If there exists a path ¢(0, «) for a point « not in R, then « is
called a boundary point of R, and the totality of boundary points of R
is denoted by B.

DEerFINITION 5. For any point @ = (x, »), I(«®) = x +y is called the
index of «, and

Sup @eR {I(a)}

is called the index of R.
We say a region R is finite if the index of R is finite.

DEerFINITION 6. If the equality

P{p} =1

@B PEK(0,@)

holds, then R is called a closed region.

DeriNITION 7. For any two paths ¢(a, 8) and ¢'(B, ¢), the path
¢”’(a, 4) which coincides with ¢(«, B) between a and S and with ¢'(3, )
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between 3 and  is denoted by

(i)//(a, '}') = (]5(“) B)“ﬁ'(ﬁ: ’)’)7

or briefly by ¢-¢'.
Under these definitions we prove the following theorems.

Theorem 1. If R is a finite region, then R is closed.
Proor. For any non-negative integer #, we define:

Em) = {a|l(a) = n},
R,= E(n)-R,
R¥*, = {a*|a* = (2%, y*): 2* =x+1, y* =y or x* =2z,
y* =y+1 for @ = (%, y)éR,},

then the boundary of index n+1 is clearly

Bn+1 - RWT+1—R1:+1 .

In general, the boundary of R is as follows:

Ms

B = Bn+1 ’

n=0

and in particular if the region is finite, there exists a positive integer
N such that

B

n+1 *

M=

(1) B=—

n=0

The probability (with regard to R) of the point « is denoted by

Piy= 31 P},

$e
and for any set A we define

P{A} = S P(e},

then the following equalities hold :

(2) P{R*} =1,
(3) P{R} = P{R%,}, ®=0,1,2,..),
(4) P{B,.)} = P{R¥}—P{R,.}, n=0,1,2,...).

From (1), 2), (3) and (4), we have
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P{B} = 31 P{B, .}
— ﬁ; (P{R},.} —P{R,..})
— ﬁ (P{R} —P{R,..})
= P{R)} = P{R*} =1.
Thus R is closed and the proof of our theorem is complete.

Lemma 1. If R is a closed region and a vegion R’ is included in R,
then R’ is also closed.

Proor.
P{B} =3} P{B,..}

31 (P{R,} — P{R,..})

n

im (P{R)} — P{R,})

Il

Il

=1—lim P{R} ,

and thus the closedness of R is equivalent to the equality

lim P{R,} =0.

n-»oo

Let R, be the totality of accessible points of index # in R’, then clearly
we have:

R!/CR, n=0,1,2,..),
and if we denote the probability with regard to R’ by P’{.},
0 < P{R/} < P{R} n=0,1,2,..).
Thus, we can conclude that
ii»rg P{R)} =0,

and this implies the closedness of R’

Theorem 2. If R is a closed region, and =€ R, then the equality

P} =, 3 P}

@eB P'EK(0,T) PEK(T,®) €K (0,T)

holds.



On the Estimation of the Quality of a Group of Lots 135

Proor. If we define

Q(7) = P> i, At

AER PEK(

then we have

5 P} = Q) 31 P}

¥EB PEK0,T) LK (T,®)

Let R’ = R— {r}, then v¢ B’, where B’ is the boundary of R’. Then
(5) 2 > P {¢}

@¥CB K0,
Z Z P{¢>}+Z > > Pl -}
&CB $eKTC wgs @EKRO,™ $pekir,®
=5 KEO P{g}+Q), 31 P},

where K’(0, @) is the set of all paths ¢(0, @) in R’. On the other hand,
we have

(6) 2 pra Lt =2 2 Pik+ 3 P}

@C B/ HEKIO, @) @B GcK/(0,0)

R’ is closed by Lemma 1, and the left hand members of the equal-
ities (5) and (6) are both unity, i. e.,

(7) S S Pe =3 31 P =1.

@EB GTK(0,®) X8/ P&

(5), (6) and (7) implies the equality
Q(r)=1,

and this completes the proof of our theorem.
The proof of above theorem shows only that

Q(r)=1,

so that we can replace the equality in the theorem by the equality:

> 2> P{p-¢} = P{¢}

@B PCKE(T,a)
for any ¢’ in K(0, 7).

Theorem 3. Let R be closed, and ~€ R. If, for any ac B, the
function of a:

pl@y= > > P{y-¢}/ > P{$}

$'EK0, ™) K (T, @) PEK(0,@)
is independent of any p(a®), then @(x) is an unbiased estimate of f(p(a),
q(a%)) :
fp(e®), ga®) = 21 P{p'}.

$’EK(0,T)
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Proor. By the result of Theorem 2, it is easy to show that

So@ 3 Pl =51 P}

S K (0,®) l#:EK(U,"')
This means that @(«) is an unbiased estimate of f(p(a®), g(a®)).
Theorem 4. If the probability of any path ¢ € K(O, @) depends only on

a, 1. e.,

P{p} = /d]P(aE)fI(aE)

is constant for any path in K(0, ), then @(«) does not depend on any
pa®).
Proor. We can easily conclude the result of the theorem from the

fact that
¢'-p€ K0, )

and the condition of our theorem.
If the condition of Theorem 4 is fulfilled, then
p(a) = k(0, T)k(T, a)/k(0, a),
and
f(pa®), g(a®)) = kO, v)P(7),
where k(a, B) is the number of paths contained in K(«, 8), and for ¢’
in K(O, )
P(r) = gp(a”m(a*) .
This occurs for example in the binomial case.
Now we show that the simplicity of R is the necessary and sufficient

condition for the uniqueness of ¢(«) under suitable conditions. The
definition of simplicity is as follows:

DerINITION 8. A region R is simple if all the points of index #
between any two accessible points of index # are also accessible for all
n, i. e., if x+y=mn, and for some positive integer %,

a():(x’y)é_R’ ak:(x—k) y+k)ER,
then for all j: (1 <j<k),
a; = (x—j, y+j)ER.

Theorem 5. Suppose that the conditions (i) to (iv) are satisfied :
(1) R is finite.
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(i) The condition of Theorem 4 is fulfilled.

(iii) The class of probabilities is such that we can choose arbitrarily small
values of p(a*) and g(a°) uniformly in «.

(iv) If there exists at least one boundary point whose index is greater
than n, then, for any sequence of boundary points of index n, {«,,
a, ..., a}, such that

aj == (xj’ yj)y xj+1 = xj_ly yj+1 =yj+17 (] = O) 1’ LR ] t) ’

there exist two sets of constants which are not all zevo {c,, c,, ... ¢},

{b,, b,,...,0,} and a sequence of points {B,, B, ..., B.} in (R+B)
of which I(B3;) =n, satisfying the equality

(8) ;;)ij(“j) = g:obip(ﬁi)
identically in p(a®), where ¢ € K(0, @) and
P(a) = _{Z p(af)g(af) .

Then, in order that the estimate () is the wunique proper unbiased
estimate of f(p(a®), q(«t)), it is necessary and sufficient that the region R
be simple.

Proor. (1°) Necessity.

Suppose that ¢(«) is the unique proper unbiased estimate of f(p(af),
g(a®)) and R is not simple. (The notion proper is the same as bounded.)
Then there exists a sequence of boundary points {«,, «,, ..., @} such
as

a; = (x;, yj)’ Xjn :xj—‘l’ Vit :yj"'lr I(aj) =n (j=01,..,1),
ay, = (x,+1, y—1)€R, a* = (x,—1, y,+1)€R.

We can choose the minimum value of # which satisfies the above
conditions. Then, clearly the boundary B of R contains at least one
boundary point of index “>u.

By the condition (iv) of our theorem there exist two sets of con-
stants {c,, ¢, ..., ¢;}, {0, b,, ..., b} and a sequence {3,,8,,...,B,} in
(R+B) of which I(8;) =n, satisfying the equality (8). Now we define a
new function on B such that

m(a]) = cj/k(O’ aj)y (j == 0) 1) cre t)’
m(a) = — S1bk(B;, @) [k, @), (€€ B—{a, a,, ..., a}).
i=0
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Then, m(«) is not identically zero, and

> m(a)k(0, a)P(q)
aEB

- jzf] mia)k(0, a,)P(ct;) + . N }m(a)k(O ) P(a)
=0 a€ B—{ag, @y, ..., @

= 31 e,Play— 30, > k(B;, @)P(@)
J=0 =0 @€ B—{ag, @y, ..., @}

= Ecjp(aj)— igobip(ﬁi) =0.

This means that m(a)+@(a) is another proper unbiased estimate of
f(p(a®), g(a®)), which contradicts the uniqueness of ¢@(a).

(2°) Sufficiency.
Suppose that R is simple, and @(@), ¢’(«) are two not identically
equal proper unbiased estimates of f(p(a®), g(a®)). Then

m(a) = p(a)—¢'(a)

is not identically zero, and
(9) S m(a)k(0, a)P(a) = 0.
@&EB

Since R is simple, we can choose the boundary point «, without
loss of generality such that

@@ m(a)=0, a,= (%, »), and (@) = n,,

(b) m(a) =0 for any «a in B that is I(a) <#,,

(c) if I(e) =mn,, m(a)==0, and @ = (x, y) is in B, then y >y,,
@ if Ia)=mn,, €a€R, y>y,.

That is, «, is the boundary point of lowest index and lowest y—coordinate
such as m(«a,) =0.
Now, from (9), we have

> m(a)k(0, a)P(a)
acB
= 31 m(a)k0, a)P(a)+m(a,)k(0, a,)P(a,) =0,

@€ B—{ag}
which leads us to
(10) | m(c,)k(0, &) | = |w ; E{wo}m(a’)k(O, a)P(a)/P(a,)|
for any value of p(a®).

Here we consider the value of P(a)/P(«a,). If there exists a point
a, in B such as
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I(al) =M",, m(al) =0 y O = (xv yl) ’
then, by the simplicity of R, we have
(*,, B ER,

and all the points a=(x, ) such as x,<x< x,, y,=y or x=2x,, ¥,<_
<y, are accessible points. Thus, if we define the paths

(f) = d)(O,(x,, yo))y le = (]51((.761, yo)> a1);
q—')o = ¢0((x1 ’ yo)) ao) ’

then the equality

11) P(a,)/ P(at,) = g plad)g(a®)/ g pas)g(ar)
= [[ p(@)][[9(")
@ $
holds.

For any point « in B such as m(«a)==0 and I(a)==#,, the inequality
I(a) >n, holds. Then there exists a point «, in R such as (o) ==mn,,

o = (xl » M) and
$(0, @) = ¢’ (0, @)+ 9" (2, @) .

From the simplicity of R, (x,, ¥,) is in R, and if we define the paths

(]51 == ¢1((x1 » Vo), X)), ¢o == ¢o((x1 » Vo))
then the equality
(12) P(e)/P(et,) = gp(ae)q(a’)/g q(a’)

holds. By the condition (d) stated above, /] p(a®)g(a®) contains at least
one p(at). ¢1

From the condition (i), (iii) and the equalities (11), (12), it is clear
that the equality (10) can not hold. Thus, @(«) must be unique.

This completes the proof of our theorem.

In the case of binomial sampling the conditions of Theorem 5 are
satisfied, and also in the case of hypergeometric sampling they are all
fulfilled. In the latter case the probability at the point a=(x, y) of
index # is as follows:

nw_ N Yy o
pla —T(p L), ey =1, 0=p <1,

—n

N x N _

pla)+q@) =1.
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Since

P(a) = [! p(af)g(ar)

= NN=T) N(nN n+1) ”( )ﬂ:(""m

the condition of Theorem 4 is satisfied.
The condition (iv) of Theorem 5 is satisfied as follows:

M%ON(N—ZY;(—(;; nt1) ! 1 ( .>nﬁ_l (q_zi\»

m%}o[N (N—I\{; (—(le) n+1) Z](p —ﬁ)"ﬁl (q"%ﬂ
(75 (0= 5) v (=" 5]
yit1 N™1(—1)ym

= 2 N(N=1)..(N= )Z;(p )jm<q ]>

Sy v L) =)
)

= vty L o-8) T (o

nyl o y—1 P\ =Y :
+N(1<fv——+1§...}l)\;—n) 1 (p‘ﬁ') 1 ("_2]\7)’

i=

thus, if we put
o, = (x;, y;), lla))y =m, ¢;=(—1)s, (7=0,1,2,...,1),
U = 1) bo == (__1)}'3, bl = (_l)yo ’
I80 = (xt’ yt+1)> :81 = (xo+1’ yo) ’
then the equality (8) is satisfied.
Now we construct the unbiased estimates of p and pg in the
following example.

Unbiased estimates in multiple sampling inspection are obtained by
the same principle.

ExaMpPLE. Unbiased estimates in the single hypergeometric sampling
inspection
In this case we have
= {a= (@, y)[x+y<n}
={a=(, y|x+y=mn}.
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Clearly R is simple and R=R.
Unbiased estimate of p is @(x) :%, since v=(0, 1), £(0, 1) =1 and

> ] p@)gd) =p.

EKO,T) ¢’

Unbiased estimate of pq is ¢ (@) —_—Z-V;—l %((Z—:% , since r=(1, 1), k0, 7) =2

and

S J] platyglat) =2 3P pa.

d'EK,T) ¢

For large N, these estimates coincide with those in binomial sampling.

2. Some properties of operating characteristic curve

In this section we remark two properties of the operating charac-
teristic curve. Property 1 is mentioned by A. Kolmogorov [17], which
is useful together with Property 2 when we determine the detailed
sampling inspection plan specifying the lot tolerance fraction-defective.

First we define our inspection plan and operating characteristic
curve.

DerFiNiTION 1. We use the single sampling inspection plan (N, =,
¢, d), where N, n, ¢, and d are respectively size of lot, size of sample,
acceptance number in inspection, and rejection number in inspection.
Here d=c+1, and N >n">c>0.

DEFINITION 2. Conditional probability that the number of defectives
inspected is m when the fraction-defective in lot is g, is denoted by

Dm@),
st = (N2 AN () (V)
=Jm’ﬂ—mﬂ%ﬂﬁf@—z@)ﬁ_l(k _IG)

m n m
l (=est-g+%)
0,

N—qN)

n—m

(otherwise).
For the inspection plan (I, #, ¢, d), the function of ¢:

L(q) =m2$}cpm (9)

is called the operating characteristic function.
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PrOPERTY 1. L(q) is monotone decveasing, and if we put q’=q+l ,
then the function
F(g) = L(9)—L(q)
is uni-modal, and takes its maximum value at the points

c 1 __c

I=u-1—y @ (=7

This means that L(q) decreases most rapidly in the neighborhood of the
point q0=h—£—1 .

PrOPERTY 2. If, q,= " _cil = Efcifi and ¢,<c,, then
1 2

F(q,) < F.(g,)
holds, where F,(q) and F,(q) correspond to (N, n,, c,,d) and (N, n,, c,, d,)
respectively. That is, when the sample size n increases under the condition

that n—cl is constant, the operating characteristic curve decreases more

rapidly in the neighborhood of q":nTcl .

3. Estimation of the quality of a group of lots by the
single sampling inspection

Suppose there are s lots of size N each, whose fraction-defective
are

ql’ qz) MR qs,

and we adopt the single sampling inspection (N, #, ¢, d) for each lot,
where the unit is destroyed by the inspection.
Let the number of defectives before inspection be

Yis Vo5 ooo s Vs

at every lot, and the number of defectives in inspection be

Xyy Xyyeuo s X,y
respectively.
Total number of units contained in the group of s lots is
R=3sN,

and the number of defectives in the group is
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Y= Z}l ¥, -
Then the quality of the group before inspection is of fraction-defective

Y
( 1 ) qcp = P— Y Z qr
If s’ lots are accepted through the sampling inspection adopted,
then the total number of defectives accepted is

= E (yr—xr)zr ’

where z, are the chance variables defined by

1 if x, <e¢
o ifx,=d  (=1,2,..,5.

The ratio of Y’ to R, i e.,

Y/
(2) qﬁ;-—

1 s
=3(e— %)=
must be considered when we discuss the decrease of the defectives in
the group by the inspection.
Now, if we put

R ' =s'(N—n),
then the fraction-defective after inspection in the group is

Y R
(3) qcp R/_‘R/qcp'

In the following, we construct the estimates of ¢.,, ¢% and g¢,.
In general, we cannot evaluate the value of g., by the value of g%,

/
since % is a chance variable depending on the state of control in the

production and on the sampling inspection plan adopted.

Estimates of ¢., in the binomial approximation case and of g% in
Poisson approximation case were already obtained by A. Kolmogorov [1],
but they are stated here again together with the estimates in other

cases.

I. ESTIMATION OF g¢,,
la. Binomial approximation case
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When N »#n, the approximation
n n n-m
Dml9) ~ (m>q (1—q)

is applicable, and we call this case the binomial approximation case.

Unbiased estimate of g is @(x) = =% and from the independence
of x,, x,,..., x;, we obtain the estlmatlon
1 _ 1
4 - - )
( ) cp s gl c s = (xr)

where the R. H. S. of ~ is an estimate of the L. H. S..
The variance of ¢(x) is

Dpx) =3 <——q>2pm(q)

and from the result obtained by M. A. Girshick, F. Mosteller and L. J.
Savage [2], the unbiased estimate of this variance is

__x(n—ux)

/‘){/‘Z(x) i ﬁg(n_l) )

hence we have

(5) Dp, =5 3 Dple) ~ & = 55 30 ()

If we can expect a positive a-priori probability that ¢, falls in the
interval [& 1—¢&] for some & >0, then the Liapounov’s condition is
fulfilled, and for sufficiently large s,

9 (t_e
~ 2 d
St} o Soe ¢

holds. This shows us the precision of the estimate ¢,,.

(6) P{

dep—Pep
A

Ib. Hypergeometric sampling case
When binomial approximation is not applicable, the unbiased
estimate of ¢, is as follows. From the result obtained in Section 1,

unbiased estimate of ¢ is @(x) :% , and

(7) qc - /72 qr ~ q)cp T TZ; q)(xr) .

S r=1
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The variance of the estimate @(x) is

Dp(x) = gzo(%—q)zpm(q)
—N—ngl—gq
N—1 =n

)

and by the result obtained in Section 1, the unbiased estimate of this

variance is
2(y) = N—nx(n—2x)
V= TN w1

Thus, the unbiased estimate of D’p,, is
12 1 : 2 2 1 2 2
(8) Dp,, = = 2 D*p(x,) ~ A* =31 ¥(x,) .
S r=1 S% r=1
Since Liapounov’s theorem holds in this case too, we have

J— t t2
Q™ Per gt}~é§ o7 di

V27 o

(9) P{

for sufficiently large s.

II. ESTIMATION OF g%,
If we put
y¥=(y—2x)2 2=11if x <¢,=01if x >d,
S
q N’

then
1 s
gHh= -2 g%,

S r=1

and the expectation of g%,
Q0 = 32 (=" )2pula)

=3 (¢=7 )@

m=0

2|3

is a polynomial of degree n+1.
Thus, in general we can not get the unbiased estimate of ¢* from

the sample of size #, but when Poisson approximation is possible, we
can obtain the unbiased estimate of the approximated value for g*.

ITa. Poissorn approximation case
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When N ># >c¢, and ¢ is sufficiently small, the approximation
n” m
Dol ~ i q7¢™

is applicable, and we call this case Poisson approximation case.
In this case the approximation

q*~{q (<o),

0 (x=4d
is possible, so that we have

Qe) =33 ap,(@)

="§i] M bm(d).

on
Thus the unbiased estimate of ¢* is

X

= <d),
PHx) = 7 r=a

0 (x = d+1),

and hence we obtain the unbiased estimate of g¢*

=+ as follows:
(10)

1 13
R ¥~ = *
qcp - B Z:I-QT q)cp S T2=1¢) (xr) .
By the equality
et @)=""11,.@,

the variance of ¢*(x) is calculated as follows: since

x
q— 7 (x SC) ’
g —p*(x) = _d_ x=d),
n
0 (x >d+1),
we have

Drp*(x) = E(g*--p*(x))°

=3 (¢ 0+ (L) put0

=S mpa0+dd+1p,.0) .
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The unbiased estimate of this variance is given by

X

I (x <d
o) = ~——d(dnj D w=d+1
0 (x =d+1),

and, for the variance of @¥, it is given by

a1 Dty = 31 Dg(x,) ~ A = 131 yi,).
Liapounov’s theorem leads us to
t 42
12 P{ To— P S;}”"%:S -5 at
(12) A, <t NG oe

for sufficiently large s.

IIb. The case when Poisson approximation is not applicable
In this case the expectation of g¢*,

Qlg) = ﬁo(q—%ﬁm(q) ,

is a polynomial of degree n+1. Now we consider the following sam-
pling inspection plan (N, #, ¢, d, n+1, n+2), i. e.,, we inspect a sample
of size n+2, and suppose the first # units in the sample contains x
defectives, the first #+1 units x’ defectives and all the #+2 units x”’
defectives, where if x <c¢ then the lot is accepted and if x_>d then
it is rejected. We will call this inspection plan an over-sampling inspec-
tion plan.
Put

Dn(q) = P{x=m|q},
Du(g) = P{x' =m|q} ,
pn(q) = P{x" =m|q},
then we have the following lemma, whose proof is easy and omitted.

Lemma 1. For any function of the form,

13) flg) = Z Py (M) p,,(q) + E P, (m) prn(q) + 2 P, (M) pra(q)
the function of x, x' and x”,
(14) P, &', x7) = Po(x) + Py (&) + P, (x7)

is the unique unbiased estimate.
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In the following, we construct the estimates exactly in binomial
aproximation case and in the general hypergeometric sampling case.

IIb. 1. Binomial approximation case
In this case we have

bulg) ~ (Z)q'”(l—q)”‘"’ ,

() ~<";1)<1’”(1—q)”“"",

pug) ~(" ) ama—g

and, since

Q) = 2=0( q—%)ﬁm(q)

=31 bl — 3 % 0(0)

the unbiased estimate of ¢* is given by

x’ x ,
Jm—N (x—g(/‘)xéd)’
(15) P*(x, x) = [ d &= x = d),
n+1
0 (otherwise).
Thus the unbiased estimate of ¢¥, is
(16) a5 =13 g~ =3 g, 1)

From the equality

— . w=ex=a),
X __ ¥ "y =
g —o*(x, x) _n%il x=x"=4d),
0 (otherwise) ,

we have the variance of ¢*(x, x/)
Drp*(x, x') = Z (@*—p*(x, x)°P(x, x')
—< < m(2nm—2n—1)
—m_ (n+1)2p"’(Q) m.E:l (n+1)° bu(9)

d*(n—d +1) ,, X (n 1)m(m—1)
iy 2D 2 T2

bn(q)
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so that the unbiased estimate of this variance is given by

. ;o _ X'(2nx’'—2n—1) ,,
17 i, 2 &) = nr 1)22[1 c] 1)y Z'[1,d]
_d¥n—d-1) ,, m—=1)x"(x""—=1) .,
(n+1)> Z'd] + (n+1)}(n+2) Z"2, d+1},
where
1 (xel), 1 (' el, 1 xel),
Z[I= Z'[I= ” =

L7] {0 (x€l), 7] {O x'el, L7] {0 x” €,

for any interval I. The unbiased estimate of the variance of ¢, is
18)  Digly= &3 Dp*(r,, ¥) ~ A= -394, , 1, 1),
r=1

and Liapounov’s theorem shows that, for sufficiently large s,

qs,—ok,

(19) P{ -

t g2

N R G
7TJ 0

IIb. 2. Hypergeometrzc sampling case

In this case

i) = S it I (o= B (m0=3)

gt}~

(N n— 1)‘Nn+1 (n+1)| m L. n+l—m-—1 _ _i)
Pnl@) = N mln+ 1—m)! ”o(" N) 1 (1-a=5),
/7 (N-—-n=2)IN"*  (n+2)! =5 i>n+2-wl g
bnl@) = N! ml(n+2— m)'ﬂo<q §=0 (1 a lV)’
and, since

o

Q) = 32 (4= w0

m=0

_N—mn 1 & ,

N n+1q§1mp7"(m ’
we can get the unbiased estimate of ¢*

N—n

LA o ¥ <d,

(20) P*(x') —.:‘ N n+1 @=d
0 (otherwise) .

Thus the unbiased estimate of ¢¥, is given by

(21) qr, = ?Z_ g ~ pf,=— glrp*(xi) .
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From the equality

irq—z‘%;_NZ_v'-nnil (x_—<=cy x/_g_d);
q*_ ¢*(x/) =/¥ —N_n d o

| N oav1  F=E=D,

l0 (otherwise) ,

we have
Do (') = E(g*—p* (1))’
_ ch (N—n)ym+ (n+12*m*—m—1) m 5..()

m=1 N?*(n+1) n+1
_Z":2n(N+1)(N—n)(m—1)—(N—n)z—(N+n‘)(n+1)m(nm+m—n—3)
mel N3*(n+1)?

m ’

mpm@)

N—n d \*n—d+1
+< N n+1> n+1 249

QB N=—n)(N—n—1)(n—1) mm—1) ,
+mz=2 N (n+1) (n+1)(n+2) m(@)

and the unbiased estimate of this variance is given by

©22) Yi(x, &/, x) = _ (N=nyx+n+1Px"—x—1) =« Z[1, ¢]

N*(N+1) — n+1
_(@=12n(N+1)(N—n)— (N—n)*— (N+n)(n+1)x'(nx’ +x'—n—3)
N2(n -1)*
= -Z'[1,d]
N—n d \*n—d+1 .,
+< N n+1> n+1 Z1d]
(N—n)(N—-n (n—1) x"(x"—1) ”
Ni(n+1) (n+1)(n+2)Z (2, d+1].

Thus the unbiased estimate of Dp¥, is
13 1 ,
@) Digl= 31 DPp*a) ~ Ak = S 31 h,, &, 7).
Liapounov’s theorem leads us, for sufficiently large s, to

% _ %
9ep— Pen

24) P{ =

2 §’ _2
N — dt.
gt} V' 2z oe ’



On the Estimation of the Quality of a Group of Lots 151

Ib. 3. Relation between g, and q¥) and the estimation of q¥)
In the case of over-sampling inspection we must consider ¢¥,” instead
of g%, such as

*// Z q*//
where
y, — %
q*” N - (x C),
0 (x = d), (7' = 1, 2’ ’S)
Clearly
13 x)—x,
W= TR TN A
and thus
13 x)—x,
(25) R D e

is the unbiased estimate of ¢%//, where ¢¥, is the unbiased estimate of

ep >

g%, given in (16) or (21). Since

2
0 < qcp_ q::kp/, S N ’
it is possible to regard ¢, as an estimate of ¢¥/’ when N is large.
From (19) or (24), we have for sufficiently large s,

2 (f_z
<ti~——2 z dt,
} \/an

* 77 X1/
qcp —Pen

*

(26) P {

where A% is given in (18) or (23).

ITI. ESTIMATION OF ¢,
When the over-sampling inspection is adopted we must consider
the following quantities:

@7 t= K qrr, R =N-n-2ys,
instead of the quantities:
qcp R/ qcp, R = (N—‘ n)sl.

It is difficult to construct the estimate of ¢, directly, and so we
shall obtain it from the unbiased estimate of g¢¥,.

’

First we investigate the behavior of % .
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Illa. Distribution of !Ig
Since, for »=1,2,..., s,

{ 1 x, =0,
y—
0 w=a,

we have
P{z,=1lq} =L, ,

Pz, =0|¢} =1-L(g,) .

Then the number of lots accepted :

is a chance variable following the generalized binomial distribution of
Poisson (cf., H. Cramér, Mathematical Methods of Statistics, p. 206 and
p. 217), and its mean and variance are given by

E) =31L(@,),

DZ(S/) =1§L(Qr)(]——L(q7)) .
Now, we suppose that the a-priori distribution of ¢ is normal

N(g, 5% with density ¢(g). Since

R/
P{—gulql,qz, e qs}

R
[NAEQnu:I |
=% 2 fILe) ] a-La),

B=0 {p ., 7k J=Fr;

we have

e [-[P% <ula, 0. afewo . s@dada ... da,

Ns
~——[N§ ]< ([ L@s@da) (1~ [ L@otada) .

k=0
That is, the distribution of %

a binomial distribution, of which the mean and variance are

@9 E (&) - ZX;”X;L(q)Mq)dq ,

when a-priori distribution of ¢ exists is

R N

(%)= ("5 L[ L@v@da(1-| Lwoada) .
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In the binomial approximation case we get, for sufficiently small &,

(39) E (Ri)va —"r >3 <,’:,>q'”(1—q)"“"’ L dq

R N —ocom=0 \/2—776-
_N=—nL (n\"Z [ ymemepf(n—m\ & (m—R\[ & \ npe; i
=SV B)E co (SN G)
| (2)
i:even 2 ‘,
and in Poisson approximation case we have
R’ Nen(> <. n™ _ 1 __(_‘I,ij
31 E<—)~ e L g oz
1) RN LS N dq
_ Nen ~0nt e yrn o pNke
— N ¢ 2wl (7?) (@=n) (7;;

4

The values of E(ﬁ) in Poisson approximation case are given

below for §=0.01, qo_—._%=0.02.

(¢=0.001) N=1000 N=2000 N=5000 N=8000 N=10000

n=50 0.863959 0.886695 0.900336 0.903747 0.904883
n=100 0.826917 0.872857 0.900421 0.207312 0.909609
n=150 0.862988 0.904971 0.915467 0.918965
n=200 0.851002 0.907735 0.921919 0.926646
n=250 0.908070 0.925993 0.931967
n=300 0.906400 0.928096 0.935328
(¢=0.002) N=1000 N=2000 N=5000 N=8000 N=10000
n=>50 0.862860 0.885567 0.899191 0.902597 0.903732
n=100 0.824450 0.870253 0.897734 0.904605 0.906895
n=150 0.859208 0.901007 0.911457 0.914908
n=200 0.846365 0.902789 0.916895 0.921597
n=250 0.902501 0920314 0.926251
n=300 0.900363 0.921915 0.929098
(¢=0.003) N=1000 N=2000 N=5000 N=8000 N=10000
n=E0Q 0.860983 0.883640 0.897235 0.900333 0.901766
n=100 0.820470 0.866052 0.893401 0.900238 0.902517
n=150 0.853244 0.894754 0.905131 0.908590
n=200 0.839188 0.895134 0.909121 0.913783
n=250 0.893878 0911521 0.917401
n=300 0.899414 0.920943 0.928119
(#=0.004) N=1000 N=2000 N=5000 N=8000 N=10000
n=>50 0.858247 0.880832 0.894383 0.897771 0.898900
n=100 0.815180 0.860468 0.887640 0.894434 0.896698
n=150 0.845556 0.886691 0.896975 0.900403
n=200 0.830115 0.885456 0.899291 0.903903
n=250 0.883002 0.900429 0.906239

n=2300 0.879455 0.900506 0.907523
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(6=0.005) N=1000 N=2000 N=5000 N=8000 N=10000
n=50 0.8282£0 0.850046 0.863124 0.866393 0.867483
n=100 0.808968 0.853911 0.880876 0.887618 0.889865
n=150 0.837609 0.878358 0.888545 0.891941
n=200 0.820001 0.874668 0.888335 0.892890
n=250 0.873479 0.890719 0.896465
n=300 0.869709 0.890527 0.897466

If the number of lots in the group is large, it will be seen from
(29) that the value of D2<E

R) is considerably small

ITIb. Estimation of ¢'.,
First we state two lemmas useful to construct the estimates of ¢,.
The proofs are easy and omitted.

Lemma 2. If there are three events A, B, and C, such that
PA) =«a, P(B)y=p, and A-BC,
then it holds that
(32) P(C) > max (@, B)+a+L—-2.

Lemma 3. Suppose that two sequences of chance variables {£}, {7}
(s=1,2,...) satisfy the following conditions (i) to (iv),
(i) 79Xy Xyy oer s ) >0 for all (x,, x,,..., %), (s=1,2,..),
(ii) P{nJx,, x,, ..., x;) < E ~1 for any € >0 and sufficiently large s,
(iii) |[Ex,, x,, ..., )| < K with probability 1, (s=1,2,...),

(iv) P{ & < t}~ 2” Ste‘% dt for sufficiently large s.
7s \/27[ 0
Then we have
(33) &, ~0 (in probability)

Jor sufficiently lavge s.
Now we consider the estimation of ¢/,

IIIb. 1. In Poisson approximation case, if a—priori distribution of q
is completely specified, then for given a« we can take two positive
numbers \,, A, such that
Rl
R

(34) P{xlgmgxz}:a,

A,—A, ! minimum.
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From (12), (34) and Lemma 2 we have, for sufficiently large s,

* *

P {‘7’—"—;’?‘—* <4, g?ﬁ";ﬂ} = max («, B)+a+S-2,
1

where @¥, and AL are the unbiased estimates of ¢¥, and the variance

of @%, respectively given in (10) and (11), while

- _2S3e—§ dt ~ 0.9973 .

2z

Thus we can obtain the following confidence interval for sufficiently

large s:
*—3A @¥ +3A
(35 (Bﬂ_~* g q;n é Tep Yok .

) > n

IIIb. 2. In Poisson approximation case, if a—priori distribution of q
is unknown and s is sufficiently large, we can get the estimate of ¢,
as follows. From (12), we have

R. R
36 P AR A <tb o2 ("% a
) N = ~\/27zSe ’

F *
and Lemma 3 leads us to

, R ,
(37) qcp = F q>c|<p = q)cp - I?ﬁ ¢)ka .

For sufficiently large s, we have the following confidence interval
by 3e-method,

(38) @ op—3A < ¢l < Ph,+ 34,

where A’=1§ A, for A given in (11).

IIIb. 3. In the case of over-sampling inspection, we must estimate the

value of ¢/, given in (27). The distribution function of %, is obtained

’
from that of % replacing # by #+2, and we can take two positive

numbers A, A, such that

P{xxs_%'gxq}=a,

A,—A, ¢ minimum,
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and we obtain the confidence interval analogous to (35): for sufficiently
large s,
>ck”—3A — K/ f” 3A
(39) &LM—* < ka' < %& ,

whose coefficient of confidence is not less than max («, 0.9973)+a+
0.9973-2.

From (26) and Lemma 3, we obtain the estimate of ¢/, analogous
to (37):

R , _ R
“0) @y = s €5 =~ Pl = 2 L

where @% is given in (25). From (26), we have the following confidence
interval by 3o-method,

=30 < g, < @l +3A",

¢p

where A” _—_% A, for AL given in (18) or (23).
I wish to thank Prof. Junjiro Ogawa for suggestions and help in

preparing this paper.

(Received September 27, 1955)

References

[1] A. Kolmogorov: Unbiased estimates, Izbestia Akad. Nauk, SSSR, Ser, Math.
14 (1950), 303-326.

[2] M. A. Girshick, F. Mosteller and L. J. Savage: Unbiased estimates for certain
binomial sampling problems with applications, Ann. of Math. Stat. 17 (1946),
13-23.

[3] L.J. Savage: A uniqueness theorem for unbiased sequential binomial
estimation, Ann. of Math. Stat. 18 (1947), 295-297.

[4] J. Wolfowitz: On sequential binomial estimation, Ann. of Math. Stat. 17
(1946), 489-493.





