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Introduction

The purpose of the present paper is to investigate the behaviour of
the boundary of a covering surface. In chapter I we shall consider the
correspondence of the boundary points when the universal covering
surface is mapped onto the unit-circle, and extend Fatou's theorem in
such a case. Chapter II is devoted to the study of accessible boundary
points from measure theoretic views. Thus our study is a continuation
of that due to M. Ohtsukal:). R. Nevanlinna discussed the Dirichlet

1) M. Ohtsuka: 1) Dirichlet problems on Riemann surface and conformal mapping.
Nagoya Math. Journal, 3, 1951, pp. 91-135.

2) On a covering surface over an abstract Riemann surface, ibid., 4, 1952, pp. 109-118.
3) Note on the harmonic measure of the accessible boundary of acovering Riemann

surface, ibid., 5, 1953, pp. 35-38.
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problem in weak sense on a subsurface of an abstract Riemann surface.
M. Ohtsuka proved that the Dirichlet problem for continuous boundary
value is resolutive in Perron-Brelot's sense2) which is stronger than that
of R. Nevanlinna under the following three assumptions : A) the pro-
jection of accessible boundary points of the surface R is compact in the
basic surface R, B) the universal covering surface R°° of R is ,F-type3),
C) the connectivity of R is finite. We shall show that it is possible to
remove conditions A) and C). Thus we see that the resolutivity of the
problem has not so much relation with the measure of irregular points.
If we suppose that R covers R a finite number of times, then we can
prove two theorems concerning the Dirichlet problem: i) the irregular
accessible boundary points are so rare that the projection of them may
be contained in the Fσ set of capacity zero, ii) the regularity for Green's
function is equivalent to that for Dirichlet problem. Chapter III is
related to R. S. Martin's topology concerning harmonic functions. We
shall study activity^ of points and minimality. R. S. Martin conjectured
that the set of non minimal points would be non dense in the set of
ideal boundary points. However we shall show by an example that his
conjecture does not hold good and at the end of this chapter we shall
prove miscellaneous theorems on the subsurfaces of abstract Riemann
surfaces. In chapter IV we consider analytic functions on Riemann
surfaces and the behaviour of covering surfaces. We shall give an example
of Riemann surface belonging to the class 0HP and without Gross's
property. From this we see that the validity of the Gross's property for
every covering surface of a given Riemann surface does not depend upon
the complexity of the boundary. It depends rather upon the " force "
of the boundary, i.e., roughly speaking upon the size of the boundary.

Chapter I. Correspondence of boundaries

1. Image of boundary

Let R_ be an open abstract Riemann surface, and Rn (n — 1, 2,...)
be an exhaustion with relative boundary Γn , then R—Rn is composed
of a finite number of disjoint non compact subsurfaces Gn, let Gn be a

sequence of non compact subsurfaces such that Gt ^> Gi+1 ••• , f\ Gn — Q.

2) M. Brelot: Families de Perron et Probleme de Dirichlet. Acta Szeged 9, 1939,
pp. 133-153.

3) See Chap. II, 4.
4) M. Brelot: Remarques sur la variation des functions sousharmoniques et la masses

associees. Application. Ann. Institut Fourier 2, 1950, pp. 101-111.
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Two sequences {Gn} and [ G m

f \ are called equivalent if and only if, for
a given number m, there exists a number n such that Gm

! ̂  Gn and
vice versa. We correspond an ideal boundary point (component) to an
equivalent sequence, and denote the set of all ideal boundary point by
Bf. A-topology will be introduced on R + BT by the completion of 72.
It is clear that R + BZ is closed, compact and Bf is totally disconnected.
For simplicity we denote R + Br by 72* which has the topology being
isomorphic in 72 to the original topology defined by the local parameter.

When 72 is a covering surface over an abstract Riemann surface 72*,
72* is a metric space, we introduce as 0. Teichmiiller and Mazurkiewicz
a metric on R by inf S(p p2}9 where δOvp2) *s the diameter of the

projection into 72 of p p2 which connects p with p2 on 72, and define
accessible boundary points of 72 by the completion with respect to this
metric, it is well known that this definition is equivalent to the other
definition by deciding the equivalency of two curves on 72 which deter-
mine an accessible boundary point (we abbreviate by A. B. P). In this
and next chapter we suppose 72 to be a null-boundary Riemann surface
and discuss another Riemann surface 72 defined as the covering surface
over 72.

Lemma. Let R be a covering surface over 72, and does not cover a
set of positive coapacity inner points of 72, and the universal covering
surface 72°° of 72 mapped conformally onto the unit-circle U: \ z \ <^ 1. //
a curve Lz on I/* contained in 72 and determining an A. B. P. ending at a
point z0: |z0 | = 1, determines an A.B.P. having its projection on BI9 then
the mapping function w = /(z): w € 72* has the same 'limit when z0 tends
to z0 along Stolz's path.

Proof. Let p0 be the projection of the A. B. P. on 72* and Vn(pQ} be Γn.
the sequence of neighbourhoods of p0 with a compact relative boundary.
We define a super-harmonic function ωn(p) such as, ωn(p) is harmonic in
(72—72υ—Vn(po) \J (proj 72 Λ^o)> ωn(PΪ = 0 if p G boundary of proj 72 in
720, where 720 is a compact part of in which the boundary of the projection
of has positive capacity, and ωn(p) = Mn if p G Γn + Vn(po), and is normal-

ized by 7Γ- I ^^ds = 1. Since 72 is a null-boundary Riemann surface,
Zπ J on

this function is uniquely determined and lim Mn = oo, we denote the
n

domain arg \z — zQ\<^-n—89 \z — z0|<^l —r by Δr,δ and the part of L out-

side of |3| = r0 by Lr0, then

ωn(f(z*)) I> Mn\δ, if z 6 Δr.δ n > i0 - (1 )
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where λδ > 0 and i0 is the minimal number such as /(Lrc) £ Vιt(p). If
/(z) had not limit p0 in Δr.β , then there would exist a sequence z4

such as lim zt = zQ: z{e Δr.δ and a number w0 and a subsequence of

inti such as /(zΛfcί) e yΛc(p) : V. ;> i0 » therefore there exists a number

ΛΓ such that

ωΛ(/(*, J) ̂  ΛΓ : 7, 2> iΛo n ̂  n0 - ( 2 )

from (1) and (2) we have 2V ̂  ωn(f(zny) ^ Mwλδ : lim Mn = oo , this is a
contradiction.

Remark. When the A. B. P. lies on R, our assertion is trivial. From
this lemma we can easily deduce the next proposition.

Proposition. Under the same condition as the lemma, the set E on
1 2 1 = 1 where at least a curve ends along which f(z) has cluster set of
capacity zero is a linear measure zero set on \z\ = I.

Proof. We denote a closed set Ef c^ E where f(z) tends uniformly
in A -topology, then f(Ef) is closed and capacity zero, then there exists

a sequence Vn with compact relative boundary jn such as Vn ̂  /(£")»

where Vn is the closure of Vn . We denote continuous super -harmonic
function such as ωn(p) is harmonic in (R— R0 — Vn}\J (R0 APr°J -
ωw(» = 0 if p e boundary of proj R f\R0, and ωn(p) = Mw if p e 7n

-J Λ ^N

î — \ ̂ 2 rfs s= 1 then lim Mn = cx> . We consider ωn(p) in 1 2 1 <^ 1 ,
Z?Γ J dti n

This is a contradiction.
Let R be a null-boundary Riemann surface, and R°° be mapped onto

|zKl conformally and J90 be the normal polygon being a fundamental
domain containing z = 0. We denote by ZV(/0 the Part of Z)0 , which lies
in 1 — p<^\z\<^l: 0<^<^1; then DQ'(p} consists of a finite number of
simply connected closed domain, we consider only such domains and
Dn(p} be its equivalent ones and put

then Δ(p) consists of a enumerable number of disjoint simply connected
continua : Δn(p) such that Δ(/o) = Σ Δ

w(p) Since in a normal polygon,
equivalent points on the boundary of D0 are equidistant from z = 0 ,
Δn(p) is bounded by Jordan arcs λ£ (fc = 0, 1, 2, ...) and closed sets En
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On I z I = 1 . We put E(p) = Σ En , λ* ends at two points ξl , ̂  on
I z I = 1 which are fixed points of some substitution, if ξl = η* for one
fc, then Δw(p) is bounded by a single Jordan curve which touches \z\ = 1
at ξl = <ηl. It is easily seen that if f j φ ̂  then λ* is contained between
two circular arcs C* , CJ' through f I , η* which meets | z \ = 1 with an
angle a* , β% respectively. Since λj (w = 0, 1, 2, ...) can be grouped into
a finite number of quivalent classes, there exists a, β (0 < a, β, •< π)
such that for any λ* for which

Since λ* is a 2 S±n(ΐ), where I is the part of | z \ = p in J90 .
w

and multiplier of the substitution k =4= 1, then λ£ is rectifiable.

Lemma. For any substitution T^ (i = 1, 2, ... i0) o/ Fuchsian group

' s ^ length λ£ τ
-°- length Γ,(λί)- °'

We denote by ds the line-element of \ , and by T(ds) its image,
since λ^ has a tangent almost everywhere on λj, let C^ds be the circular
arc ending at two points ξ and 97 passing ds at P and C ds the circular
arc passing ds at P and ending at two fix points ξ", ξf of the substitution
T, then

or τ(ςpy
£p

but «f^m has extremal values when C ds coincides with C' or C and

the intersecting angle of λ^ and | z \ = 1 is contained between a and β,
therefore we have

and if we denote by ξη the length of | z \ = 1 between ξ, η then

But Δw(p) are bounded by (ξn,ηn} and its image transformed, one of
them is an inner side of Δn(p) with respect to | z \ = 1, and the others are
outer sides and have non common points on | z \ = 1, therefore the length
of Δn(p) is finite. Since Δw does not cover a set of positive capacity
on Ry then we map Δw onto |2/|<C1 ^en from the proposition we see
that En is linear measure zero set, and also *Σ*En is too, thus
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Theorem 1. 1.5) Let R be a null-boundary Riemann surface. When
universal covering surface mapped onto the unit-circle, then the image of
the boundary points is a set of linear measure zero.

Remark. This theorem is proved by M. Tsuji, our proof is slightly
simpler.

2. Generalization of Fatou's theorem

Lemma. Let R be a null-boundary Riemann surface, we denote two
points a and q of R and denote a harmonic function Ua(p} such that

Ua(p} -4- log p = 0 , in the neighbourhood of q
Ua(p} — log p — harmonic in the neighbourhood of a

then Ua(p} is uniquely determined and let Ua(p^ = 0 if Ua(p*) <I 0, and
Ua(p} = Ua(p)9 if Ua(p) > 0, then for any points a and p

where d depends on 0 and p only.

Proof. We denote by DQ the domain such that 0 ;> U0(p) and C0 the
set such that t/0(P) = 0 an(i Az > Ca respectively.

Case 1. αeZ> 0 . V(p)=Ua(p)-Ua(Q} is harmonic in R-D0 for fixed
α, then it takes its maxium in R—D0, when p lies on C0, where
Up(a*) = Up(a}-UQ(a), for varying α. Put Uaβ(p0\=ϋp0(a^ = d=max:

ageCQ9pQeCQ. We denote by Z)J the domain such as Ua(p}—d — Ua<^0
and by CJ its boundary, then it is clear Z?ί^Z?0,.and Z7ί(p)— eZ — Z7i(0)
^0, f/ί(P)^0 when p£R.

Case 2. a £ D 0 , I f p€D0, then Max Ua(p)—Ua(ΰ} attains its maximum
d when p, αe(70 then

In the case when peD0, we can prove similarly, the latter part of the
lemma can be proved in the same way.

Let R be a covering surface over R and of positive boundary Riemann
surface, and f(z) : p£R; z£R be the mapping function and Gn(z, 0) be
the Green's function with its pole at 0 with respect to Rn and \J R — R,

and by hn(z,Q) be its conjugate. Put xn~ e~G^~ih^ = re*e , limxn=x.

5) M. Tsuji: Some metrical theorems on Fuchsian groups. Kυdai Math. Sem Nos. 4-5,
1950, pp. 27-44.
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In denoting by α 4, bt the point where /(α,) = 0, /(64) — # respectively
then

2ιc

1 f
2τr J v v

ϋ

where cfc is the first non vanishing coefficient of the expansion of /(z)
with respect to the local parameter defined in the neighbourhood of 0.
PΠ +

from the lemma \m(r, f — a)— m(r, q)\< U*

m(r, ά) + N(r, a) = m(r,

where \φ(r}\< I70(α) + eZ + | logic* || , if

T(r, q) = lim (N(r,
Rn-+R

we call this mapping bounded type covering.

Theorem 1.2. // p = f(z) is bowτded type, we map R°° onto
conformally, ζ = ̂ (z) 0 = φ(0), « = φ(ζ\ then p =
angular limits almost ever where on | f |=l .

Proof. We can discuss the potential theory on β, if μ is a unit
mass distribution on the positive capacity set E of Ry then we have

Γ(r)= (^(r, a)dμ((i) + 0(1), we easily see that Γ(r) is finite only and if

only when N(r, α) is finite everywhere. A system of equivalent points
α of f-plane (;" = !, 2, ...) corresponds to a point a€e/2 and G(z9ai}>
ΣGr(?, αί) where Gr(ζ,aί} is the Green's function of |f |<r with the

poles at α^ , we have A :> ΛΓ(r, α) ̂  Gr(z, α^) and a small circle in the
neighbourhood of x = 0 in the tf-plane and the neighbourhood of 0 in R
corresponds conformally each other, therefore in ring domain p <|#|</o2,
N(r, α£) ̂  A for any point at in the ring. Hence F(ξ') -+ x is bounded
type on |f |<^l, by Fatou's theorem F(ξ) has angular limits almost
everywhere on | f |=l, on the tf-plane, let I be an asymptotic path
ending at f 0 | f 0 1 = 1 along which F(ξ} converges to a?0 and the Green's
function of R tends to zero, then it is easy to see that a curve L on R
corresponds to I, determines an A. B. P. of R relative to R.
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Corollary.6) Let R be a covering surface over an abstract Riemann
surface R and there exists a positive capacity set E C^ R such that, every
point of E is covered by R a finite number of times, then on R°°: \ ζ |<[ 1 the
mapping function F(ζ) has angular limits almost everywhere on |?1 = 1,
this is proved by M. Ohtsuka by another way.

Corollary. Let R be a covering surface over R and R is a bounded

type covering over R, then R is a bounded covering over R, too.

Proof. A system al corresponds to a point ait which lie on α4, and

Σ GR(V> <*ί) ̂  G*0*Λ then we easily have τ(^) ̂  Γ(Λ)' where G* ' G*
are Green's function of R and R respectively.

Chapter II. Accessible boundary point

1. Measures of accessible boundary points

Let R be a null-boundary Riemann surface with A-topology and R be
a covering surface over R. When a curve I converging to the boundary
of R and its projection on R converges to a point p£R*, then we say
that I determines an accessible boundary point (A. B. P.) relative to β*.
We consider non negative continuous super-harmonic functions such that
Q<*v(p")<,l, and v(p) = 1 when p tends to an A.B.P. along every curve,
we denote by μ(R, 31) the lower envelope of [v(p}\ being harmonic on
account of Perron-Brelot's theorem, and define μ(R°°, SI) similarly.
Denoting by Rr the projection of R over R*, if the universal covering
surface of Rf is parabolic type, i.e., it cannot be mapped conformally
onto the unit-circle, we take off a finite number of points 2V2?2> >Pn
(when R' is closed and its genus is zero, three points, and when Rf is
closed and its genus is one, one point) and remove from R all the points
PV = 1, 2,..., lying over them and denote the remaining surface by
~ ^ n _
R so that the universal covering surface of (Rf— Σ^) may be hyperbolic.

As the preceding we define μ(R, SI), and μ(R°°9 SI). In the following
we assume that R has at least one accessible point.

1. R is a null-boundary Riemann surface, then R is also too, since
no bounded harmonic function exists on a null-boundary Riemann surface,

μ(R9 Si) = μ(R, SI) = 1. On the other hand if β°° is parabolic, we see
that μ(R°°, SI) = 1. If R°° is hyperbolic, we also on account of theorem
1.1. that any curve determining an A. B. P. converges to the set on
the periphery of the unit-circle, of linear measure zero, thus we have

6) See M. Ohtsuka, 1).
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, si) = μ(R°°, si) = o .
2. 72 is a positive boundary Riemann surface, put R— -β = ΣΣP«j

and let G(p, p,,) be the Green's function on β with its pole at ptj. For

arbitrary point p0 e -B, the function g(p) = Σ J^fi - r represents
u (V+0 G(Po»P*j)

a harmonic function tending to oo at any points of 2?fJ, accordingly for
any positive number 8 ^> 0 and v(p\ one of the class defining μ(R9 31),

Min(l,t;(p) + £0Gp)) is one of super -harmonic function defining μOK, 31),

this follows μ(R9 31) 2> μ(jβ, SI). Conversely any v(f>} on β can be con-
sidered as one of v(p) of R if the value 1 is supplement to 2 Pij

Hence μ(R, 31) ̂  /*(#, 31) and the equality follows. Further there holds
μ(R9 31) :> X#°°, 31), because any v(p) of # is considered on R°°. Since
for any v(p) of β°° and 6>0, Min (1, v(p) + £g(p)) can be considered on

β00, then we have //,(β°°, SI) ̂  /^(β°°, SI).

Theorem 2. 1.

, 31) = μ(R, St) ̂  μ(R~, SI) ̂  ̂ (βTO, Sl)7) .

As in the case when R is a null-boundary Riemann surface, these
relations are settled, in the sequel we suppose that R is a positive
boundary Riemann surface and investigate when equality or inequality
hold among these quantities.

We suppose Rf the projection of R on β* is a null-boundary Riemann
surface and R°°f* is hyperbolic type, i.e., it can be mapped conformally
onto the unit-circle. We map R00' onto |f |<^l, then from Theorem 1. 1.
on I ζ I = 1 the set of points at which at least a curve converging to
the boundary of Rf ends, is a zero linear measure set and if we map R°°
onto |z|<^l. On \z\ = 1, the set EΣ of points at which at least a curve
determining an A. B. P. lying on the ideal boundary of Rf is also zero
measure.

Let z0 be a point at which a curve I (the image of L on R) deter-
mining an A. B. P. having its projection on Rr, then we can take a certain
branch of /(z) which converges to a point f0, IξΌK 1 along I, then /(z)
has an angular limit ξQ also, this implies that any branch of /(z) has
angular limit relative to Rf. Let us fix a certain branch /(z) mapping
corresponding to z-*Rr and denote by E the set at which a curve ends
along which /(z) determines an A. B. P. with projection on Rf.

Let Rλ be an exhaustion of R:\JR\-R and denote by Δm.M.z(#),

7) See M. Ohtsuka, 2).
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the set —<\z ...... 0|< — . 0<| arg(z-0)l<4- ~ and by S(/(z)) : zέ
% fit' " **

Δm.n.z(0) the diameter of the set (j(z)\ z G Δm.?z.z(<9)) with respect to

A -topology of 72*, then

because δ(/(Δm.w.z(0)) is continuous with respect to Θ, for fixed \9l,m,n
and /e, £7 is a Borel set on \z\= 1.

Let μ(R°°, 31) be the lower envelope of the super-harmonicfunction
\v(z)\ such as 0 <: <z) <1 1, andl im v(z) = 1 along every path determining
an A. B. P. relative to R and μ(R°°9 31(̂ 7,)), μ(R°°, 3t(#)) be the lower
envelope of the super -harmonic functions such that lim v(p) = 1 along
every path determining an A. B. P. lying on the boundary of R, and on
R respectively. We have μ(R°°, SI(#7)) <: μ(ϊΓ', 2ί) by Lowner's lemma
and moreover μ(Rcof, 31) is zero as the solution of the Dirichlet problem
on the f-plane, thus we have

μ(R~, SΪCE7)) < μ(R°°, 31) ̂  μ(R~, 31(̂ 7,)) -4- μ(R°°, 3I(̂ )) = μ(Rc°9 3ί(̂ 7)) .

On the other hand we denote by ω(E) the harmonic measure of measur-
able set E then, since v(R°°, 31) — 1, when z converges radially to E,
then we have easily the next equality μ(R°°, 31) •= ω(z9 E}.

Theorem 2. 2. When R is a covering surface over a null-boundary
Riemann surface R if the universal covering surface of R is hyperbolic
type then μ(R°°, 3ί) = ω(z, E}.

Theorem 2. 3.8) Let R be a null-boundary Riemann surface with A-
topology and R be a positive boundary Riemann surface given as a covering
surface over R, if the universal covering surface of the projection of R
is parabolic type, i. e. connot be mapped onto the unit-circle, take a finite
number of points (p4) (i — 1, 2, ... , n) and remove from R all the points
(Pij} (ί = 1> 2, 3, ...) lying over pt so that the projection of the remaining

surface R may has an universal covering surface of hyperbolic type. Let
G(P> Pίj) be the Green's function of R with the pole at piό . In the case

when R covers pi (i = 1, 2, ... , ri) so rarely that Σ Σ G(P> P*j) < °° » if

we map R°° onto \η\<^l conformaily, then we have

8) This theorem is proved by M. Ohtsuka 2) under the condition that R covers pt a
finite number of times.
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Proof. We map R°° onto ]^|<^1, then a system zijk (fc = 1, 2, ...)

corresponds to a point ptj and Σ G(p, Vii) = Σ Σ Σ log ~^J*y < oo
j ί l^ j fc — 2? I

is equivalent to Σ (1 — 1 z*j* IX 0 0-
Ufc

a) A cwrz e Z iw ] z \ <^ 1 being the image of the curve L on R not
passing through ptj and determining an A.B.P. not lying on pi(i = ly 2,..., n)
converges to a point on \z\= 1.

n

We map (R — ΣPί)°° onto I?I<C1 ^ ^ does not converge to a point,
then converges to an arc 7 where mes 7 ^> 0. Since the mapping
/(z) -> β is one-valued function, there exists a branch f = /(z) tending
to a point f 0 : | f 0 1 <^ 1 corresponding to p0 along Z. Let us take off
radial segments SiJJΰ from zijjc to the periphery |z| = l and denote it by
(Uz— Σ S4Jfc) being simply connected domain, we map it onto I f K l : z

IjX

— 9?(f). Since the boundary of (Uz— Σ SiJΊ^ is rectifiable, 7 is transformed
< j f c

onto a positive measure set 7' on | ξ \ = 1, f = f(φ(ξ*)) has angular limits
on the ζ"-plane almost everywhere on 7', therefore there exists a positive
measure set 7" on which f = f(φ(ξ}) has angular limit f 0 : |ξ*0 |<^l,
because the radius ending at 7" is transformed to a curve in |z|<^l,
intersecting / infinitely many times on which /(z) tends to f 0 , this is a
contradiction.

b) The set Ez on \z\=\ at which at least an image of the curve
not passing through pt and determining A. B. P.s not lying on pt ends is
linearly measurable^.

In fact we map R°° onto [^Kl, and denote by E^ the set at which
at least a curve determining an A. B. P. ends. Let L be the above
mentioned curve on R, since L does not pass through ptj, L is contained

in R and the image ?„ in η-plane of L converges. Since the projection
~ n

of R is (R— ΣP*)» ζ = fC7;) has angular limits relative to R at every

point of E,,, then E^ is a Borel set. As β°° can be considered as the
universal covering surface of the domain (Unit-circle—Σ So*) and ίβ« j fc
corresponds one-to-one manner to a system ^, then Ez can be thought
to be the image of E^ of the function z = z(η), then Ez is an analytic
set. Next, let lz be a curve in β°° determining an A.B.P. lying on
pi (i = ιt 2,... , n) and EIZ be the set at least such a Z2 converges, then
it is easy to see that lz converges and its outer measure of the set where
at least a I, converges is zero in regarding that the mapping z-+ξ and
Lowner's lemma.

9) See M. Ohtsuka, 2).
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c) Let Ez be the measurable set of positive measure on |z | — 1, and
E^ be the set on \ η \ = 1, where z = z(η) has angular limits contained in

Ez , then Eη is a set of inner measure positive.
Let EJ be a closed set of positive measure of Ez where η = η(x)

tends uniformly, then the set on |*7 | = 1 where z = z(η) has angular
limits contained in EJ, is also measurable denoted by EJ. On the
other hand (U— ΣSίJfc) has a rectifiable curve as its boundary then

i jk

Eξ

f on \ξ \=l of positive measure and consider the composed function
EJ is transformed onto the set?? = η(z(ξ)} in Uz—^SίJk and let EJ' be

ijk
the image of Eξ' then E^ d •£> , in mapping z — z(η) : \ η \ <^ 1. We denote
any super -harmonic function v(η) such as 0 <: v(η) <; 1, lim v (97) — 1,

77->JV

we consider this function on | ξ\ <^ 1 then clearly v(η) :> &>(#/), where
ω(Ey) is the harmonic measure of Eξ

f with respect to |£K 1, this follows
that mes £r

r?>0.
Proof of the theorem. μ(R°°, SI) ̂  μ(R°°, Ez} implies that μ(R°°, 2ί)

has angular limits zero almost everywhere on the complementary set of

Ez , on the other hand μ(R°°, §ί) = μ(R™, E^ = ω^E^ , η} and μ(Rc°9 E^

is one-valued harmonic function in R, this is also harmonic in R, there

μ(R°°9 ET,} is one-valued in |z|<Cl and has angular limits almost every-
where on |z| = 1. In denoting by Elfβ the subset of En being measurable

where μ(R°°, E^} has angular limits less than 1 and denoting by El.r)

the image of Eλ.z , then μ(R°°9 E^ = 0 follows in connection c) that

μ(β°°, E!..) = 0. Thus we have μ(R°°, E^^μ(R°°9 Ez}^μ(R9 SI), because
μ(R°°9 Ez} is the lower envelope of super -harmonic functions having
limits 1 along any curve ending at Ez . Since any super-harmonic

determining μ(R°°9 SI) can be considered as the function on R°° if we

supplement the value 1 on zijjs then we have μ(R°°9 SI) <1 μ(R°°9 SI).
Finally we have

μ(R°°9 EJ > μ(R°°9 Ez} ̂  μ(R~, SI) ̂  μ(R~9 SI) ̂  μ(R°

2. On the behaviour of Green's function in the neighbourhood of
the ideal boundary

Theorem 2. 4. Let G(p, p0) be the Green's function of R with its pole
at p0, Z)λ be the closed domain such as G(pf p0) ̂  ̂  where λ^>0 and RM

be an exhaustion of R. We denote by Bλ the boundary elements defined
by lim (R— Rn} f\ Dκ , then βλ is outer harmonic measure zero.

n
Proof. Let v$ be continuous super-harmonic function in R such as

0 <; v^(p) < 1, and v(p) = 1 if peDλf\ (R—Rn} and its lower envelope
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of v^(p) be denoted by μ*O), since — Min [λ, G(p, p0)] is one of such
λl

functions, and μ*(p) :> XUι(P) and lim ^(p) = ̂ λ(p) is harmonic in R.
n

G(p9 Po)—λμn(p) is harmonic and positive in Rn and has a logarithmic

singularity pQ then

where G(p, PO)KW is the Green's function of the surface Rn , let

because G(p, p0) is the lower envelope of positive harmonic function with
the same singularity as G(p, 2>0) — λ//£(p), this follows that lim μ*(p) = 0.

We extract a sebsequence t^Cp), ^2(2>) of which the lower envelope

is μλ(p\ thus we have the theorem.

Corollary. Let μtλ(P) be the lower envelope of non negative super-

harmonic function v*(p} in Dλ such as 0 <1 v*(p) <L 1, and lim v*(p) = 1,
P~*B\

then μ*λ(p) = 0.

In fact, we can consider v£(p) is one of ^λ(p), then we have the
conclusion.

Corollary. There exists a continuous positive super-harmonic function
satisfying the following conditions 1) 0<lϊ7(p)<^oo in R. 2) lim U(p) = oo.

oo P~>*

Proof. Let B — JΓJ βj^ , since for every λ, Bλ is outer harmonic
w=2 ίi

measure zero, then we can extract a sequence of continuous super-
j^harmonic function Un(p) such that

A 1 !_ _
Max(C7w(p))^^, if p£Rn, U~n(p) = l if 2)Gβw/ and p£D±, where

^ i ι
nr = n'(ri). Put t/(*0 = Σ [/^(p), then ^(2>)<^ + 4 if 2?^β« and

uniformly convergent in every Rn then I7(p) is continuous and super-
harmonic in R and lim U(p) = oo .

P+B

We consider the case when μ(R, SI) is equal to μ(R°°9 SI).

Theorem 2. 5. Lei R be a positive boundary Riemann surface and
Rf be the projection of R over R, we take off points pt (i == 1, 2, ... , n) so

n
that the universal covering surface of (R- Σ2>*) is hyperbolic type, and
denote by G(p9pi3) the Green's function with its pole atp^ lying over pt.
When R°° is mapped con formally on |z|<^l, we denote by DQ the normal
polygon of Fuchsian Group containing z = Q, with arcs a5 (j = 1, 2, ...)

on \z\ = 1 and by [T^ (i = 1, 2, ..,) the substitutions of Fuchsian group, if
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Σ Σ
J i oo

mes (Σ Ti (Σ <*)); = 2τr , then

μ(R, 31) = μ(R9 31) = /.CRT, Si) - μ(R~, Si) .

Proof. We denote the set by E where at least a curve determining
an A. B. P ends, we have seen that E is measurable and μ(R°°9 Si)
= μ(R°°, E) = ω(z, E}. For any given positive number 8 > 0, there exists
a number p and k such that

mes , - .

for any line element ί on a3 , we can extract subarcs denoted by ctj
00 00 o

having no common ends with α^ such that mes (Σ aj — Σ ^ *) <C 077- >

then we have mes (Σ Γ< ( ] α,)-Σ Γ« (Σ tfj))<2£, if μ(R9 R)^μ(R~, 31)

we have μ(R, 0)>V(β°°,J0)-hδ : 'δ>0 / since /^(β, 31) is one-valued

harmonic function in |0|<^1, denoting by H± the set where μ(R, SI) has
1 n J *

angular limits larger than — , then mes ((2τr-}Ef\H i AΣ ̂ (Σ «*

and

Let (complement of JF) A ΛJ' = a J*> an^ we can take a closed subset

denoted by F1_ in Σ <*1ι* such that Σ Ti (̂ 1) > 4" On the other hand

n i n Δ

let cύ p\(z) be the harmonic measure of Σ^ίC^*)* then
IT » «-

and one-valued on β. We consider non negative super-harmonic function

ι;*(ί>) in JS such that lim v*(2>) = 1 when p tends to F*^ along every
~ n

curve and denote by μ^(R,p) their lower envelope, then we have

μ*(R, 31) > ω F\ (.PI). Since F*i_ is a set on arcs a1 - - - a2 , the behaviour
Ίϊ n n

of μ*(R, 31) is the same as that of Green's function i.e., if lim G(P,PQ) = 0

when p tends along every curve converging out of F*^ then lim μ*(R, p}
n

= 0 along these curves. But we have seen in corollary of theorem 2. 4
that there exists a non negative continuous super -harmonic function
V(p) such that lim V(p) = oo , where B = Σ Bλ : G(p, p0) > λ. Let v(p}

P +a λ

be of the class defining μ(R, 31) and consider next function

= Min

case 1. p tends to an A.B.P. then this curve ends out side of Σ T(FΛL)>
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we have to consider in DQ , since ί\ is closed then ω F\ (p) = 0 thus
~

case 2. p tends to F\_ on the z-plane, since v(p) :> — along Stolz's
n ^

path converging to F*i_ , Sfjp) :> 0.
W 1

case 3. 25 tends to the boundary of R, except F1_, then 8V(p}— —

;> 0. Hence S(p) has angular limits :> 0 almost everywhere on | z | = 1

and bounded, therefore S(p) I> 0 in R, finally S(p~) is a one of super -

harmonic function but 8 is arbitrary we have, the lower envelope of

= μ(R, Si)-— ωF\(p}^μ(R9 SI). This is a contradiction, then we

have μ(β, Sί) = μ(R°°, 21) any by the preceding theorems we have the
conclusion.

Corollary. The connectivity of R is finite and universal covering
surface of the projection of R on R is hyperbolic then we have μ(R, ?I)
= μ(R°°, SI).

Theorem 2. 6. Let R be a positive boundary Riemann surface and

the universal covering surface of the projection of R over R be hyperbolic

type. If μ(R, SI) = μ(R°°, SI) then we have μ(R, g) = μ(R°°, g) for every

closed subset g of SI.
We denote by %n the set of of R + *& such as all points of R with

distance <L — from g, then g = /°\ %n and denote by Fn the image of

on |z| = l: (|z|<l) = β~, then Fw is measurable. Since the
image SI on |z| = l with its projection lying on the boundary of R has
outer zero measure where the mapping function has not necessarily
angular limits, we can suppose the projectionof SI lies on R. Let Rm be
the exhaustion of R, Γm be its relative boundary, and an be the relative
boundary of %n , we define

ωm.m-κ(P) '• (* = 1> 2, ...) satisfying the following conditions,
ω^.OT+ίCp) is non negative continuous super-harmonic function in Rm^
<.«+ι(P) = l, if P^δ»ΛCΛm4«-Λ w ) , ωl^+^p) is harmonic in

Λ^i-Cδn A(Λm^-Λ«)). ωi.m+ί(p) = θ if perm 4 <-(rw 4 <ΛS»)
ωϊ..m+i(P) ̂  ω« m+i+j(P) Let ®1(P) be the lower envelope of α>l.m+i :

i = l, 2, ... ω (̂2>) is super-harmonic therefore μ(R, § n) ̂  ω^(p), /^(β, S)

lim ω^(p) for every w.

"if XΛ, g) Φ X/Z00, g), we would have mes (SI2 A <?&)>(), where

2 means the image of SI and Cg2 means the complement of the image
with respect to |z| = l.
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Let /(z) be the mapping function from the z-plane onto

Ds p the domain in ]z|<^l such that it contains the endpart of the

angular domain: |arg(l — e~ίβz)|<^-^ — δ : (δ^>0) at every point eίθ of

closed set Fl and Cδ/ be the ring domain 1— δ'<|z]<l.

Since A. B. P corresponding to §1 f\ Cg which has positive distance

from ones corresponding to $, then for given positive number £ > 0 and

δ, there exists a closed subset ^ of ^βΓ\C^n such that mes (C?!,- )̂

< £, and dist (/(z), gβ) ̂  ̂  if z e 0ίβFj A <V The boundary Γn of βw

is transformed onto a simple closed Jordan curve <γm in |z|<^ 1. Denote by

rm the distance jm from z = 0, and let m0 be the smallest number such as

r ]>1 — δ, then for Γm : (w :> w0), the image of Γm is contained in Cδ,

and the part of the image contained in D$upt are the arcs where ω^.m+l :

i = 1, 2, ... takes value 0 except a set of linear measure zero.

Let C'rm be the circle |z|<rm, and Z?£F be the set D^Fι\J C'r^>

and l/m(z) be the harmonic function in D£F such that 0 <1 t/m(z) ̂  1 ,

I7w(z) = 1 when z lies on the boundary of D£F except on the boundary

on |z| = l and vanishes on the boundary lying on |z|=l. Since the

boundary of D£ F is rectifiable Γ7m(z)^l and [7m(z) — 0 when z tends

to Fl almost everywhere. It is clear that Un(z) ^ ω^w.m+ί(z) ̂  μ(R, $) if

zeDδtFlf~\R™ for every i and %, but 6 and δ are arbitrary, therefore

μ(R> S) has angular limits 0 almost everywhere on SΪ2 f~\ C$z . On the

other hand μ(R, SI)^>^(β, §)> it follows μ(R,?$) has angular limits zero

almost everywhere on Cγ§e , thus /*(#, S) has angular limit zero almost

everywhere on C%g and so μ(R, g) = μ(R°°, g).

Theorem 2. 7. Suppose that Rfo° is hyperbolic type. Take a finite

number of \pt} fromR^and remove from R all the points lying over them

and denote the remaining surface by R, then there holds

This is proved by M. Ohtsuka in regarding that the mapping
function from R°° onto R has angular limits and the set where at least

a curve determining A.B.P. lying on \pt} is outer harmonic measure zero.

Till now we have investigated the case when harmonic measures

have equal values, in the following we show by example there are cases
when inequalities hold.
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3. Counter examples of the preceding theorems

Example. Let B2n , B2n+l : n = 1, 2, ... be the system closed domains
in I z I <[ 1 such as

• ~ - : T ̂  °z T

We can construct the holomorphic function1*0 /(z) : |z|<^ 1 by Runge's
theorem such that

|/(z)-l[<l-if ze£ 2 w , |/(z)|<^- if ze52 w + 1./w /6

It is clear that /(z) is not bounded in |z|<^l and w = f(z) = oo is
an asymptotic value, therefore there exists an asymptotic path I along
which /(z) tends to infinity, this path determines an A. B. P. lying on
w = oo , let p0 be the starting point on I where | f(z) \ = M0 and this

00

path lies in the unit-circle except Σ(δ27ϊ-J-B2?l+1) and denote by pr the
no

first point when p lies on | z \ = r in co verging to the boundary | z \ = 1
from pr and by lr the endpart from pr .

Let \v(z)} be non negative continuous super-harmonic function in
I z K 1 such as 0 <1 v(z) <L 1 and lim v(z] = 1 when z tends to | z \ — 1
along I, take a #(z), then there is r0 such that ^(z);> 1— δ, if z 6 / r o for
every δ where lro has a branch passing left half plane and let n0 be the

number such as 1— -. - o^ ro> an(i A- and ί7 be the point (r = 1 — -, - ̂  ,
47^0-fo \ 4%0-4-l

.4rc04-3' 4

and D = (r = 1 — ̂

as ί/(z) = 1, if z 6 AB and on the circular arc BC, and vanishes on

the circular arc CDE, or on the segment EF then 7(0) ̂  17(0) = δ0 > 0,
for every ?;(z)ιυ. Hence μ(R,w = &o) being the lower envelope of \v(z)\

is ^δ0>0.
We remove all points where /(z) = 0, 1 and 2 from the unit-circle,

then the universal covering surface of the projection of the remaining
surface Rr is hyperbolic type then it is clear μ('R, oo)>0 and

μ(Rfo°, oo) = μ(R°°, oo) = 0. Hence by theorem 2. 6. μ(Rf, SI) $ /^(β'00, 81).

10) L. Bieberbach: Funktionentheorie II.
11) When lr has right half plane, similar fact occurs.
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1) If we consider the R1 to be given surface R, then μ(R, 3ί) Ξg

μ(R~, 31).

2) If we consider β given surface R~ = R, then χ/T, 3l)$χίr,3i).

We easily see that these surfaces do not satisfy the conditions of
preceding theorems.

4. Type of covering surfaces

1) If there holds u(p} <i 0 on R whenever u(p} is upper bounded
continuous sub-harmonic function on R such that lim u(p) <1 0, we call
R a surface of D-type. p~>^

2) Let β°° be hyperbolic hyperbolic type, when the function cores-
ponding to the mapping onto the unit circle R03 — > R — » R* has limits
along Stolz's path almost everywhere on |z | = l, where β00 == (| z | <^ 1).

We call in this case R F-type covering.

3) If 5Γ(r) of the mapping function from R to R is bounded, we
say R is bounded covering, we have easily

D-type ̂  /*(#, Si) = 1 . B-type -> F-type -> Z)-type ,

and if the universal covering surface of the projection of R is hyper-
bolic, we have F-type ±; μ(R°°9 Si) = 1.

In the sequal we investigate type of covering surface among covering
surfaces over the same basic surface. We have at once from theorem
1.2. the next

Theorem 2. 8. When R is a covering surface over R and R is of
Λ

bounded type over R, then R is of bounded type over R, too.

Theorem 2. 9. When the universal covering surface of the projection

of R over R is hyperbolic type, if R°° is F-type and if R is a covering

surface over R, then R is also F-type relative to R.

Proof. We map R°°, R°°> R°°, onto. | f |<l, ]z|<l and | f |<l and
denote by EIξ , EIZ and Elί: the set where at least a curve determining
an A. B. P. lying on the boundary of R, since EIξ , EIZ , Elζ are of outer
harmonic measure zero, we may suppose without loss of generality that
A. B. P.s lie on R. Let 2Iξ, 2I2, 21^ the set being measurable where the
mapping function onto R has angular limits on R, then μ(R°°, Si J = 1.
If mes (CSI^^O, where CSI^ means the complementary set of SI^ and
let z = <f), 0 = <0), f«f )) = ξ(ξ) be the mapping function onto the
z-plane and £-plane respectively, they have angular limits almost every-
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where on |z|<]l and f-plane. Denote by lξ the radial path ending at
C$lς along which z = z(ξ") ξ = ξ(ζ) has angular limits on z, ^-planes.

z = z(f) does not converges to z0: \ z0 \ <^ 1, because if it were so,
lζ determines an A.B.P. on R, therefore z = z(ξ) converges to z0: |z0 | = 1
and further the image lz of lζ does not intersect infinitely many times

with the angular endpart arg \z—eίθ\<^^- — S : δ>0, β ί βe?ίβ, because
Zj

if lz intersects it infinitely, since ξ = ξ(z) tends in this angular domain
to a point ξ0: |f0 |<l with regarding that ξ = ξ(ξ} = ξ(z(ζ}} has limit
ξ0: \ξ01<1 on the £-plane, it follows that ξ = ξ(ζ} determines an A.B.P
along lz, this is a contradiction, thus z — z(ξ) has no angular limit or
converges to z : z 6 CSί2 or converges tangentially to z : z G Sίβ.

For given numbers £, δ there exist numbers £', δ' such that z = z(ζ}
is not contained in Dz^Fζ f\ Cδ* if ζ £Dζ.εs&.Fζ,f\Cδ*, where Fε,Fζ,

are closed sets of 2ί,, C3ίc and mes |2ί,-F(|<6, mes ICSί^-F^K^,

DZ.S.FZ > -Df.δ'.F8/
 are angular domains on 0, ξ*-plane arg |l — ̂ β""/θ|<^^-—δ

for any point of eθeFζ, arg |1 —^e"":θ|<^-o-—δr: eθ£Fs,, respectively,
Δι

C'z.δ*, C'ς .g,*, Cs are the rings 1 —δ<|z|<l, 1 —δ'<.|f]<l and a circle

l-δ>|2|, lira 6 = 0, lira 8 = 0.
8/->0 S/-»0
δ^->o δ' ^ o _

Let Z7δ.e(z) be the harmonic function in Dz^,ps \J C8 such as Z78.8(z) = 0

on the boundary of DZf$fFs \J Cδ except its boundary on l z | = l and 1

on the boundary lying on ]^| = 1, and ω(f) be the harmonic measuse of
FS, , then we have 1 — ω(f) ̂  Z7δ.ε(^) when ί7δ.ε(z) is considered on f-plane,
since Sίz, (731̂  are measurable and 6,. δ are arbitrary and lim 6' = 0,
lim δ' = 0 then we have

μ(R, 51) = lim (l-ωFε/(ξ )) ̂  lim us &ϊ = μ(β°°» SI)
ε->0

This implies the conclusion.

Corollary. We can weaken the conditions of the preceding theorem
in such a way the condition that the universal covering surface of the
projection R is hyperbolic is changed by the condition that Σ G(p9 P^X^00*

where pί3 are points of R lying on pt of R, so that the universal covering
surface of (R—ΣP*) ^s hyperbolic.

Corollary. Let R be a positive boundary Riemann surface and covers
A

pt so rarely as Σ G(P> 2^X1 °°» then μ(R°°, 51) <J μ(R™, 51).

Proof. We denote by piJ1ti; (fc = l, 2, ...) the points lying on piΛ

then we have
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Σ Σ Σ G(p, Σ Σ G(p, PiJ) ,

where G(p, pl3l6\ G(p, p4J) are Green's function of R and R. Let 72 and

R be the remaining surface after removing pijjs and p£J from R or β
then we have from theorem 4. 4.

- /.(β00, si) si) = μ(R°°, si) .
Example. A covering surface over a D-type covering surface is not

always D-type. In the preceding theorem we take as Bzn and B2n+1

the domains shown in the figure 1.

Fig. 1

5. Dirichlet problem

5.1. Dirichlet problem on a covering surface over a null-boundary
Riemann surface

Lemma. Let R be a null-boundary Riemann surface and R be a
F-type covering surface over R and $ be a closed set of SI, the upper class
Z7£ is defined by all non negative continuous super-harmonic functions such
that lim u (p) = 1, then the lower envelope H\(p) is harmonic. Similarly

— p-*?ϊ ύ

the lower class S3cv and HξJp) are defined for upper bounded continuous

sub-harmonic function such that Ήm v(p) < 0. Further it is clear that
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Hί(p} on D-type Riemann surface, and if they coincide at a

point, they are identical in R.

Lemma. Let g be a closed subset of 2ί of F-type covering surface
then there holds

Proof. Mapping R°° onto |z|<^l, since the set Et the image of the
A. B. P.s lying on the boundary of R has outer harmonic measure zero
i. e. μ(R, ^{f\Ei) = 0. We may suppose that A. B. P.s lie on R. Let

gw be the set of R + 21 which has distance from % <1 — and Fn be the

image of %n A Si on |s| = l, then g = f\%n and F = f\Fn and they
W W

are measurable.

Let Rm be an exhaustion of R with relative boundary ΓM and yn be
the boundary of $„ and αCm+<(p) (i = 1, 2, ...) be non negative continuous
super -harmonic function in R such that ωl.m+i <I 1 and harmonic in
(ΛW4,-(S»Λ#w+ι-Λw)) and 1, if p 6 &.Λ (#-#-) and vanishes on
C%n A

 Γn+t > ωtm+ί(P) is increasing with respect to i, and ωn

m= lim ωl.w+<
<=00

is contained in f/cv class and harmonic in Rm and ωj, is decreasing with

respect to ra. lim ω^(p) is harmonic in R—Fn, then SSCp^ω7* for every
m 1>

n. On the other hand at any point of 3He p\ CFn , /(z) does not tend

to F2n in angular domain, because dist [(SI f\ Cgw). gw] ̂  i .

Let Dκδ be the domain with arg | -ze^θ\<^~-Sf eiθeκ, rm+i = dist

(image of 7m+ί in |z|<z = 0, Crm, be the ring ^<lz|<l, and C*w be

open circle |z|<7™ For any given number £>0, and δ>0 we can
find a closed subset Ffn of SI, and ^f\CF2n9 such that, mes|2I2-F2J<£,
if z 6 Zϊjpjj.δ A ^rw/ > ^en /(z) is contained in the complement of Fn .

Let U^(z) be harmonic in Dp^ \J C*̂  and ^1 and 1 on this domain

not lying on |z |=l and vanishes on the boundary on | z j = = l , then

Ul^ω^+t and harmonic in Dp*^ \J Cf^ ,

Um ̂  ωm.n+1 for every i, there holds 17̂  ω^ .

Since £, δ and n are arbitrary, and the boundary of Dp%ns \J C* is

rectifiable lim (lim ϋn

m) ̂  lim ωF (z) ̂  lim lim ωn

m(p) ̂  lim ωn(p)
w w i w w w τ ? ι n

and the converse is true, then we have

Let ύa = SI— δa and ώ".m+< be super-harmonic in R such that
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O^ώl.-.nGP)^! and 1 when p£Ω,nf\R-Rm and ymf\&» and

vanishes on rw^— Γw+4 f\Ω,n , and harmonic in RmΛi—Ωn. lim ω^.m+i(p)

ί = ώ^(p)f limώ^(2>)i = ώn(p) is harmonic and has angular limits zero

almost everywhere on Wz f\ COn , where 0^ is the image of Ω,n . Denote

by /i the set in Ωn where #|(p)^λ and part T£w = (R-RJf\Jϊi and

ωϊ.»+<(p) being super -harmonic in R and harmonic in Rm4i-T^n and
attains 1 when per*"1 and vanishes if peΓw44-ΓίΓ, clearly we have

Put ΦU+ί(p) = M i n » ^ + < , < S i £ , + l , - # E O ) this is contained in
\ A /

the upper class for Γ^Γm+ί , but lim lim ω5U*+«(ίO and its lower envelope
m n

has angular limits 0 almost everywhere on F2n and on SI f\ O i . Let
2w

%._> oo , then this envelope has zero almost everywhere on z = 1. This

follows that lim Tχn f\ 31 has outer harmonic measure zero. Therefore
n

there exists a non negative continuous super -harmonic function J7(p)
such that I7(p) = oo when 39 tends to Tλ'n for every λ > 0 and n. Since
Max(£P(p)— 6l7(j)), 0) has limits zero when p ,tends to SIAC'S this is
contained in S3 class, thus

Similarly for open set O of SI, we have #Sj>) = H_Q(P) .
Let φ(p) : p 6 21 be a real valued function on §1 (admitting ± co).

Define the upper class U* consisting of all the lower bounded
continuous super-harmonic function such that lim u(p} ;> φ(p) and its

*-*S
lower envelope H%(p), and the lower class and H*(p) for sub-harmonic
function similarly. If Hl(p) = H*(p) holds then φ will be called a
resolutive boundary function and common envelope will be denoted by

Theorem 2. 10. Let R be F-type and φ be semi-continuous function,
then φ is resolutive.

In fact, let φ be bounded upper semi-continuous function on SI
and M I> φ ;> m, and divides [m, M] such that m = c0 <] c, cn = M,

T\/T _ ΛΛΛ
ci+ι~ ci = — - and the set E[φ:>ct~] is denoted by ̂ 44 being closed%
and Ei = E[ci+λ>φ^>ci~]. Let ί/^. be upper 33 .̂ and lower class of

characteristic function of A, . Put UE. = UA.-VA.+l(VE. = VA.-UΛ.^,

where f/^.(F^,) is a function contained in 17̂ (93̂ ), then UEi(p)(VEt(py)
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is supper (sub)- harmonic and lim t7(p)^>l ( Tϊm V(p} <lO) thus UE(p)
P^Et p-*αevrm „_!

(F^(p)) is contained in C/Λ(33Λ). and I7;(p)= Σ ̂ i^OOOW
n i = ϋ _

— is contained in [7£(33 *) but the lower envelope #£.(p) (HE.(p}}

of Ϊ^CV^) is equal to the harmonic measure of Ei in β°°: |z|<l then

we have,

p) ̂  - - , let n
to ί = o ?Z

where μ is harmonic measure.
From general theory of Dirichlet problem, we have next

Lemma. H™(p) is the upper envelope of H^(p), where ψ<^φ and
-ψ is upper bounded and semi-continuous on 2ί, the similar fact holds for

In the same manner used by M. Brelot, we have

Theorem 2. 11. In order that φ is resolutive it is necessary and
sufficient that φ is integrable in the narrow sense.

Remark 1. We easily see H*(p} is the same as the solution of
R. Nevanlinna

Remark 2. This method is also applicable for φ(p) on SI even if

μ(R°°, 91) Φ 1, if we restrict φ^O and H* is equal to \ φdμ
S4

Remark 3. We have seen in the proof of Lemma #5(p) takes value

zero or 1 almost everywhere on \z\= 1 according to the point is contained
in the image of g or not more generally the solution H* for continuous
boundary function φ takes value φ almost everywhere on the image of
SI. If we consider ΈLR

φ($) in Ry this fact means that H*(p} takes the
given φ " almost " paths determining A. B. P.s so that the image of
these paths form measure 2π set on \z\ = 1. This follows the resolutivity
of φ. But we dont know if H*(p} tends to φ along every curve ending
at any point 91— SI0, where SΪ0 is a subset of 9ΐ being so small that its
harmonic measure zero, this fact has stronger sense than the former.

On the other hand it is well known, for Dirichlet problem of the
domain in the z-plane for continuous boundary value φ, there exists a
subset / being Fσ of the boundary of capacity zero called irregular
set determined uniquely for the domain such that the solution takes
the given value except 7. In general case when R is F-type Riemann
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surface the problem whether there exists or not the negligible subset
with the property determined by the domain only and not depending
on the boundary function φ is open.

5. 2. Dirichlet problem on a covering surfaceover a positive boundary
Riemann surface.

Let R be a positive boundary Riemann surface and p0 be an inner
point of Ry and G(p, p0) be Green's function of R and h(p, j>0) be its
conjugate. Put k(p) = e-e-** and we define the length of a curve L as

I dk(p) and distance between two points qλ , and q2 € R be the lower
L

limit of the length of all curves L connecting q± , q2 in R and by comple-

tion we have metric space β*, and the distance on a covering surface
of two points Q! , #2 is defined by the diameter of the projection on R*
of all curves connecting qτ , qz in R. If a curve I on R tends to the
boundary R and its projection converges to a point on R* we say, I
determines an A. B. P. this means that the mapping f unction /(z) — » R — >
R_ — > k(p) = w, /(z) has limit w0 on the w- plane along the image lg on
the z-pίane of I, since |fo(p)|<]l the images I0 tends to equivalent points
of Fuchsian group on | z \ — 1 and at these points k(p) = k(z) has an
angular limit WQ i.e., lg determines the same A. B. P. lying on R*. As
f(z) has angular limits almost everywhere on |z |=l this follows that
R is F-type.

Let tyiz be the image of A. B. P.s on | z \ = 1 and Fz be the image of
closed subset % of 31, then we have

= Et \u π Σ π
L 2 Ac n m

n.^, δ) ̂  -ί 1 1
Λ' J J '

where Δm.n.z the set 0 ̂  | arg (l-e^z^^ ^-~ — ̂ l*-0|<~ ,
^ I Ύb IfYl/

δ(/(Δ)) is the diameter of /(Δ) with respect to the topology of β* and
d(Δ, g) is the distance from g with respect to the topology of R, then
we have the same result about Dirichlet problem as in the case when
R is F-type Riemann surface over a null-boundary Riemann surface R.

6. Finitely sheeted Riemann surface

Let R be a null-boundary Riemann surface with A-topology and R
be a covering surface over R. When a Jordan curve L on R converging
to the boundary of R and its projection tends to a point p0 of R*, we
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say, L determines an A. B. P. Let Vn be the neighbourhood of p0 of

the projection of the A. B. P. with diameter — and %$n be the set of R
71

lying on Vn, this composed of at most enumerable number of domains.
Associated domain Dn of L will be a domain containing an end-

part of L in ?&n. Two arcs Z/ x, Z/2 determine the same A. B. P if and
only if for any number n two associated domains are the same. This
definition of A. B. P. is equivalent with that of 0. Teichmίiller.

We denote by n(p}: p 6 R the number of times when p is covered
by R, then it is clear that n(p) is lower semi-continuous. We call R
boundedly sheeted covering surface if n(p)<LM : p £R. In this paragraph
we consider chiefly such a Riemann surface. When sup n(p) Ξg 1, non

FζR

accessible point of R have no sense in itself, hence we consider only
accessible boundary points.

Barrier. We call B(p): p£R, Barrier of p the function such that
B (p} is non negative bounded continuous super-harmonic function
lim £>(#) — 0 and for every associated domain Dm, there exists a number
Q+ P

such as, lirn JB(g)>δm; if p~ζDm it is well known that p is regular for

Dirichlet problem of R if and only if at p Barrier exists.

Lemma. Let R be a F-type Riemann surface over R and p be an
A. B. P and D(p) be an associated domain of p, we denote by proj D(p}
the projection of D(p), if p is lacunary of D and further proj p is regular
for the domain proj D(p), then p is regular for Dirichlet problem on R.

In fact, let Γ(proj p) be Barrier of proj p with respect to proj D,
then there exists a number Sm such that lim !Γ(proj p} :> 8m, if
proj p~6 proj Z)m. Put B(p) = Min (δw, Γ(proj p)), this is clearly Barrier
of p with respect to R. We have at once

Lemma. % be lacunary set being clearly closed on R, the all A.B.P.s
on % are regular for Dirichlet problem except the set having the projection
of capacity zero which is Fσ .

In the sequal, let R be boundedly sheeted covering surface over
R such as n(p)<,M. It is known that R is a null- or positive
boundary Riemann surface according to the set E[vtp)<^N—1)] where

N = Πm n(p): p € R being clearly closed, is a null-capacity set or not.
We suppose R be a positiveboundary Riemann surface on account of
theorem 1.2, R is of F-type. In this class of Riemann surface the
following propositions hold.

1) Any A.B.P is a direct singular point.
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Let p be an A. B. P. Case 1. p lies on R, if p is not direct
singular point, then there exists connected pieces t)τ , ... , t>fc k <±N with
common points with the associated domain Dm, such that these con-
nected pieces have inner points Pi'-p^ with the same projection as p
for any large number ra. Take cλ ••• cfc discs contained in t)x ••• b fc , then
any one of c, has no branch points converging to pt , hence there
exists a number m0' such that %$m f\ ci : w :> ra0' (i = 1, 2, ... , fc) has a
finite number of branch points, then we can find m0 ί> ra0' such that
any one of ci f\3$m (m^> m0) has no common points with the other
CJ A^m (ί =M) For any m,Dmf\%$m has non common points, this
implies that Dmf\^m = ctf\βm = ct and 39 is an inner point of R. This
is a contradiction

Case 2. If 2? lies on the boundary of R for this case our assestion
in trivial.

The order of an A. B. P. and of the associated domain.

The number lim [sup n(p} : p e proj D f\ Sm] is called the order of
7n->°°

an A. B. P. and [lim sup w(p) : p£D f\3$m~] is the order of a associated
domain Dm respectively, we denote by 31,, the set of SI of order n, and
by Sί̂  the subset of 31 „ such that [supw(p): p 6 proj Z^ASS^] = n and
its projection by 21™, then we have (Άn = \Jm

(Ά%, An = \J A%.
m

2) PFβ ccm prove that %n is closed relative to proj SI, if we denote

by^n = ^At.ί^n

3) We easily see that if [sup n(p} : p 6 proj Dm~] <: n, and Dm contains
A.B.P.s of 2ίw then the projection of SIW is lacunary.

P u t a,= Σ » then

Theorem 2. 12. Let R be a boundedly sheeted covering surface over
a null-boundary Riemann surface, then all accessible points are regular
for Dirichlet problem except at most the subset 21J of SI having its
projection contained in the Fσ set of capacity zero.

a) Any point of SI^ is regular except at most 21 ,̂ of which the
projection is capacity zero and Fσ. Because Sί̂  is lacunary, if Cap
(proj 3I,V)>0, 31̂  is lacunary of RN, where RN is the points of R
covered by R, N times being open set, then AN is regular for the domain
Rπy except at most capacity zero Fσ denoted by Aτ

N, hence let p be of
2IΛ, with its projection in AN— AT

N is, clearly regular for R, because R
has more boundary than Sϊ^ .

b) We suppose all points of Σ Si, on E^-gL*, where Cap (3 )̂



On Covering Surfaces 181

N

= 0 and Fσ on which at least an A. B. P. of Σ ^ being irregular point
N <-»-"

lies. We shall prove that Σ 3̂  on S«-»-ι is regular except the set
i-n-P-l ^

of which the projection is capacity zero and Fσ, we suppose Σ 3̂  is
j = w_l)

regular except the set on 2£_p, then we have only to prove almost all

points of 21̂ -! is regular, since gn_p = \J g™_2ί , S -̂i = \J g^_i ,

there exists a number m such that Cap (3£!£_ι) > 0, we cover by at most

enumerable discs clfc2,... of diameter <1~— , then there is at least a

c4 such that Cap(cέ /^ g^p_:)>0 . Let t>!, t) 2 . . . be associated domains
of points of 2Î -ι » we have only to consider next three cases.

Case 1. ord (&,) :> n—p and ord (bj = sup n(p} : p e proj b,)
Case 2. ord(t)ί)<^^— p — 1 .
Case 3. ord(^) = n— p — 1 .

Case 1. Όt has no point of A™-p-ly case 2. Ot has no point of A*_p_ly

then we may regard the case 3 in this case proj (b, A Ά»-j,-ι) is lacunary
of the domain of proj bί , but in the case except at most capacity zero
of Fσ set all point of An^p^ is regular with respect to proj(t^), hence
by lemma all points of *&n-p-i is regular for R except the set with the
projection being Fσ and of capacity zero. Thus we have the conclusion.

Theorem 2. 13. Let q be an A. B. P. with its projection on R and
G(p, PQ) be Green's function of R, if lim G(p, p0) = 0, then q is regular

P<-Q

for Dirichlet problem.

Proof. As we have proved, we can take Vm so that an A. B. P. may
be lacunary of Dm . Without loss of generality we may suppose the
projection of the A. B. P. is #0 , let CPO be the circle of radius p0 with
centre q0 with respect to the local parameter defined in the neighbour-
hood of the projection of the A. B. P such as CPQ d Vm and C* be the
periphery of Cpo and DPO be the associated domain of the A. B. P. lying
on CPQ . Denote by Fi the point of R covered i times by R, then
FN ζ^Fjy-i " C^F! . From the semi-continuity of n(p), Ft is open and
Fi Γ\ C* is composed of at most enumerable number of intervals p/$(i =
1, 2, ... ΛΓ) (j = 1, 2, ...). Let s be a point of p/j then there exists i points
Pi > P2 » ••• > Pi > where some of them may coincide. Put g(s^ — G(si , p0)
where CKs^^, G(s2) ••• :> G(sJ. We can easily prove that g(s^ is conti-
nuous in P/J ( = 1, 2, ...) for fixed i.

1 oo #J
We choose a closed sub-set *e] of p/5 such that ^— mes

and denote by K the minimum of g(s) in Σ Σ βj ί ^ ̂  0 •
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Introduce Poisson's integral for Cp with value />„ on Σ "/$-- Σ "e'j

0 on C p - P J + Σp

Let Z7(p) be the upper envelope of sub-harmonic function in DPI)

such that Tim y(p) <: # #0 where # qQ means euclidean distance between

q and qQ. Put α(p) = U(p*)-P—^G(p, p0)- Σ V(P) ̂  ° because, at
n/ i

A. B. P. on C*, Γ7(p) <I /o except negligible set, because DPO is F-type

covering, if p 6 R and proj 2? £ Σ P^5 » U(p}--^ G(p) < 0, if p 6 β and
n/

0, thus 17 (p ^ (2AΓ + l) on the other
_ _

hand since s(^)~proj 2? qQ is sub-harmonic in β, U(p)^p0, if proj p 6 C*Q.

Put /3(ί>) = Min 00 , t7(p)) , then /3(p) is Barrier at the A. B. P. g0 .

In the case when the basic surfaces a positive boundary Riemann
surface, if we introduce C-topology12) on β, the distance is defined as
0. Teichmiiller then in the same way all points are regular except the
set having its projection being Fσ and negligible with respect to R.

Remark 1. When R is boundedly sheeeted covering surface the answer
of the problem at the end of the preceding paragraph is affirmative.

Remark 2. There exists a harmonic function on R which is = oo
at all irregular accessible points lying on R_ on account of G. C. Evans
and M. Breiot, hence on such class of Riemann surface the resolutivίty of
continuous function is proved by the ordinary method as in the case ^vhen
the domain is the subset of the z-plane ί. e. without use of conformal
mapping of the universal covering surface.

Chapter III. MartinV3) topology and iype of Riemann surface

1. Singular point

On a positive boundary Riemann surface R, the most precise topology
for harmonic function is given by R. S. Martin. Let a be a fixed point
of R, and K(p, q) be normalized Green's function of its pole at q defined
for q Φ a, and K(a, α) = l when \rt\ is a sequence of points tending

12) Z. Kuramochi: Potential theory and its applications, II. Osaka Math. Journ., 3,
1952, pp. 87-99.

13) R. S. Martin: Minimal positive harmonic functions. Trans. Amer. Math. Soc.,
19, 1941, pp. 137-172.
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to the boundary, if K(ri9a) determines a harmonic function on R, then
jre} is called a fundamental sequence of ideal points r^ corresponding
to the limit function K(p9 rj We denote by Γ all ideal points, then

K(p9 q) is defined for all points of R + Γ = R, K(p, q} is harmonic for p
for fixed q, and harmonic for q for fixed p. The topology introduced
by the distance

δ(?Ί, 7*2) of r, r2 by δ(r, rz) = sup

is called Martin's topology, the potential will be defined for the mass-

distribution on R is given by K(p9 r) dμ(r}.

Activity.w In the neighbourhood t>(2?ι) in Martin's topology, if there
exists an unit-mass-distribution μ such that the potential by μ is not
bounded in the neighbourhood of t)(p2), then pλ is called an active poini
to p2.

Theorem 3.1. pλ = lim p[, p2 = lim pi and lim G(p{, a) ̂ > δx }> 0 ,

and lim G(pj, a) ^> δ2 2> 0, and if pλ is active to p2, then p2 is active to p±.

Proof. From the hypothesis there exists a sequence \p{\, {pί\ such
that lim K ( p [ , pi) = co , then we can extract a subsequence such that

then 21 — 3 K(Pί"> 2>2n)'!> Σ 7^ is the potential required of the mass-

distribution in

Corollary. // lim G(p{ , α) ̂  δ > 0 , lim G(pj , α) ̂  δ > 0 , then the
t j

activity has symmetricity property.

If K(p9 p^ is bounded in R, we shall call 2>oo β singular point.

Let K$n(p9 p^) be the lower envelope of super-harmonic functions w(p)

such that t<p) ̂  JC(p, pj if p€5Λ(pJ then K^(p9 pj ^ K^p9 pj.

Martin proved that lim K^n(p9 p^} = K(p, p^} or 0 and is called pM a

minimal point or not according to lim K$n(p, 2θ Φ 0 or 0 respectively,

and non minimal points set at most negligible (outer harmonic measure
zero), and K(p9 p^ is minimal function when p^ is a minimal point.

Theorem 3.2. // p^ίs inactive to almost all points of Γ— p'^ (except

14) See 4).
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at most negligible set) and moreover if K(p, p^ is bounded, then p^ is
singular minimal point.

Proof. For any given 8 ^> 0 , there exists a finite number of
nr,

neighbourhoods Όt : Σ bt d[ Γ— ̂  such that the outer harmonic measure
* no

of (Σ*>«ΛΓ)<£ and ίn ΈbtfKfaPά^M, P6Σ*.' P«^b 0 , then on
almost all points of Σ &i Λ Γ ^as limits value zero, but K(p, PI) <1 M
follows that K(a, α) — 0 if p^ is of harmonic measure zero since K(a, α) = l,
then 2>oo is positive harmonic measure thus p^ is a minimal point.

We shall show by an example the condition that pTO is inactive to
almost all points of Γ— p^ is necessary.

(Fig. 2)
Example. Let Rn,R'n, R" be rings in the unit-circle |z|<[ 1 such as

^1> 2,.. , respectively.

Put pn *? 32 eπ M£ ̂  where M'« is the module of R'n
r i. e.

!_ 1

-.'*' we map βn onto the ring e~M» <ί\ζ\<^ eM" where
l-3

 i

2Mn is the module of Rn , and £T(f) be a harmonic function such as

: e~M» <\ζ\^eM": δ0>0, then there exist a number

Γ^ such that | Max H(ζ)— Min H(ζ}\ < — where Maximum and Minimum

mean t h e Max. a n d Min. o n I ? l = l a n d - -
2 n

Let Rn be mapped onto the ring e~Wn <^\ζ\<,eMn , and put

mn = — -~ — , in ring Rn we denote by <f\ , r?' the rings such as
n + 1 J

βΛfn-»ι(ι+2) ̂  I f | ̂  βΛfn-»ι(ι+l) β β-

In r?,rf make systems of slits {7?,}, {/#} : i = 0, 2, 4 , 6, ... , 2Nn~2

Θ = * f

nj . j = ι 2, 3, ... , 2Nn

If, : e-
Mn-mV+2)^\ς\^e-Mn-™V+i) , θ =

15) See Chap. IV.
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Where Nn is16) the number to be defined in the following manner.
Let Tl be the indirect conf ormal mapping p — p in itself, where p

is the symmetric p is the symmetric point of p with respect to arg ξ = 0,
and T2 is the indirect mapping p-^p, where p is the symmetric point

" o

of p with respect to argζ* = - ,̂ — ~ and T3, corresponds to ^,—τr,,—
4 4

, , and T* so on.

We cut Rn by a cut lying on the real axis and identify the new
boundaries lying symmetrically with respect to the imaginary axis and
obtain two new surface Rl , R}* .

If IWI^4δ/'(S''>0), let ttw->oo, then | U(p}-
OTT

and \U(p)— t/(T2(p)) | -> 0 and we have — — > 0 on the real axis, because
OΎl>

U(p) is harmonic on real axis, thus by the17) boundary problem Z7(p)
converges to a harmonic function on the part of the new surface β^(βj')

lying o n e ~ m n ^\ξ \ <ί e

n ~ - m n a n d |l7(p)-I7(Γs(p)|-*0
in this part, consequently there exists a number Nn such that U(p) is

symmetric and periodic except at most — with respect to 2N™ directions
Mn Mn n

in e2 ^\ξ\^e2 .

We make slits {Sn\ in R'n , Sn = z = re*θ such as θ = 0 ,

— r^
We denote the image in βra of {/?/j and {/^j of -R^^ by the same

letter and Fτ and F2 two unit-circles |«|<1 with \I^}9 \In/j\ and {Sn j.
We shall get a Riemann surface F composed of Fl and F2 with
identifying in the following manner.

Identity two symmetric edges of {/?.,} , {/?$} : (w = 1, 2, ...) (i, = 1, 2,

... , 2^») lying symmetrically with respect to the axis : arg z — 0, or — ̂

of 7^ (i = 1, 2) respectively. In general for i in the sector -^k< arg 0

16) Y. Tύki : On the classification of open Riemann surfaces. Osaka Math., Journal,

Vol. 4, 1952, pp. 191-201.

17) Let ABCD be an rectangle with sides AB, BC, CD, DA and £7(5?) be a harmonic

function such that t7(z)=0; z^AB+CD and -g— is given when *e#C-MZλ

On the other hand we denote by N(ztzι) the harmonic function with logarithmic
dN

singularity at ZQ and ΛT(»=0: ztAB+CD and ~— =0 : ztBC+DA, then we have

0: « 6 £C-MD, then Z7(β) -> 0.From this we see that if t/(»-»0: «6 AB+CD and
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17) In general | Z7(*)- 0 and
follow that 1 C7(2ί) - UTί+2M H 0 on
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: (fc = 0, 1, 2, 3, ... , 2'-1) (n - 1, 2, ...) (if = 1, 2, 3, ...). We

identify [In

i5\ and \In/3\ with edges lying symetrically on the axis

argz==|^(fc-h~y We identify \Sn\ of ί\ and F2 with the edges.

O% the surface let u(p} : p € F be a positive harmonic function and
denote by Maxw(p) the maximum of u(p) when p lies on |z| = r, then
_ \F\ = r

lim max u(p) <: P*+δ° where r = — ̂  - ̂  .
fn _

If lim max u(p) ;> P^δ , then there exists at least one sequence of

Rn of F! or F2 on which min u(p), p (^ R" :> Pδ', because in R" there

exists a curve connecting two boundaries of R" on which u(p) 2> P%
where δ and δ' are positive numbers and Min u(p) ;> PSf p 6 'n' follows
that ^(0) tends to infinity. Thus we may suppose without loss of

generality iTm UJ(P) <; P° p£Rn. Next by the property of Nn , and
rn ι

N'n , we have (Max u(p}— Min u(p}} p lies on | ξ\ = 1) <1 -- h((Max. ^(2?)
n

— Min. 'w(p)): when 2) lies in the sector 0 <i|arg ζ\<* -^ and | f |= l )

Thus on ^ = \*\ = l-

This follows that on Fc with projection on | z \ = \n , u(p} tends to
constant α, (i — 1, 2). It is clear that at <^ oo . Finally on F< there is no
non-constant unbounded positive harmonic function, and the dimention
of the class of bounded harmonic functions at most two. In F4 there
exists a non constant bounded function vanishing on [ S n \ , therefore
the dimension of the class is at least two.

On the surface K(py p0) <1 M for every ideal point of Martin's
topology and is spanned by two bounded harmonic functions H^p} and
H£p) and since F. has only one boundary components Γ has infinitely18)

many points (density of continum) singular points and only two of them
are minimal. R. S. Martin proved the set of non minimal points is Fσ and
conjuctured19) that this set was non dense in Γ, but our example shows
that his conjucture is not always true on an abstract Riemann surface,
because the set of ideal points of this example is isomorphic to the
closed interval [0, 1] and only two ends correspond to minimal points.

Theorem 3. 3. Let R be a F-type covering surface, over a null-
bouudary Riemann surface then on R there is no singular minimal function.

18) M. Brelot: Sur le principe des singularites positive et la topologie de R. S. Martin,
Annales Univ. Grenoble, sci. math, phys., 23, 1947, pp. 113-138,

19) See 13).
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Proof. Let u(p} be a singular minimal function, it is easy to see
that u(p) takes zero or maximum M on Γ except outer harmonic measure.
Consider u(p) in R™: \z\<^l then u(z) has angular limits M on a
positive measure set G, we divide R into a system of enumerable
neighbourhoods non overlapping and without lacunary, then there exists
at least one fc} such that the image Ei of A. B. P.s lying on bj has
common positive measure set E{ with G. If Mμ(R°°, E{} = u(z), where
μ(R°°, E{} harmonic measure of E{, then we divide b] into finite number
set b?, t>i • •• non overlapping and on lacunary and consider Mμ(R°°, E^,
it is clear that μ(R°°9 #f) ̂  μ(Rco, E{) and lim Mμ(R°°, #ίn) = 0 by

n

adequate subdivision, consequently there exists a harmonic function such
as 2*Cp)§ί w*(p)ΞgO. This contradicts the minimality of u(p}.

2. On subsurfaces

Theorem. 3.4. Let R^OG and S be a subsurface with at most

enumerable infinity of analytic curves \Ci\ as its relative boundaries

which are converging to the boundary of R. When we denote by S the

doubled surface of S being symmetric with respect to {C^, then S is

contained in Oσ too.

Proof. Denote by Rm the exhaustion of R with relative boundary
Γw, and by ωm(p) the harmonic function in Rm—F0 such that ωm(p) = Mm,
if p G Γm, ωm(p) = 0 if p is contained in the boundary of F0, where F0

ί
s~\
^*ds = 2?τ, then
on

boundary of FO

it is clear lim Mn = co . Put zm — eωm+ίhm = reθ, where hm(p) is the
Λ

conjugate of ωw(p). Denoting by F$ the symmetric disc is S of F0.
Λ

If S is a positive boundary Riemann surface, then there exists a

non negative harmonic function w(p) such that 0 <: w(p} <L 1, w(p) = 0

if p e boundary of F0 and Fί and D(w} ^M',~ = Q if p G Σ C,,
c F 17* °n

Γ r)7^ S-/^o-^0
and ~ds = π <

} dn
bounday of FQ

Regarding w(p} in S f\Rm—F0, and denoting by θ? the curve on

which |zm | = r. Put

then L2(rm)

rndθn
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Mn eMn eMn

^ dr< \ *Ddr<DW,
r ~ \ dr -

Let Rm — » Λ then e^w — > oo, we have j9(^) — » oo, this is a contradiction.
We denote by SOB and SOJ!ί the class of sub-Riemann surface on

which any bounded harmonic function vanishing or with vanishing normal
derivative on the relative boundary of S must reduce to a constant.

Theorem 3. 5. // there is no singular minimal point on the boundary
of S, then

Proof. Let u^p}: p£S be a non-constant harmonic function such
as 0 <: ^ι(p) <1 1 and vanishes on the relative boundary of S, since there

is no singular points there exists u2(p) rgΞ u ̂ p} : lim u ̂ p} = lim u2(p} = 1.
Put u3(p*) — UI(P}— u2(p\ we denfine new functions ut(py* : i = 1, 2, 3
such that u f ( p } = Ui(p} on S f\Γm and symmetric with respect to the
relative boundary of S where Γw is the relative boundary of Sm being
an exhaustion of S, and we extract \uf(p)\ converging uniformly to

uf(p\ then l^uf(p) = ut(p)+u$(p). ΐϊm^f O)>0, hence there is at
least a non- constant bounded harmonic function with vanishing normal
derivative.

As the special case if the genus of S is finite then this theorem is
affirmed. Because S can be mapped onto the subsurface of a null-
boundary Riemann surface, then by theorem 1. 2 the universal covering
surface is jF-type.

Remark. The condition that there is no singular point is necessary
is easily shown by examples.

Extension of L. Myrberg's theorem200.

Theorem 3. 6. Let u(p} p e R and D(u(py) <^ oo , then u(p) is ex-
pressed by Poisson's integral in R°° |z|<^l.

Proof. Let V(z) be sub-harmonic function such as \ \V(z)\dθ<^M
1*1

and G be a simply connected domain in |zKl with boundary Γ, then

J \V\dc

20) L. Myrberg: Bemerkungen zur Theorie der harmonischen Funktionen. Annales
Acad. Sci. Fenn., 107, 1952.
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where dω is harmonic measure with respect to G. In fact denote by
V*(z) the upper envelope of sub-harmonic function such as V*(p) <1 1 V(p} |
if pe {(|z|<l)-G|, then V*(0)^|F(0)|, hence

Let G(p, p0) be the Green's function of R with its pole at p0 ,
when z = 0 is the of p0 , and put e~&~th = re?'d , then M ;> DF,(u(p}}

= [ [ grad2 <p) rdr dθ = 4 ί ̂ ^ ̂  ̂  f ^2rf^> , where
G l o r b

l°gr]» since f ~ is a subsurface of R and has the boundary
in |z|>l except measure zero set. We mapF* onto |f|<[l, then the
|«| = r in F™ is transformed onto a closed curve in |||<^1, by the
preceding we have

M^ ( u2rdφ= ( u2dθ implies f \u\2dθ<M: Iimr4 = l

Ul = l l* l«r«

thus, this can be expressed by Poisson's integral.

Corollary. OSB C OHBD = OHD .

Assuming that DR(u(py) <^ co , we map /2°° onto |z|<[l, then there
exists a constant MQ such that any one of the set where υ{z) — u(p}
has angular limits ;>M0-hδ0 between M0 + δ0 and M0 — δ0 and ^M0 — S0

has positive measure. We denote by GMo+d) =E[u(p~)^> M0-4-δ0] f\ R9

IMQ±S0 > ι<Jι)> M0-δ0] A Λ. GMo_δo - E[u(p} < M0-δ0]

and Rm be an exhaustion with relative boundary Γm , let

um(p*) = MQ + δ0 when peG M o + δ o ΛΓ w , «„(?) = «(?), when peGJgΐg

Λ Γ m » <P) = M0-δ0 when p e G M o _ δ o Λ Γ m , respectively, we define a

harmonic function u*(p} by extracting from uniformly convergent
sequence of wm(p). It is clear by Dirichlet principle DR(u*(pJ) <D(u(p)}
^M . On the other hand, we map G^+^CG^^J onto 1?|<1, then

the boundary of G^f0+δn (G^f0_5o) except relative boundary where
W(P) = ̂ o + ̂ 0(M0 — δ0) has positive measure, consequently u*(p} is non
constant.

Chapter IV. Behaviour of analytic functions

1. Analytic functions on OHB

We consider the behaviour of analytic functions defined on an
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abstract Riemann surface or a covering surface, at first we prove next
simple theorem.

Theorem 5. 1. Let Rf be the remaining surface after a compact set
of R is removed, if R^OG and € 0HB then there exists no analytic bounded
functions exist.

In fact on Rr, let A(p} be a bounded analytic function, then by
theorem 3. 3. on Rf no singular minimal function exists, but on the ideal
boundary has positive measure, hence there is a non-constant bounded
harmonic function with the value 0 on the relative boundary of R1, it
follows R^.OHB.

We investigate the behaviour of the boundary of Riemann surface
when it is given as a covering surface over the a z-plane.

Theorem 5.2.21) (W. Gross). Let z = z(p): p£R, be meromorphic
and R be a Riemann surface of Oσ, denoting by p = p(z] its inversed
function, if p = p(z) is regular at ZQ, then we can continuate z(p}
analytically on half lines: z = zQ + reθ (0 <1 r <1 + <χ>) except for θ of
angular measure zero.

2. Gross's property

Let R be a Riemann surface of 0HB, then any connected piece has
no lacunary of positive capacity projection, this implies R has Iversen's
property. In regarding above result we ask if the Gross's property
holds in a surface of 0HB.

Theorem 5. 3. A Riemann surface of OHP has not alivays Gross's
property. This fact tells us the essential condition for R to have the
Gross's property is the "force" and not complexity of the ideal boundary
and character of Oσ.

Example.

1) Let G be a curvilinear rectangle with sides CΊ — α <: 3ΐ(z) <; α,
3(z) = o. C 2: x + a = φ(y\ a = <p(0), $<y<,b. C3: -a ^ 5R(z) ̂  α,
$(z) = 6. C 4 : x-a — φ(y}9 -a = ̂ (0), 6 2> y ̂  0, and C7(z) ̂ 0 be a
positive harmonic function such that U(z)^M9 if z e C2 + C4: 17(^)^0,
if z G C x + Cs, then there exist a curve I connecting C2 and C4 on which

Min U(z) ^ ω(0, ̂ ) where ω(z) is a harmonic function in a rectangle with

21) K. Noshiro: Open Riemann surface with null boundary. Nagoya Math. Journ.,
3, 1951, pp. 73-79.

Z. Kuramochi: Potential theory and its applications, I. Osaka Math. Journ., 2,1951,
pp. 123-175.
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vertices (—α, 0), (α,0) and (α, ib), (—α, ib) and ω(z] = l if z € segment

(α, 0)(α, ib), (-α,0)(-α,b) and ω(z) = 0 if ze(-α,0)(α,0), (-α,ib)(α,ib).
Because, let /(z) be a function mapping the curvilinear rectangle onto

(-' -r V

the rectangle (-< 0)(α',0) (α,ib)(-α', ib) then 2af <, ( da? and

δ <P-oδ

4α'2& < 2a ( ( \ f ' \ 2 dxdy = Δm'b, it follows — ̂  ̂ L . From this fact we

easily have our assertion.

2 ^ 7*hp wiJtΎ)~hpv f^ "Put v

_ _
•(2-1-l), and Rn be a ring ?v.ι + t»-ι

1
. ,

«-5». and Mn be the module of Rn , Mn = log ̂ -= — ±± . The

transformations "ring Rn (^-plane) -> the rectangle (— π, 0), (π, 0) (?r, iJlίn)

(-7Γ, iMJ -> upper half ^-plane (A = -— , B = -1, Z> = 1, ί7 = — }
\ AC /C /

— >the unit circle of the ^-plane>y, are carried by

α-o^+jiα+o
/€

\Λίw // iM \respectively, through some calculation we have ω ί — g-5- j

Put Pn_! = 32e^V . (Fig. 3)

3) The number μn. Let /^ be slits such as; rn— sn <,r <Lrn + tn.

θ = ?jg- , » = 1, 2, 3, ... , 2"» and ̂  ̂  βn be rings such as R'n : r. + Ci

^r^r._1-s._1. Λί'; r^i+jjί^^r^r.-jjs,., and 17(«) be har-

monic in β£-Σ#-ΣS-ι and 0 ̂  17(2) ̂  2P^+δ

1" : δ0>0, and vanishes
n-±

on Σ/w+Σ-^w-i, then there exists μ% such that Max U(z\ (when z is
1

contained in Rn}< for /^>/C We define ^ = Max (/*£' , ̂ )

4 ) T/ίβ number μtf' and μn . Let Z7(«) be a harmonic function such
as | f/(0) |^2P δ

1 ° if z£7C then there exists βf such that

-Minl7(β)|, (when 0 lies on r* = γ(rll«1 + jjί f l^1)(r f l-jjs l l) and
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0 <ί I arg z ^ -J§-, for μn 2> tf'. Put Λ - Max [/4, ̂ "].

5) The number Nn. Let U(z) be a harmonic function such as
2μn 2

|U(7Z+JL

0 ̂  17(«) ̂  2pi+ι° in Λ£-Σ J»-Σ3 Cn» then there exists a number 2Vre

such as if U(z~) <: A on ^, £+1: v = 1, 2, ... , 2"», „' = 1, 2, ... , 2>»+1,

except any measurable set of having measure <Γ
l\n ' IVfi-1

A?

respectively, t7(z) must satisfy the condition that Max U(z) <1 —, when

^ G β". We denote such number by Nn.

6) Let φ(i): [0 <: t <: 1] be absolutely continuous, almost every

where derivable and integrable and mes E\_φf(f)~\ = 0 — mes E\_φf(t} = oo]

= 0, then there exist κλ and κ2 depending only on φ but on E such that

κ2 ;> \ I φr(ΐ) \ dt ^> κλ, where E is any measurable set with measure δ0.

7 ) Let G be a domain in the z-plane with boundaries composed

of analytic curves 71, 72 ... 7^-1, 7^ if we map G onto the ring 1 <: | ξ\ < em

so that 7ι,7 n ,7 2 , ... ,7»-ι may correspond to \ζ\=l, \ζ\ = em and

radial slits in this ring R. Let I7(z) be harmonic in G and U(z) = φ ̂ z}

if z £ r y i , U(z} — φ2(z} if z £ r y n respectively, then D£U(z)} = DR(U(ς}}
2ιc

1 ΐ
— 9~lγτΓ 1 1 ^ι(βzθ)~~^2(β/θ)l2 ^^ where TJ(eme} and φJί&B) are the transformed

υ

functions from C7(^) and <pt(z).

Proof. Let τ(^) be harmonic such that r(z) = <pi(S) if | f | = l or

I ς | = e® and —— = 0 if ς* G radial slits 7/ς, i — 2, 3, ... , n—1., where

7f. are the images of 7,, then

D(τ,U-r} =

n-l

D(τ} = D(U}-2(U, <r) + £>(τ) - ZXl7-r) ̂  0 .

but clearly ^(τ)

(Fig. 4)
8 ) In the 0-plane with slits /£, υ = 1, 2, ... , 2μ», we enclose /^ by

a simple closed curve Jl such that
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7? >

and let L^ and LJ' half lines such that

We denote by G% the domain with boundaries LJ! , LJί , ΣJ ̂  > ̂  an(^ maP
ίifV

it onto the ring 1̂  \w\<e™^9 so that LJί + Lj7 , /£ and 2 JJ may be
a^v

transformed onto | w | = e3Rn1) , ky | — 1 and radial slits /^ , 2 J«c^)
i^pV

respectively. In this mapping any measurable set of positive measure

I>-̂ - on /j; is transformed onto a measurable set of positive angular meaure
*• V 78 -j

than -y— and smaller than k'n from (6), and the doubly connected domain
tin

bounded by J% and In of module 9Jl^2) is transformed onto a domain
bounded by their images denoted by Jj;Cw) and I^w-) = (\w\= 1). Let epw

be the distance of /«CMO from w = 0 and define the number by

pn = 2+2S— Γ ' c noose an

9) a) Let R be a ring 1 <11 ς* | <1 ββ and Sfc, Si be slits such that

(fc = l , 2 , . . . , Z ) ,

sβ _

- = l,2, ... ,1),

we make two same rings with the same slits (R— ΣS*~~Σί?0 and con-
nect crossweise two surfaces with 8% and Si with same projection

then we have two-sheeted Riemann surface R. Denote by ζ" the point

having the same projection as ζ" and S(S*) = |l/(<r)— 1/(?)| be a sub-
harmonic function on R such that 0<1Z7(<7)<P and vanishing on all
branch points (end points of Sfc and Si) then there exists a constant λ,
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_
such that |S(ς )|<λP: λ<l, when \ ς \ = e* where λ depends con-

tinuously on only the ratio ~ .22) In the following we fix two bounds
I

M ;> -̂ ;> ΛΓ so that λ may be always smaller than λ0.

b) The number sn and qn. We choose sn and qn such as

(Fig. 5) „
In the ring; β£; l^M^<r*% denote by C?}v, Cϊy O, * fixed

if = 1, ... , qn) rings and fij circle such as

7-

We make slits S;?/ , Sϊ}v

κ , S?}v

κ , S?}v

κ such as (n, v, fixed i, = 1, ... , gn

2αΛ-7(i(i-η

where M ̂  -7- i> Λ7".

Let ίχi), i7(2)...F(2^~1), F(1)F(2)... F(2Qn~λ) be 2Qn equal examplars of

ring R with slits SfTj v, S?3, Sftί, S?JK.

We connect ί^i) jP(i) crosswise on S^lκ, SJ&, S?*iκ, S?.v

lκ:
/ 1 9 3 n ιr Λ 9 ' 1i — J-, ,̂ o, ... , qn, K — ±, ,̂ ... , ιn .

22) We map 7? with slits S,S,S,S' onto a band by <,7=log£. Put
then F(τ?) is single-valued and has same absolute values on two edges of each S or 5 and
opposite signature. Let F*(O be a harmonic function with value Max (0, F(τ/)) on the

boundary and S',S,S,S', then | V(ζ)\<LV*(ζ)=\V*(ζ)~^(ζ,ξ)dst, from this we see easily
β j on

λ depends on the ratio —.
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Let T! be transformation z<->2, where z and z are points of F(ϊ)
A

and F(ϊ) having the same projection.
We connect

X
x

F(2) F(3) F(4) -
A A X A on Stt29K9 etc. i = 2. ... $„
F(2) *

and by T2 corresponding transformation.
In general connecting and corresponding transformation are

m_
"* -

on

We denote by |F(i)— F(ϊ)\ the maximum \U(wi}—V(w3}\9 where

have the same projection lying | w \ = ean , then by a) we have

Taking account of the property of sn and qn we see that there is at

least sn examplars on which TJ(w~) has equal value except at most —
Ύi

when w lies on | w \ = e"n : Hnv.

Structure of the surface (Fig. 6)

F0 is the unit-circle \z\<^ 1 with slits 7J : n = 1, 2, ... , v = 1, 2, ... ,
2μw Fn(n = l, 2, ...) be the z-plane with slits Γn. We map GJ onto

l^\w\^em^ and define the ring I<\<w\^e2an and in 9) in Rl we

have made slits Sn^κ , S?}v/ , SJ^ , Sn^κ , conversely in the z-plane i. e., we

denote by the same letter S~ the image S?jκ, S?}v/, §?£, S?}v

κ in Fw of

the w -plane. Now by F,1, we denote the z-plane with slits Γ n y SJJ^, S?jκ,

>§Πκ> SΓ^ and by F5, Fl ... F^""1, FJ ... F^"-1 examplars of the z-plane

with equal slits SJJ,, S ί̂, S?}., φ},.
On the unit-circle |z]<^l we take a disc |z|^rm + sm having slits

/ ϊ , . . . ,/£, we connect Fi (w = 1, ... , m) and F 0 Λ ( I ^ I ^ ι̂» + sι»)» on
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II (v = 1, ... , 2μra) cross weise. Connect F\ with Fl ... F^-1 , FJ ...

on SJ£, SJJK, S?k, S?^ (y = 1, 2, ... , ) in the manner mentioned in 9) b).
In such a way we have a Riemann surface Rm which covers the part

\z\<rm + sm, l+2qι + 2q + ••• + 2*m times and the part \z\>rm + sm,

2 ι̂ + 2^2+ ••• -h2^m times, and Rm has only one boundary component.
Put R — \J Rm , then β is the required Riemann surface.

m

Proof of the theorem.

1) There exists no positive harmonic function on R.
Let E/O) be a positive harmonic function in R and Max U(z) be the

maximum of I7(z) on F0 with projection on \z\ = rn 4- tw , then lim Max
t7(z)^P^δ ; δ>0. " r-

If there exist a infinitely many rn-4-i,, on which Max U(z)>P*4δ,
where δ>0 then by 1) the ring rn^-±tn^ <\z\ <L rn — sn contained in
F0 , there is a closed curve which is a proper cut (dividing cut) on which
Min I/O) ̂  δ' Pn this follows that 17(0) -> oo . Hence if C7(0) Φ constant

infinity, we may suppose lim U ^ P^+δ°. On Rn—Rn^.l we

denote by Tl(z) (v •= 1, 2, 3, ... , 2μn} the conformal mapping in itself such
that z<-*z where z is the symmetric point of z with respect to the

* 27ZV+~2~) 2πV+~2~)setraight LI: arg z= ^—-or 7r + ——^—-, Rn—Rn^ is a cover-

^ ^ing surface over 0 <Ξ1 | z\ <L oo , covers ~~\ —n <L \ z\ <^ -̂ t-̂ -1 2^n~l +1

times the other part of the z-plane 2qn times, Rn — Rn^.lL has only two

boundary components on which Ό(z) <L P]^-f then also in Rn—Rn^ . Put
U(z) = \U(z)-U(T\zy)\, then U(z) = 0 on all points of Rn-Rn^ with its

projection contained in L^ Denote by Vr(z) a harmonic function such

that V'(z) = Ό, zeRn-Rn-! if z has projection on 14 I£'f F(0) = p^

if 0 is contained in the boundary of Rn—Rn-ι i.e. z£F 0 and |^| —

n or i z = rn+rn+l ^ Denote by RI the surface composed of F*,

Fi: i = 1, 2, 3, ... , 2Qn~l which is a part of F£ bounded LI and LJ' and
the part of F0 contained in 2 /ϊ which is connected with Fl

n on 2 7J
~ V V

and ^Sf+S-t-Sf-±S and V\z) be a harmonic function on 72J such that

y^β) = 0 if β lies on L^ or Ltf of F; or F^ and V\z) = Pl

n+_\« if z lies

on 2 /i of FO . We investigate the behaviour of V\z) on Rn, since the

part of FO bounded by Σ/£ ^ composed of at most 2μn — l doubly con-
i

nected domains with module iϋΐ£°, then the Dirichlet integral of V\z)
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on R^ is smaller than the Dirichlet integral of the harmonic function

being zero on Σ/« and — 2 P]^I on Σ^«> over the part of F0 bounded
V V

by Σ ̂  and Σ ̂  v = 1, 2, 3, ... , 2/%~1, then we have
V V

1 r>2-|-2δo
\ ^- fWn— 1\ w-hl

iwl ςw^

2 1If yλ(z) :> — on the measurable set of measure larger than -=— of at
VI tΰn

H^ of Fn

f, then on account of 9) there exist at least sn examplars of F

or F such that V\z) ̂  — on a measurable set of measure ^>-j— on HI
Ύi rCn

where measure of set means the measure of the image when G^ is
mapped on β^ίn)^|w|^l. then

This contradicts the property of qn and sn .

If IF^Z!)— yλ(z2)|:> — on the measurable set of measuere ^.-j— of
n

aat #£, where arg V(z1)= arg Fλ(^2) and lie on |w |=l and \w\ = e n

of Fw' respectively, then by 7) and 8), we have

where right hand is the Dirichlet integral over the part of Ff

n bounded
o -i

by J'l and JJ, this contradicts to 3) therefore V\z)<L — except — angular
^ n fcn

measure at any of /j. On the other hand U(z) is sub-harmonic and
3k ^fc ik^ff ^, I

and vanishes on L^ + L'^, then ϋ(z)<Vλ(z): λ' = λ, λ+1, ...
-. ^

-ι where | argL^-argL^| = |argLK -argLj| = - . |Z7(2)1<- on

every /£ except Ξ L measure set thus |Z7(z)-l7(Γ;;(«))|̂ — in ring
IV yj /Z

β^ but v is arbitrary, accordingly U(z) is symmetric and periodic with
y. β

respect to 2μw directions L£ except at most — in step by 2) | Max U(z)
M

when )« | = rf, where rf =

It follows that I7(«) must be a constant.

2) As F0 is a subset of the unit-circle, it is clear that R has not
Gross's property and on account of theorem 5.2, R is a positive boundary
Riemann surface.

(Received September 19, 1953).






