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Introduction

The purpose of the present paper is to investigate the behaviour of
the boundary of a covering surface. In chapter I we shall consider the
correspondence of the boundary points when the universal covering
surface is mapped onto the unit-circle, and extend Fatou’s theorem in
such a case. Chapter II is devoted to the study of accessible boundary
points from measure theoretic views. Thus our study is a continuation
of that due to M. Ohtsuka?. R. Nevanlinna discussed the Dirichlet

1) M. Ohtsuka: 1) Dirichlet problems on Riemann surface and conformal mapping.
Nagoya Math. Journal, 3, 1951, pp. 91-135.

2) On a covering surface over an abstract Riemann surface. ibid., 4, 1952, pp. 109-118.

3) Note on the harmonic measure of the accessible boundary of acovering Riemann
surface. ibid., 5, 1953, pp. 35-38.
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problem in weak sense on a subsurface of an abstract Riemann surface.
M. Ohtsuka proved that the Dirichlet problem for continuous boundary
value is resolutive in Perron-Brelot’s sense® which is stronger than that
of R. Nevanlinna under the following three assumptions: A) the pro-
jection of accessible boundary points of the surface R is compact in the
basic surface B, B) the universal covering surface R” of R is F-type®,
C) the connectivity of R is finite. We shall show that it is possible to
remove conditions A) and C). Thus we see that the resolutivity of the
problem has not so much relation with the measure of irregular points.
If we suppose that R covers R a finite number of times, then we can
prove two theorems concerning the Dirichlet problem: i) the irregular
accessible boundary points are so rare that the projection of them may
be contained in the F, set of capacity zero, ii) the regularity for Green’s
function is equivalent to that for Dirichlet problem. Chapter III is
related to R. S. Martin’s topology concerning harmonic functions. We
shall study activity® of points and minimality. R.S. Martin conjectured
that the set of non minimal points would be non dense in the set of
ideal boundary points. However we shall show by an example that his
conjecture does not hold good and at the end of this chapter we shall
prove miscellaneous theorems on the subsurfaces of abstract Riemann
surfaces. In chapter IV we consider analytic functions on Riemann
surfaces and the behaviour of covering surfaces. We shall give an example
of Riemann surface belonging to the class O,, and without Gross’s
property. From this we see that the validity of the Gross’s property for
every covering surface of a given Riemann surface does not depend upon
the complexity of the boundary. It depends rather upon the “ force”
of the boundary, i.e., roughly speaking upon the size of the boundary.

Chapter I. Correspondence of boundaries
1. Image of boundary

Let B be an open abstract Riemann surface, and 2, (n =1, 2, ...)
be an exhaustion with relative boundary I',, then R—R, is composed
of a finite number of disjoint non compact subsurfaces G,, let G, be a

sequence of non compact subsurfaces such that G, > G;,-, f\ G,=0.

2) M. Brelot: Familles de Perron et Probleme de Dirichlet. Acta Szeged 9, 1939,
pp. 133-153.

3) See Chap. II, 4.

4) M. Brelot: Remarques sur la variation des fonctions sousharmoniques et la masses
assocides. Application. Ann. Institut Fourier 2, 1950, pp. 101-111.
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Two sequences {G,} and {G,'} are called equivalent if and only if, for
a given number m, there exists a number » such that G,’ > G, and
vice versa. We correspond an ideal boundary point (component) to an
equivalent sequence, and denote the set of all ideal boundary point by
B,. A-topology will be introduced on R+ B, by the completion of E.
It is clear that R+ B, is closed, compact and B, is totally disconnected.
For simplicity we denote R+B, by R* which has the topology being
isomorphic in R to the original topology defined by the local parameter.

When R is a covering surface over an abstract Riemann surface R¥*,
R* is a metric space, we introduce as O. Teichmiiller and Mazurkiewicz
a metric on R by inf 8(p -p,), where &(p_-p,) is the diameter of the

projection into R of ﬂ; which connects p_ with p, on R, and define
accessible boundary points of B by the completion with respect to this
metric, it is well known that this definition is equivalent to the other
definition by deciding the equivalency of two curves on R which deter-
mine an accessible boundary point (we abbreviate by A.B.P). In this
and next chapter we suppose B to be a null-boundary Riemann surface
and discuss another Riemann surface R defined as the covering surface

over E.

Lemma. Let R be a covering surface over R, and does not cover a
set of positive coapacity inner points of R, and the universal covering
surface R* of R mapped conformally onio the unit-circle U : |z|< 1. If
o curve L, on L* contained in R and determining an A.B.P. ending ol a
point z,: |2,| =1, determines an A.B.P. having its projection on B,, then
the mapping function w = f(z): w € B* has the same limil when z, tends
to z, along Stolz’s path.

Proof. Let p, be the projection of the A. B. P. on B* and V,(p,) be I',.
the sequence of neighbourhoods of p, with a compact relative boundary.
We define a super-harmonic function o,(p) such as, ,(p) is harmonic in
(B—R,—V.(po)\J (proj B N\ RBy), w,(p) =0 if p€ boundary of proj E in
R,, where R, is a compact part of in which the boundary of the projection
of has positive capacity, and o,(p)=M, if pel',+V,(p,), and is normal-

ized by 1 S 99ngs—1. Since R is a null-boundary Riemann surface,

2z “n’an
this function is uniquely determined and lim M, = co, we denote the
domain arg Iz—z0]<%—8, |z—2z,|< 1—7 b; A,,s and the part of L out-
side of |2|=7r, by Ly, then

co,,(f(Z))gM,,XS, if ZEA,..S; '}’I,>ZO (1)
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where A8 >0 and i, is the minimal number such as f(Lr.)€ Vi (D). If
f(z) had not limit p, in A,.;, then there would exist a sequence z;
such as limz, =#,: 2,€A,.; and a number 7, and a subsequence of
brag, such as F(Zp) € Vi (D)2 gy = %y therefore there exists a number
N such that

o (f(2;,) SN iy =dp, n=n (2)

from (1) and (2) we have N = w,(f(z,)) = M,\8: lim M, = oo, this is a
contradiction.

Remark. When the A. B. P. lies on R, our assertion is trivial. From
this lemma we can easily deduce the next proposition.

Proposition. Under the same condition as the lemma, the set E on
|z|=1 where at least a curve ends along which f(z) has cluster set of
capacity zero is a linear measure zero set on |z|=1.

Proof. We denote a closed set E'  E where f(z) tends uniformly
in A-topology, then f(E’) is closed and capacity zero, then there exists
a sequence V, with compact relative boundary ¢, such as V, > f(E"),
where V, is the closure of V,. We denote continuous super-harmonic
function such as «,(p) is harmonic in (B—R,—V,)\J (B, "\ proj R) and
w0, (p) =0 if p €boundary of proj R\ R,, and w,(»)=M, if p€qvy,+V,,

1 (%0, ;.__ . . . .

27:5817, ds =1 then 11;11 M, =co. We consider w,(p) in |2|< 1,

o(7) = —LS M Ta—p ,d0, and let r,—1 then w,(2)—
me= 27zE, "ra—2r,p cos (0—q@)+p* " " ’

This is a contradiction.

Let R be a null-boundary Riemann surface, and R* be mapped onto
|2|< 1 conformally and D, be the normal polygon being a fundamental
domain containing z =0. We denote by D,'(p) the part of D,, which lies
in 1—p<|]z|<(1: 0< p<(1; then D/(p) consists of a finite number of
simply connected closed domain, we consider only such domains and
D,(p) be its equivalent ones and put

Ap) =23 Dulp)

then A(p) consists of a enumerable number of disjoint simply connected
continua: A,(p) such that A(p)= 31 A,(p). Since in a normal polygon,
equivalent points on the boundary of D, are equidistant from z =0,
A,(p) is bounded by Jordan arcs A: (k=0,1,2,...) and closed sets %,
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on |z|=1. We put E(p)=E,, M ends at two points &£, 5% on
|z]=1 which are fixed points of some substitution, if &= % for one
k, then A,(p) is bounded by a single Jordan curve which touches |z|=1
at &; =g . It is easily seen that if £ == 5% then )\t is contained between
two circular arcs Cj, C}' through &%, % which meets |z|=1 with an
angle «f, B3} respectively. Since Af(z=0,1,2,...) can be grouped into
a finite number of quivalent classes, there exists «, 8 (0<a, B, < =)
such that for any AX for which A

alar<pB, a<pi<p (=0,123".)
Since A\ is a iSi"(l), where | is the part of |z|=p in D,.
and multiplier of the substitution %=1, then A\! is rectifiable.
Lemma. For any substitution T, (i=1,2, ...1i,) of Fuchsian group

length A%

length T,(\F) B -

8 =

ll/\

We denote by ds the line-element of X;, and by T(ds) its image,
since A\t has a tangent almost everywhere on A, let C*ds be the circular
arc ending at two points £ and 5 passing ds at P and Cds the circular
arc passing ds at P and ending at two fix points &, ¢’ of the substitution
T, then

ds EP ds __ ¢P

T(ds) T(EP) *° T(ds) T(¢P)’

but Tf;;) has extremal values when Cds coincides with C' or C and
the intersecting angle of A, and |z|=1 is contamed between « and ,8,

therefore we have

Sty < 10 1
and if we denote by &7 the length of |z|=1 between &, 5 then

A

T (Eﬂ) T (E )

But A,(p) are bounded by (&,,7,) and its image transformed, one of
them is an inner side of A,(p) with respect to |z|=1, and the others are
outer sides and have non common points on |z|=1, therefore the length
of A,(p) is finite. Since A, does not cover a set of positive capacity
on R, then we map A, onto |y|< 1 then from the proposition we see
that E, is linear measure zero set, and also > F, is too, thus

< T()\'k) < 0
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Theorem 1.1.% Let R be a null-boundary Riemann surface. When
universal covering surface mapped onto the unit-circle, then the image of
the boundary points is a set of linear measure zero.

Remark. This theorem is proved by M. Tsuji, our proof is slightly
simpler.

2. Generalization of Fatou’s theorem

Lemma. Let R be a null-boundary Riemann surface, we denote two
points o and q of R and denote a harmonic function Uy(p) such that

U p)+logp =0, in the neighbourhood of ¢
U,(p)—log p = harmonic in the neighbourhood of a

then Uy (p) is uniquely determined and let U (p)* =0 if Uy p)<0, and
U () = U, D), if ULp) >0, then for any points a and p

Ui(p)—d—Uf0) < Us), Uip)<Uip)+Ui(o)+d
where d depends on 0 and p only.

Proof. We denote by D, the domain such that 0 >=U(p) and C, the
set such that Uy (p)=0 and D,, C, respectively.

Case 1. a&D,. V(p)=U,p)—U,0) is harmonic in R—D, for fixed
a, then it takes its maxium in R—D,, when p lies on C,, where
U (a)=Uya)—Uya), for varying a. Put U,(p,)=Up(a,)=d = max:
a,€Cy,p,€C,. We denote by D; the domain such as U,(p)—d—U,< 0
and by Cj its boundary, then it is clear D > D,, and Uj(p)—d—U}(0)
<0, Ui(p)=0 when peR.

Case 2. a€D,,If peD,, then Max U,(p)—U,(0) attains its maximum
d when p,a€C, then

- Uy(p)--d =Ug(p)—d—-U3(0) < Ui(p).

In the case when p&€D,, we can prove similarly, the latter part of the
lemma can be proved in the same way.

Let R be a covering surface over R and of positive boundary Riemann
surface, and f(z): p€ R; z€ R be the mapping function and G,(z, 0) be
the Green’s function with its pole at 0 with respect to R, and \ /R =R,

and by £,(z,0) be its conjugate. Put @, — e~ GCn~ifn — pg' , lim T, =1x.

5) M. Tsuji: Some metrical theorems on Fuchsian groups. Kodai Math. Sem Nos. 4-5,
1950, pp. 27-44.
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In denoting by @,, b, the point where f(a,)=0, f(b;) =q respectively
then

27
USf() = o | Usftrenyio+ 516Gz, b)— 5 Go(z, 03)+log e,
0 .
where ¢, is the first non vanishing coefficient of the expansion of f(z)
with respect to the local parameter defined in the neighbourhood of O.
Put ‘

mlr, f—a) = S U (f(re®)do
N(r, f—a) = g —(gﬁ)itﬂo—’@dt

from the lemma |m(r, f—a)—m(r, )| < Ui(a)+d
m(r, &)+ N(r, a) = m(r, @)+ N(r, ¢)+ ¢p(r)
where |p(r)| < U a)+d+ |logle, ||, if
I(r, @) =Rii_1+nR(N (7, P)+m(r, 4)) < oo
we call this mapping bounded type covering.

Theorem 1.2. If p = f(z) is bounded type, we map R onto |¢|< 1
conformally, &= @ (2) 0= ¢(0), 2 = @({), then p = f(p({)) = F(¢) has
angular limits almost everwhere on |{|=1.

Proof. We can discuss the potential theory on R, if 4 is a unit
mass distribution on the positive capacity set £ of E, then we have

T(r) = SN(r, a)duw(a)+0(1), we easily see that T(r) is finite only and if

only Wflen N(r, ¢) is finite everywhere. A system of equivalent points
a] of ¢-plane (j =1, 2, ...) corresponds to a point ¢, € R and G(z, a,) >
SVG(¢, of) where G/, a]) is the Green’s function of |{|< r with the
pjoles at o/, we have A > N(r, ¢) = Gz, a}) and a small circle in the
neighbourhood of # =0 in the x-plane and the neighbourhood of 0 in B
corresponds conformally each other, therefore in ring domain p <7|2|<p,,
N(r, a;) < A for any point @, in the ring. Hence F({)—« is bounded
type on |¢|< 1, by Fatou’s theorem F(¢) has angular limits almost
everywhere on |{|=1, on the x-plane, let I be an asymptotic path
ending at &,; |¢,|=1 along which F({) converges to , and the Green’s
function of R tends to zero, then it is easy to see that a curve L on R
corresponds to I, determines an A.B.P. of R relative to R.
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Corollary.® Let R be a covering surface over an abstract Riemann
surface R and there exists a positive capacity set E C R such that, every
point of E is covered by R a finite number of times, then on R™ : €< 1 the
mapping function F($) has angular limits almost everywhere on |&|=1,
this is proved by M. Ohtsuka by another way.

Corollary. Let IAE be a covering surface over B and R is a bounded
type covering over R, then R is o bounded covering over R, too.

Proof. A system @] corresponds to a point @;, which lie on a,, and
EGR(p, al) < Gya,), then we easily have T(R) < T(R), where G, Gg
are Green’s function of R and R respectively.

Chapter 1I. Accessible boundary point

1. Measures of accessible boundary points

Let R be a null-boundary Riemann surface with A-topology and R be
a covering surface over B. When a curve [ converging to the boundary
of R and its projection on R converges to a point p € R*, then we say
that [ determines an accessible boundary point (A. B. P.) relative to R*.
We consider non negative continuous super-harmonic functions such that
0<v(p)<1, and v(p)=1 when p tends to an A.B.P. along every curve,
we denote by wp(R, A) the lower envelope of {v(p)} being harmonic on
account of Perron-Brelot’s theorem, and define u(R*”,2) similarly.
Denoting by R’ the projection of R over R*, if the universal covering
surface of R’ is parabolic type, i.e., it cannot be mapped conformally
onto the unit-circle, we take off a finite number of points PP, , ... , D,
(when R’ is closed and its genus is zero, three points, and when R’ is
closed and its genus is one, one point) and remove from R all the points
D5 §=1,2,..., lying over them and denote the remaining surface by

R so that the universal covering surface of (B'— i p,) may be hyperbolic.

As the preceding we define p(ff), A), and u(B=, A). In the following
we assume that R has at least one accessible point.

1. R is a null-boundary Riemann surface, then R is also too, since
no bounded harmonic function exists on a null-boundary Riemann surface,

w(R, A) = (R, A)=1. On the other hand if R is parabolic, we see
that u(R>=, A)=1. If R is hyperbolic, we also on account of theorem
1.1. that any curve determining an A.B.P. converges to the set on
the periphery of the unit-circle, of linear measure zero, thus we have

6) See M. Ohtsuka, 1).
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(B, W) = p(R, A =0.
2. R is a positive boundary Riemann surface, put BR—R = i é Dyy
and let G(p, p;;) be the Green’s function on R with its pole at pi;. ' For

i i i G(p-p.s)
arbitrary point p, € B, the function g(p)= —— tJ represents
point Py ffy the )= GG, i) "
a harmonic function tending to co at any points of p,,, accordingly for

any positive number & >0 and v(p), one of the class defining u(R, ),
Min (1, »(p)+ Eg(p)) is one of super-harmonic function defining /l;(ié, ),

this follows up(R, A) = ,u(f%, A). Conversely any »(p) on R can be con-
sidered as one of v(p) of R if the value 1 is supplement to >p,;.
Hence ,n(iz, A) = p(R, A) and the equality follows. Further there holds
w(R, A) = p(R=, A), because any v(p) of R is considered on R™. Since
for any v(p) of R® and & >0, Min (1, »(p)+&g(p)) can be considered on

R=, then we have u(R™, %)= u(R=, A).

Theorem 2. 1.
p(R, A) = p(R, A) = u(R”, X) = u(R=, ).

As in the case when R is a null-boundary Riemann surface, these
relations are settled, in the sequel we suppose that R is a positive
boundary Riemann surface and investigate when equality or inequality
hold among these quantities.

We suppose R’ the projection of B on RB* is a null-boundary Riemann
surface and R*'s+is hyperbolic type, i.e., it can be mapped conformally
onto the unit-circle. We map E* onto |{|< 1, then from Theorem 1. 1.
on |&|=1 the set of points at which at least a curve converging to
the boundary of R’ ends, is a zero linear measure set and if we map R~
onto |z|< 1. On |z|=1, the set £, of points at which at least a curve
determining an A.B.P. lying on the ideal boundary of R’ is also zero
measure.

Let 2z, be a point at which a curve I (the image of L on R) deter-
mining an A. B.P. having its projection on R’, then we can take a certain
branch of f(z) which converges to a point &,, |{,|< 1 along [, then f(z)
has an angular limit ¢, also, this implies that any branch of f(z) has
angular limit relative to R’. Let us fix a certain branch f(z) mapping
corresponding to z — R’ and denote by E the set at which a curve ends
along which f(z) determines an A.B.P. with projection on E'.

Let R, be an exhaustion of B:\/ R, =R and denote by A,...(0),

7) See M. Ohtsuka, 2).
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the set l < |z-»-»6]< , 0<]arg (z— ())|<-—ﬁ and by &(f(z)): z¢€

AL (6) the diameter of the set (f(2): z€A,.,.(0)) with respect to
A -topology of E*, then

=B, [ 1S [T S ] GHA @) = > FAn) TR

because &(f(A,..,(0)) is continuous with respect to 0, for fixed \,I, m,n
and «, E is a Borel set on |z|=1.

Let u(R™, A) be the lower envelope of the super-harmonicfunction
{v(2)} such as 0 < v(z) < 1, andl im v(z) = 1 along every path determining
an A.B.P. relative to B and p(R®, A(E,)), p(R=, A(E)) be the lower
envelope of the super-harmonic functions such that lim »(p) =1 along
every path determining an A.B.P. lying on the boundary of E, and on
R respectively. We have u(R%, A(E,)) < u(R™, A) by Lowner’s lemma
and moreover p(R™’, A) is zero as the solution of the Dirichlet problem
on the ¢-plane, thus we have

w7, E)) < p(B7, W) < p(B”, E )+ p(B7, WE)) = p(B7, UE)).

On the other hand we denote by «(E) the harmonic measure of measur-
able set F then, since v(R*, )=1, when z converges radially to F,
then we have easily the next equality u(R%, A) = o(z, E).

Theorem 2.2. When R is a covering surface over a null-boundary
Riemann surface R if the universal covering surface of R is hyperbolic
type then p(R”, N) = o(z, K).

Theorem 2. 3. Let B be o null-boundary Riemann surface with A-
topology and R be o posilive boundary Riemann surface given as a covering
surface over R, if the universal covering surface of the projection of R
is parabolic type, i.e. connot be mapped onto the unit-circle, take a finite
number of points (p,) (i=1,2,...,n) and remove from R all the points
(m;) (1 =1,2,3,...) lying over p, so that the projection of the remaining
surface B may has an universal covering surface of hyperbolic type. Let
G(p, pi;) be the Green’s function of R with the pole at p;;. In the case

when R covers p, (i=1,2, ...,%) so rarely that 2 Z G(p, pyy) < oo,
we map KB onto |n]<1 conforma,tly, then we have

w(R=, ) = u(B>, ).

8) This theorem is proved by M. Ohtsuka 2) under the condition that R covers p; a
finite number of times.
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Proof. We map E* onto |z|<_1, then a system z;, (k=1,2...)
corresponds to a point p,; and > G(p, p;;) = SIS log ii—_zi’z’f_l< co
Jji K J % ik
is equivalent to > (1—z;5|)<co.
ijk

a) A curve 1l in |z|< 1 being the image of the curve L on R not
passing through p,, and determining an A.B.P. not lying on p,(i=1, 2, ..., n)
converges to a point on |z|=1.

We map (E—i p,)” onto |[¢|< 1 if I does not converge to a point,
then converges to an arc ; where mes _>0. Since the mapping
f(z) > R is one-valued function, there exists a branch &= f(z) tending
to a point &,: |&,|< 1 corresponding to p, along l. Let us take off
radial segments S,;, from z,,, to the periphery |z|=1 and denote it by
U,— 2 S,;:) being simply connected domain, we map it onto |£|<1: 2

= <p(§) Since the boundary of (U,— E S,;x) s rectifiable, « is transformed

onto a positive measure set ' on IEI-— 1, & = f(p(£)) has angular limits
on the ¢-plane almost everywhere on ¢/, therefore there exists a positive
measure set ” on which ¢ =f(@(§)) has angular limit &,: |&,|<1,
because the radius ending at 4” is transformed to a curve in |z|<1,
intersecting ! infinitely many times on which f(z) tends to &,, thisis a
contradiction.

b) The set E, on |z|=1 at which at least an image of the curve
not passing through p, and determining A.B.P.s not lying on p, ends is
linearly measurable®.

In fact we map E onto |71<1, and denote by E, the set at which
at least a curve determining an A.B.P. ends. Let L be the above
mentioned curve on R, since L does not pass through p,,, L is contained

in B and the image 1, in p-plane of L converges. Since the projection
of R is (R— 3p,), £ = &(») has angular limits relative to R at every

point of E,, then E, is a Borel set. As R™ can be considered as the
universal covering surface of the domain (Unit-circle— sz) and ¢,

corresponds one-to-one manner to a system [,, then E, can be thought
to be the image of E, of the function z =2(y), then E, is an analytic
set. Next, let I, be a curve in R” determining an A.B.P. lying on
p, (i=1,2,...,7n) and E,, be the set at least such a I, converges, then
it is easy to see that I, converges and its outer measure of the set where
at least a I, converges is zero in regarding that the mapping z— ¢ and
Lowner’s lemma.

9) See M. Ohtsuka, 2).
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c) Let E, be the measurable set of positive measure on |z|=1, and
E, be the set on |n|=1, where z = z(5) has angular limils conlained in
E,, then E, is a set of inner measure positive.

Let E,’ be a closed set of positive measure of E, where 7= 5(x)
tends uniformly, then the set on |7|=1 where z=2(5) has angular
limits contained in E,’, is also measurable denoted by E,. On the
other hand (U— ESM) has a rectifiable curve as its boundary then

E;/ on |£|=1 of p051t1ve measure and consider the composed function

E. is transformed onto the sety = n(z(&)) in U, 2 S,;x and let E,"” be
ijk

the image of E,' then E,"” C E,, in mapping z = 2(7): |n|< 1. We denote

any super-harmonic function o(y) such as 0 < v(5) <1, lim v(q;) =1,

n—E.

we consider this function on|£|< 1 then clearly v(7) = o(E), where
o(E¢") is the harmonic measure of ¢’ with respect to |£]|< 1, this follows
that mes E, > 0.

Proof of the theorem. u(R”, NA)< p(R™, E,) implies that p(R™, A)
has angular limits zero almost everywhere on the complementary set of
E,, on the other hand u(R=, A) = u(R", E,) = w(E,, n) and u(R=, E,)
is one-valued harmonic function in fé, this is also harmonic in R, there
w(B=, E,) is one-valued in |2]< 1 and has angular limits almost every-
where on |z|=1. In denoting by Z,., the subset of F, being measurable
where p(R E.) has angular limits less than 1 and denoting by E,.,
the image of F,.,, then p(R“’, E,.,)=0 follows in connection c) that
p(R*, E,,)=0. Thus we have w(R™, E)=p(R™, E,)=p(R, A), because
p(R%, E,) is the lower envelope of super-harmonic functions having
limits 1 along any curve ending at F,. Since any super-harmonic
determining wx(R*, A) can be considered as the function on R= if we

supplement the value 1 on z,, then we have ,u(l;?‘”, W) < p(R™, N).
Finally we have

uw(R=, E) = p(R™, B,) = p(R™, N) = u(R=, N) = u(R=, E,).

2. On the behaviour of Green’s functlon in the neighbourhood of
the ideal boundary

Theorem 2. 4. Let G(p, p,) be the Green’s function of R with its pole
at p,, D, be the closed domain such as G(p,p,) =\ where x>0 and R,,
be an evhaustion of E. We denote by B, the boundary elements defined
by li:n (R—R,)/\ D,, then B, is outer harmonic measure zero.

Proof. Let v} be continuous super-harmonic function in B such as
0<vi(»)<1, and v(p)=1 if pe D, \(R—R,) and its lower envelope
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of v)(p) be denoted by ui(p), since %.Min [ G(p, p,)] is one of such
functions, and p)(p) = ph(p) and lim g)(p) = p*(p) is harmonic in R.
G(p, Py)—Apa(p) is harmonic and pogitive in R, and has a logarithmic
singularity p, then

G(D, Do) Mun(D) = G(D, Do),

where G(p, p,)z, is the Green’s function of the surface R,, let # — co

G(D, Do) —Aun(D) = G(P, D) »
because G(p, p,) is the lower envelope of positive harmonic function with
the same singularity as G(p, p,) —Mua(p), this follows that lim g}(p) = 0.
We extract a sebsequence v}, (), v, (p) --- of which the lower envelope
is pMp), thus we have the theorem.

Corollary. Let p*\p) be the lower envelope of non mnegative super-
harmonic function vi(p) in D, such as 0 < v)(p) < 1, and lim v¥*(p) =1,
P>B
then p*Np)=0. g

In fact, we can consider vh(p) is one of v (p), then we have the
conclusion. :

Corollary. There exists a continuous positive super-harmonic function
satisfying the following conditions 1) 0 <U(p)< oo in R. 2) lim U(p)=oc.
P>B
Proof. Let B= >)B., since for every A, B, is outer harmonic
X n=2 n

measure zero, then we can extract a sequence of continuous super-
1
harmonic function U»(p) such that

1
Max (U%(p))g%, if per,, U»(p)=1 if p€R,, and p€ D1, where
n'=n'(n). Put U(z)=3] U'?l"(p), then U(p)gm—% if peR, and

uniformly convergent in every R, then U(p) is continuous and super-
harmonic in R and lim U(p) =co.
P>B

We consider the case when p(R, ) is equal to #(ia“’, ).

Theorem 2.5. Let R be a positive boundary Riemann surface and
R' be the projection of R over R, we take off poinis p, 6 =1,2,...,7n) s0
that the universai covering surface of (R — épz) is hyperbolic type, and
denote by G(p,p.;) the Green’s function with its pole at p,; lying over p,.
When R~ is mapped conformally on |z|<_1, we denote by D, the normal
polygon of Fuchsian Group containing z =0, with arcs a; (j=1,2,...)
on |z|=1 and by {T;} (i=1,2,...) the substitutions of Fuchsian group, if



168 Z. KURAMOCHI

313 Glp, piy)<loo, and
mes (Z T, Z a)); =2m, then
(B, ) = (R, W) = ™, W) = (R, ).
Proof. We denote the set by E where at least a curve determining
an A.B.P ends, we have seen that ¥ is measurable and (%, %)

= u(R*, E) = w(z, E). For any given positive number & >0, there exists
a number p and k such that

» . 1 _ mes T(l) .
mes(Zj]T,(f‘_,aj))>27z &, T = mes I <lk:1=12..,p

for any line element I on «,, we can extract subarcs denoted by a¥f
having no common ends with «; such that mes (2 o, — 5‘_, af) <l ka

then we have mes (Z}T (Z ay)— ZT (2 a,))< 28, 1f p(R, R)>#(R°° A)
we have ,u(R, 0)>F,(R°°, 0)+86: 8>0 since ;:,(R, A) is one-valued

harmonic function in |z|<1 denoting by H 1 the set where ,u(R ) has
angular limits larger than %— then mes ((271’—')E NH 1 /’\Z Ti(z af)>8
and mes ((z— E‘)[\Z T,(HL[\E af)y>8—¢.

Let (complement of E)”[\ af= a¥*, and we can take a closed subset
denoted by F"i in 3 af* such that z”‘, T, (F"i ) > i . On the other hand

let o Fl(z) be the harmonic measure of Z‘ T, (F* ), then o Fl(O) 2

and one valued on B. We consider non negative super- harmomc function
v¥(p) in R such that limv*(p)=1 when p tends to F*i along every
curve and denote by u*(R,p) their lower envelope, then we have

*(R MW > o Fl(F"i) Since F"i is 2 set on arcs «a;---«,, the behaviour
of /L*(R A) is the same as that of Green’s function i.e., if lim G(p, p,)=0
when p tends along every curve converging out of F™ g1 then lim @*(R2, p)

=0 along these curves. But we have seen in corollary of theorem 2. 4
that there exists a non negative continuous super-harmonic function
V(p) such that hm V(p) = co, where B = Z}BA G(p, py) > . Let v(p)

be of the class deﬁnmg (R, A) and con51der next function
S(v) = Min (6V(p)+o(p)— o). 1).

case 1. p tends to an A.B.P. then this curve ends out side of SYT(F4),
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we have to consider in D,, since F*l is closed then o Fl(p)— 0 thus
S(p) = 1.

case 2. p tends to F”% on the z-plane, since v(p)g% along Stolz’s
path converging to F*i , S(p)=0.

case 3. p tends to the”boundary of R, except F*% , then EV(p)—-%co Fx(D)

> 0. Hence S(p) has angular limits > 0 almost everywhere on |z|=1
and bounded, therefore S(p)>=0 in R, finally S(p) is a one of super-
harmonic function but & is arbitrary we have, the lower envelope of

S(0) = p(R, Sa)—lw #4(P) S (B, %), This is a contradiction, then we

have u(R, N) = /L(R"" %I) any by the precedmg theorems we have the
conclusion.

Corollary. The connectivity of R is finite and wuniversal covering
surface of the projection of R on R is hyperbolic then we have u(R,N)
= (R, ).

Theorem 2. 6. Let R be a positive boundary Riemani surface and
the universal covering surface of the projection of R over R be hyperbolic
type. If p(R, %I)—,u(R"" A) then we howe w(R, F) = w(R”, F) for every
closed subset ¥ of .

We denote by %, the set of of R+ such as all points of B with

distance < l from &, then § = /\%,, and denote by F, the image of

ANSB, on lz|——1 (|z]<C 1)——R°° then F, is measurable. Since the
image 2 on |z|=1 with its projection lying on the boundary of R has
outer zero measure where the mapping function has not necessarily
angular limits, we can suppose the projectionof % lies on E. Let R, be
the exhaustion of R, I',, be its relative boundary, and «, be the relative
boundary of %, , we define

o (P): =1,2,...) satisfying the following conditions,

... (D) is non negative continuous super-harmonic function in ,,.;

ot =1, if peF, N\(Rp:iy—Rp), @h..(®) is harmonic in

Roii=(8n N\ B i—Ep)) @na(P) =0 if D€L ;— (L N o).

O f(P) < @0nsis (D). Let o(p) be the lower envelope of wh,.,.;:
i=1,2, ... o%(p) is super-harmonic therefore (R, F,) < oi(p), p(R, F)
< lim o7 (p) for every =u.

T (R, F) 4+ u(R F), we would have mes (2, N\ CF,)>>0, where
9, means the image of A and CHF, means the complement of the image
% with respect to |z]|=1.
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Let f(2) be the mapping function from the z-plane onto R+,
D; p, the domain in |2|< 1 such that it contains the endpart of the
angular domain: |arg (l—e"“’z)]<%—8: (8>>0) at every point e'® of
closed set F, and Cy be the ring domain 1—8"<|z|< 1.

Since A. B.P corresponding to 2 /\ C¥ which has positive distance
from ones corresponding to &, then for given positive number & >0 and
8, there exists a closed subset F, of 2, N\ CHF, such that mes (CA,—F,)
<& and dist (f(2), §.) = 2sz if z€D; o N\ Cy. The boundary I\, of R,
is transformed onto a simple closed Jordan curve v, in |2|< 1. Denote by
7., the distance ¢,, from z = 0, and let m, be the smallest number such as
1’m0>1——8, then for I',,: (m = m,), the image of I',, is contained in Cj
and the part of the image contained in Dj, F, are the arcs where oh.ms,:
i=1,2, ... takes value 0 except a set of linear measure zero.

Let C] be the circle |z|< 7, and D¥p be the set D; o \/C; ,
and U,(z) be the harmonic function in D} F, such that 0 < U,(») <1,
U,(z) =1 when z lies on the boundary of D} F, €Xcept on the boundary
on |z|=1 and vanishes on the boundary lying on |z|=1. Since the
boundary of D¥ F, is rectifiable U,(z)=1 and U,(2) =0 when z tends
to F, almost everywhere. It is clear that U,(2) = o¥'m.(z) = p(R,F) if
2€Ds g, N\ By for every ¢ and 7, but ¢ and & are arbitrary, therefore
#(R, §) has angular limits 0 almost everywhere on A, N\ CH,. On the
other hand p(R, ) > w(R, ), it follows w(R,F) has angular limits zero
almost everywhere on C%,, thus w(R, ¥) has angular limit zero almost
everywhere on C%, and so u(R, F) = u(R™, F).

Theorem 2.7. Suppose that R' is hyperbolic type. Take a finite
number of {p,} from R and remove from R all the points lying over them
and denote the remaining surface by B, then there holds

p(R=, W)= w(E, A).

This is proved by M. Ohtsuka in regarding that the mapping
function from R* onto B has angular limits and the set where at least
a curve determining A.B.P. lying on {p,} is outer harmonic measure zero.

Till now we have investigated the case when harmonic measures

have equal values, in the following we show by example there are cases
when inequalities hold.
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3. Counter examples of the preceding theorems

Example. Let B,,, B;,:;: #=1,2, ... be the system closed domains
in |2]< 1 such as

1 .1 .3 - . 7,
Byt logpg=r S logpy: 7 = 0= (containing — 7)),
B : 1——1—37'31-—1—' —&’29>—§’£ (containing —”—>
2n+1 4n_— = 4n+1‘ 4 = = 4 2 .

We can construct the holomorphic function'® f(z): |z]< 1 by Runge’s
theorem such that

|f@)=1|< L if 2€By, [f@)|< L+ if 2€Byunr.

It is clear that f(z) is not bounded in |z|<1 and w = f(2) = oo is
an asymptotic value, therefore there exists an asymptotic path [ along
which f(z) tends to infinity, this path determines an A.B.P. lying on
w =o0o, let p, be the starting point on ! where |f(z)|= M, and this

path lies in the unit-circle except Z(Bz,,+Bz,,+1) and denote by p, the

first point when p lies on |z|=17r 1n coverging to the boundary |z|=1
from p, and by I, the endpart from p, .

Let {v(z)} be non negative continuous super-harmonic function in
|2]<”1 such as 0 <v(2) <1 and lim v(z) =1 when z tends to |z|=1
along I, take a v(z), then there is 7, such that v(z)>1-38, if z€l,, for
every & where lr, has a branch passing left half plane and let », be the

1 N |
number such as l—mgro,andAandEbe the point (r_l fn, 71’
5= .1 _ 5=\ _ 1 1 __37:)
=) B—(“m"’—f)—’]' 0=(r=1 In,3 =7
1

and D=(7’=1——m—:—_3s

as U(z)=1, if z€ AB and on the circular arc BC, and vanishes on
the circular arc CDE, or on the segment EF then V(0)= U(0)=8§, >0,
for every v(2)®. Hence p(R,w = o) being the lower envelope of {v(z)}
is > 8§, >0.

We remove all points where f(z) =0, 1 and 2 from the unit-circle,
then the universal covering surface of the projection of the remaining
surface R’ is hyperbolic type then it is clear ('R, 00)”>0 and

p(R'™, 00) = p(R=, 00)=0. Hence by theorem 2.6. u(R',A)= u(R™, A).

0= 0> and U(z) be a harmonic function such

10) L. Bieberbach: Funktionentheorie II.
11) When I"o has right half plane, similar fact occurs,
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1) If we consider the R’ to be given surface R, then u(R,UA)=
p (R, A). )
2) If we consider R given surface R*=R, then p(R”,A)=p(R",A).
We easily see that these surfaces do not satisfy the conditions of
preceding theorems.

4. Type of covering surfaces

1) If there holds «(p) <0 on R whenever u(p) is upper bounded
continuous sub-harmonic function on R such that lim «(p) <0, we call
R a surface of D-type. P

2) Let R™ be hyperbolic hyperbolic type, when the function cores-
ponding to the mapping onto the unit circle B — E — R* has limits
along Stolz’s path almost everywhere on |z|=1, where R”=(|z|<1).

We call in this case B F-type covering.

3) If T(r) of the mapping function from E to E is bounded, we
say R is bounded covering, we have easily

D-type Z p(R,A)=1. B-type — F-type — D-type,

and if the universal covering surface of the projection of R is hyper-
bolic, we have F-type < p(R”, A) = 1.
In the sequal we investigate type of covering surface among covering

surfaces over the same basic surface. We have at once from theorem
1. 2. the next

Theorem 2.8. When f% is @ covering surface over R and R is of
A
bounded type over R, then R is of bounded lype over I, foo.

Theorem 2.9. When the universal covering surface of the projection
A
of R over R is hyperbolic type, if R™ is F-type and if R is a covering
A
surface over R, then R is also F-type relative to R.

Proof. We map R, R", I%"", onto |£|<1, |z|< 1 and |¢{|<1 and
denote by F,., E,, and E,, the set where at least a curve determining
an A.B.P. lying on the boundary of R, since ¥,,, F,,, FE,, are of outer
harmonic measure zero, we may suppose without loss of generality that
A.B.Ps lie on B. Let A, A,, A, the set being measurable where the
mapping function onto R has angular limits on B, then ux(R*, 2,)=1.
If mes (CA,) >0, where CU, means the complementary set of 2, and
let z=2(), 0==2(0), &(£)) =&() be the mapping function onto the
z-plane and &-plane respectively, they have angular limits almost every-
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where on |z|< "1 and £-plane. Denote by I, the radial path ending at
CU, along which z=2(§). &= &) has angular limits on z, £-planes.
z =2(&) does not converges to z,: |z,|< 1, because if it were so,
l; determines an A.B.P. on R, therefore z = z({) converges to z,: |z,|=1
and further the image I, of I, does not intersect infinitely many times

with the angular endpart arg [z—e“’[<%—8: § >0, e?c,, because
if I, intersects it infinitely, since £ = £(z) tends in this angular domain
to a point &,: |£|< 1 with regarding that &= £(¢)= £(2(¢)) has limit
£y 1&]< 1 on the &-plane, it follows that £ = £(¢) determines an A.B.P
along [,, this is a contradiction, thus z =2(¢) has no angular limit or
converges to z:z€CU, or converges tangentially to z:z€%,.

For given numbers &, § there exist numbers &, 8’ such that z = 2(¢)
is not contained in D,5p, N\ Cox if {€D¢w s p, [\ Cox, where F,, F.
are closed sets of 2,, CA, and mes |A,—F|< &, mes |CUA—F|< &,
D,s.r., D¢y .F,, are angular domains on z, {-plane arg ]1—ze“"9|<12f——8
for any point of e?€F,, arg |1—:e‘~’0[<%—8': e’cF, , respectively,
Cs%, Cia, Cy are the rings 1—8<|z]|< 1, 1—8 < |¢]<1 and a circle
1-8>1z|, hme—O lim 6§ =0.

/>0
3/-»0 8§ ->0

Let U,.(2) be the harmonic function in D, 5 g, \/ C; such as Us.(2z) =0
on the boundary of D,;p, \/C, except its boundary on |z|=1 and 1
on the boundary lying on |z|=1, and «({) be the harmonic measuse of
F. , then we have 1—w(&) = U,.(2z) when U,.(z) is considered on ¢-plane,
since 2, , CUA, are measurable and & & are arbitrary and lim & =0,
lim 8’ =0 then we have

(R, W) =lim (1—op () = lim Uy(z) = w(R, U)
§>0
>0
This implies the conclusion.

Corvollary. We can weaken the conditions of the preceding theorem
in such a way the condition that the uwniversal covering surface of the
projection R is hyperbolic is changed by the condition that E G(p, p; ,)( co,
where p;, are points of R lying on p, of B, so that the umversal covering
surface of (B— 22%) s hyperbolic.

Corollary. Let R be o positive boundwy Riemann surface and covers
Py S0 rarely as X3 G(p, pyy) < oo, then u(R”, A) < u(R7, 2)1).

Proof. We denote by p;; (k=1,2,...) the points lying on p,,
then we have
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; 12 ;T‘_. G(D, Dyyr) < 12 12 G(D, Dyy)»

where G(p, p;,.), G(»,p;;) are Green’s function of B and IA% Let R and

R be the remaining surface after removing p,,, and p,; from Ror R
then we have from theorem 4. 4.

(e, %) = u(R™, ) = (B, Ay = u(B™ ).

Example. A covering surface over a D-type covering surface is mot
always D-type. In the preceding theorem we take as B,, and B,,.;
the domains shown in the figure 1.

Banit

Ban

Fig. 1

5. Dirichlet problem

5.1. Dirichlet problem on a covering surface over a null-boundary
Riemann surface

Lemma. Let R be a null-boundary Riemann surface and R be a
F-tyve covering surface over R and % be a closed set of A, the upper class
UE is defined by all non negative continuous super-harmonic functions such

that lim u (p) =1, then the lower envelope H%(p) is harmonic. Similarly
TP
the lower cia,ss 53% and H%(p) are defined for upper bounded continuous

sub-harmonic function such that Tim wv(p) < 0. Further it is clear that
PoCFNOA



On Covering Surfaces 175

ﬁ§(p)g£]§(p) on D-type Riemann surface, and if they coincide at o
point, they are identical in R.

Lemma. Let § be a closed subset of U of F-type covering surface
then there holds
ITR R R
H?e;(p) = I_i?c;(p) .
Proof. Mapping R* onto |z|< 1, since the set E, the image of the

A.B.Ps lying on the boundary of B has outer harmonic measure zero
ie. p(R, ANE,)=0. We may suppose that A.B.P.s lie on E. Let

%, be the set of R+ which has distance from ¥ ;% and F, be the
image of &,/ N\ on |z|]=1, then F=/\B. and F=/\F, and they
aré measurable. " "

Let R, be an exhaustion of R with relative boundary I',, and «, be
the boundary of ¥, and o},...«(p) (i =1,2, ...) be non negative continuous
super-harmonic function in R such that %..,, <1 and harmonic in

(Rpsi—(Bn \Rmi1r—R,)) and 1, if peF, \(R—R,) and vanishes on
- CBa N\ This» Omms(P) is increasing with respect to 4, and o}, = lim o}, ..,

t=00

is contained in U% class and harmonic in R,, and % is decreasing with
respect to m. lif,,n o"(p) is harmonic in R—F,, then I?%(p)g " for every
n. On the other hand at any point of 2, "\ CF,, f(z) does not tend
to F,, in angular domain, because dist [(2 N\ CBn). Fnl = Zl_n

Let D, be the domain with arg I—ze“"]<%—8, ecy, r,,, = dist
(image of gy, in |2]<l2=0, C,,, be the ring r,<|z|<(1, and C} be
open circle |z|<#},. For any given number & >0, and § >0 we can

find a closed subset F'§, of A, and A\ CF,,, such that, mes|A,—F,,|< &,
if 2€Dpg,5/N\Cy,, , then f(z) is contained in the complement of F,.

Let U%(z) be harmonic in Dgg 5\ / Cfm and <1 and 1 oz this domain
not lying on |z|=1 and vanishes on the boundary on |z|=1, then

Un, = oh.me; and harmonic in Dgg 5\ C;"m ,
Ur = b, for every i, there holds U% > 7.

Since &, 8 and n are arbitrary, and the boundary of Dpy,5\JC) is
rectifiable liqr’n (limm U, = lif,,n op (2) = li”m liwr.n ol (p) = liffn o"(p) = HE(p)
and the converse is true, then we have

HE(p) = o(z, F).

Let Q,=UA-F, and &.,.,; be super-harmonic in R such that
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0<éhm,; (<1 and 1 when peQ,N\R—R, and v,/\Q, and
vanishes on 'y ;—Des N\ Qn, and harmonic in R, ;—Q,. lim @) m. (D)
t = &%(p), lim &%(p)! = &"(p) is harmonic and has angular limits zero
almost ever;r'where on A, N\ COx , where O, is the image of Q’; . Denote
2 2

by J) the set in Q, where E%(p) > and part TA"=(R—R,)/\Jsand
&nr . «(p) being super-harmonic in R and harmonic in R,.,—7T," and
attains 1 when p € T%" and vanishes if peTl,,,;—Tx", clearly we have

lim (im &5 (2)) = &™(P) -

Put &7,....p) = Min (co;:,mH y Ny %I?%p)) this is contained in
the upper class for T%"..;, but lim lim &%...,(») and its lower envelope
has angular limits 0 almost eve?ywﬁere on F,, and on AN\ O%ﬁ. Let
n — oo, then this envelope has zero almost everywhere on z=1. This
follows that lim 7** /\ 2 has outer harmonic measure zero. Therefore
there exists annon negative continuous super-harmonic function U(p)
such that U(p) = co when p tends to T" for every A >0 and #». Since

Max (H%(p)—&U(p), 0) has limits zero when p tends to ‘21 N CH this is
contained in By class, thus

o(B™, F) = Hg(p) < HE(p).

Similarly for open set Q of 2, we have H(p)= H(p).

Let @(p): pe be a real valued function on A (admitting + oo).
Define the wupper class U7 consisting of all the lower bounded
continuous super-harmonic function such that Rlirg u(p) = @(p) and its

lower envelope HE(p), and the lower class and HZ(p) for sub-harmonic
function similarly. If HF(p)= H%(p) holds then ¢ will be called a
resolutive boundary function and common envelope will be denoted by

H{(p).

Theorem 2. 10. Let R be F-type and ¢ be semi-continuous function,
then @ is resolutive.
In fact, let @ be bounded upper semi-continuous function on A
and M = ¢ > m, and divides [m, M] such that m =c¢,< ¢, - ¢, = M,
M ™ and the set E[¢p=c,] is denoted by A, being closed
and E, =E[ci+1 =@ >c;]. Let Uy, be upper B4, and lower class of
characteristic function of 4,. Put Ug,=Ua,—Va,,,(VE,=Va4,—Ua,,)
where Uyz,(V4,) is a function contained in Uz ,(By,), then Ug,(0) (VD))

Cis1—C; =
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is supper (sub)-harmonic and lim U(p)>1 ( Iim  V(p)<0) thus Ug,(p)
PSE, —CE;NN

(VEi(p)) is contained in Ug(By4). and U”(P) = Z ¢ Ug,(0) (Vi(D)
= Z‘ ¢,Vg,p)) is contained in U{(Bg) but the lower envelope Hgp)(Hp,(p))

of U”t(V}’;ﬂ) is equal to the harmonic measure of E, in B”: |z|< 1 then
we have,

i (Uy(0) - Vi(0) < 3 3 op () <+, let nsco
Hip) = Hi0) = | @ dp

where p is harmonic measure.
From general theory of Dirichlet problem, we have next

Lemma. H}(p) is the upper envelope of HE(p), where < ¢ and
W iS upper bounded and semi-continuous on U, the similar fact holds for
H{(p).

In the same manner used by M. Brelot, we have

Theorem 2. 11. In order that ¢ is resolutive it is mecessary and
sufficient that @ is integrable in the narrow sense.

Remark 1. We easily see HZL(p) is the same as the solution of
R. Nevanlinna

Remark 2. This method is also applicable for @(p) on A even if
(B, A)=F 1, if we restrict =0 and HE is equal to Sg)d/b

b

Remark 3. We have seen in the proof of Lemma Lllg(p) takes value
zero or 1 almost everywhere on |z|=1 according to the point is contained
in the image of § or not more generally the solution HZ for continuous
boundary function ¢ takes value ¢ almost everywhere on the image of
A. If we consider H}(p) in R, this fact means that HI(p) takes the
given ¢ ‘“almost” paths determining A.B.P.s so that the image of
these paths form measure 2z set on |z|=1. This follows the resolutivity
of . But we dont know if H%(p) tends to ¢ along every curve ending
at any point A—A,, where 2, is a subset of A being so small that its
harmonic measure zero, this fact has stronger sense than the former.

On the other hand it is well known, for Dirichlet problem of the
domain in the z-plane for continuous boundary value ¢, there exists a
subset I being F_, of the boundary of capacity zero called irregular
set determined uniquely for the domain such that the solution takes
the given value except I. In general case when R is F-type Riemann
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surface the problem whether there exists or not the negligible subset
with the property determined by the domain only and not depending
on the boundary function ¢ is open. '

5.2. Dirichlet problem on a cevering surfaceover a positive boundary
Riemann surface.

Let B be a positive boundary Riemann surface and p, be an inner
point of R, and G(p, p,) be Green’s function of R and X(p, p,) be its
conjugate. Put k(p) = e ¢** and we define the length of a curve L as

Sdlc(p) and distance between two points ¢;, and ¢, €RE be the lower

L
limit of the length of all curves L connecting ¢,,¢, in B and by comple-

tion we have metric space R*, and the distance on a covering surface
of two points ¢,, g, is defined by the diameter of the projection on E*
of all curves connecting ¢q,,q9, in R. If a curve ! on R tends to the
boundary R and its projection converges to a point on R* we say, !
determines an A.B.P. this means that the mapping function f(z)— R —
R — k(p) = w, f(2) has limit w, on the w:plane along the image I, on
the z-plane of I, since |k(p)|< 1 the images [, tends to equivalent points
of Fuchsian group on |z|=1 and at these points k(p)= k(z) has an
angular limit w, i.e., !, determines the same A.B.P. lying on B*. As
f(z) has angular limits almost everywhere on |z|=1 this follows that
R is F-type.

Let 2, be the image of A.B.P.s on |z|=1 and F, be the image of
closed subset ¥ of 2, then we have '

w=g5[rpsre..o=r]]
Fo=E,|[ [ S ][220 B) < 4

where A, the set 0<|arg (l—e““z)]_g_%—l—, . -~
8(f(A)) is the diameter of f(A) with respect to the topology of E* and
d(A, §) is the distance from § with respect to the topology of R, then
we have the same result about Dirichlet problem as in the case when
I is F-type Riemann surface over a null-boundary Riemann surface E.

6. Finitely sheeted Riemann surface

Let B be a null-boundary Riemann surface with A-topology and R
be a covering surface over B. When a Jordan curve L on R converging
to the boundary of R and its projection tends to a point p, of R*, we
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say, L determines an A.B.P. Let V, be the neighbourhood of p, of
the projection of the A.B.P. with diameter % and B, be the set of R

lying on V,, this composed of at most enumerable number of domains.

Associated domain D, of L will be a domain containing an end-
part of L in ¥,. Two arcs L,, L, determine the same A.B.P if and
only if for any number #» two associated domains are the same. This
definition of A. B.P. is equivalent with that of O. Teichmiiller.

We denote by #(p): p € R the number of times when p is covered
by R, then it is clear that #n(p) is lower semi-continuous. We call R
boundedly sheeted covering surface if #(p)< M : p € R. In this paragraph
we consider chiefly such a Riemann surface. When Sllé.g n(p) = 1, non

accessible point of B have no sense in itself, hence we consider only
accessible boundary points.

Barrier. We call B(p): p€ R, Barrier of p the function such that
B(p) is non negative bounded continuous super-harmonic function
lim B(q) =0 and for every associated domain D,,, there exists a number

<D

such as, lim B(q) > 8, ; if p€D,, it is well known that p is regular for
Dirichlet problem of R if and only if at p Barrier exists.

Lemma. Let R be a F-type Riemann surface over R and p be an
A.B. P and D(p) be an associated domain of p, we denote by proj D(p)
the projection of D(p), if p is lacunary of D and further proj p is regular
for the domain proj D(p), then p is regular for Dirichlet problem on R.

In fact, let T(proj p) be Barrier of proj p with respect to proj D,
then there exists a number §, such that lim 7(projp)=3$,,, if
proj p € proj D,,. Put B(p)= Min(é,,, T'(proj p)), this is clearly Barrier
of p with respect to 2. We have at once

Lemma. X be lacunary set being clearly closed on R, the all A.B.P.s
on X are regular for Dirichlet problem except the set havmg the projection
of capacity zero which is F_ .

In the sequal, let B be boundedly sheeted covering surface over
R such as n(p)< M. It is known that B is a null- or positive
boundary Riemann surface according to the set E[#n(p)<N-—1)] where
N =1lim #n(p): p€ R being clearly closed, is a null-capacity set or not.
We suppose R be a positiveboundary Riemann surface on account of
theorem 1.2, R is of F-type. In this class of Riemann surface the
following propositions hold.

1) Any A.B.P is a direct singular point.
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Let p be an A.B.P. Case 1. p lies on R, if p is not direct
singular point, then there exists connected pieces b,,...,0,; k¥ <N with
common points with the associated domain D,,, such that these con-
nected pieces have inner points p, --- p, with the same projection as p
for any large number m. Take ¢, --- ¢; discs contained in b, --- b, , then
any one of ¢, has no branch points converging to p,, hence there
exists a number m, such that 8, N\e¢,: m=m, (i=1,2,...,k) has a
finite number of branch points, then we can find m, = m, such that
any one of ¢; N\ %, (m =m,) has no common points with the other
¢; \%8,, (j=+1i). For any m, D, [\ ¥, has non common points, this
implies that D, N\B,,=¢,/\L,»=c; and p is an inner point of . This
is a contradiction

Case 2. If p lies on the boundary of B for this case our assestion
in trivial.

The order of an A.B.P. and of the associated domain.
The number lim [sup #(p): p € proj D\ B,.] is called the order of

an A.B.P. and [lim sup #(p): p€ D "\ B,,] is the order of a associated
domain D,, respectively, we denote by A, the set of A of order =, and
by A7 the subset of A, such that [sup #(p): p €proj DN\ B,.] == and
its projection by 27, then we have 2, =\/, Ar, A, =\J 4".

2) We can prove that &, is closed relative to proj U, if we denote
by %n = -i;b Ai .

3) We easily see that if [sup n(p): p € proj D,,]| < n, and D,, contains
A.B.P.s of U, then the projection of A, is lacunary.

Put Fo=314, then §yCFyor o CHr

Theorem 2.12. Let B be o boundedly sheeted covering surface over
o null-boundary Riemann surface, then all accessible points are regular
for Dirichlet problem except at most the subset UA' of W having its
projection contained in the F, set of capacity zero.

a) Any point of 2, is regular except at most AL, of which the
projection is capacity zero and F,. Because %, is lacunary, if Cap
(proj Ay) >0, A, is lacunary of R,, where R, is the points of R
covered by R, N times being open set, then 4, is regular for the domain
R, , except at most capacity zero F, denoted by A%, hence let p be of
A, with its projection in A,—A% is, clearly regular for R, because R
has more boundary than U, .

b) We suppose all points of f}p?l, on F,-,—&i_», where Cap (J_,)

1=MN—
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=0 and F, on which at least an A.B.P. of 2 2, being irregular point

T=n—

N
lies. We shall prove that > 9, on §,_,., is regular except the set

i=N—D~—]
of which the projection is capacity zero and F,, we suppose 2 A, is

i=n—-D

regular except the set on $,_,, then we have only to prove almost all
points of 2A,_,, is regular, since %”y,,_,,__\j‘{s""_,,, Bh 1 = \/% s
there exists a number m such that Cap (Fi™_,) >0, we cover by at most

enumerable discs ¢;,¢,,... of diameter < ZL then there is at least a

¢, such that Cap (e, N\ &5"—.) >0. Let v,, . be associated domains
of points of 2.7 _,, we have only to con31der next three cases.

Case 1. ord(b,) > n—p and ord (v,) = sup n(p): P € projv,)

Case 2. ord(v,)< n—p—1.

Case 3. ord(p,)=n—p—1.

Case 1. v, has no point of A}, ,, case 2. b, has no point of 4} , ,,
then we may regard the case 3 in this case proj(v, /\ 4,-,-1) is lacunary
of the domain of projp,, but in the case except at most capacity zero
of F, set all point of A4, _, , is regular with respect to proj(v,), hence
by lemma all points of ,_,_, is regular for B except the set with the
projection being F, and of capacity zero. Thus we have the conclusion.

Theorem 2. 13. Let q be an A.B.P. with its projection on R and
G(p, p,) be Greew’s function of R, if lim G(p, p,) =0, then q is regular
DPeq
for Dirichlet problem.

Proof. As we have proved, we can take V,, so that an A.B.P. may
be lacunary of D,,. Without loss of generality we may suppose the
projection of the A.B.P. is q,, let Cp, be the circle of radius p, with
centre g, with respect to the local parameter defined in the neighbour-
hood of the projection of the A.B.P such as Cp C V,, and CF¥ be the
periphery of C,, and D,, be the associated domain of the A.B.P. lying
on C, . Denote by F, the point of B covered ¢ times by R, then
FyFy_ -+ F;. From the semi-continuity of #(p), F, is open and
F, N\ C¥ is composed of at most enumerable number of intervals °Ii(i =
1,2,...N)(=1,2,...). Let s be a point of °I then there exists ¢ points
P1sDys .- »D;, Where some of them may coincide. Put g(s,) = G(s;, p,)
where G(s;) = G(s,) --- = G(s;). We can easily prove that g(s,) is conti-
nuous in °I% (7 =1, 2, ...) for fixed .

We choose a closed sub-set e} of °I% such that 21—p mes (Z‘, I Z‘,"ej)
<2z PP and denote by « the minimum of g(s) in 22 ei; k>0.
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Introduce Poisson’s integral for C, with value p, on i °Ii— > *e’ with
J
0 on C,—X1°Ii+3] %€

g 1 pz__,,.z

1 lp, then p’ 2mp .
% pT—2pr cos (F—g)+ 24P then P(e) = 2mp

p ()=

SPIj -3

Let U(p) be the upper envelope of sub-harmonic function in D,
such that Iim V(p) < q ¢, where ¢ ¢, means euclidean distance between
q and ¢q,. Put a(p)= U(p)—p—% G(p, Py)— 21:1 °p'(p) < 0 because, at
A.B.P. on C* U(p) < p except negligible set, because D,, is F-type
covering, if p€R and projpc]’e}, U(p)—%0 G(p)< 0, if peR and

proj p € > %e}, U(p)—> %0 G(p) <0, thus U(p) < (2N+1)p on the other
D—q0
hand since s(p)=proj p ¢, is sub-harmonic in B, U(p)= p,, ifA projp € C:‘jo.

Put B(p)= Min (p,, U(p)), then B(p) is Barrier at the A.B.P. ¢,.

In the case when the basic surfaces a positive boundary Riemann
surface, if we introduce C-topology'® on E, the distance is defined as
O. Teichmiiller then in the same way all points are regular except the
set having its projection being F, and negligible with respect to R.

Remark 1. When R is boundedly sheeeted covering surface the answer
of the problem at the end of the preceding paragraph is efirmative.

Remark 2. There exists a harmonic function on R which is = co
at all irregular accessible points lying on B on account of G.C. Evans
and M. Breiot, hence on such class of Riemann surface the resolutivity of
continuous function is proved by the ordinary method as in the case when
the domain is the subset of the z-plane i.e. without use of conformal
mapping of the universal covering surface.

Chapter III. Martin’s'® topology and {ype of Riemann surface

1. Singular point

On a positive boundary Riemann surface R, the most precise topology
for harmonic function is given by R.S. Martin. Let @ be a fixed point
of R, and K(p, ¢) be normalized Green’s function of its pole at ¢ defined
for ¢=4=a, and K(a,a)=1 when {r,} is a sequence of points tending

12) Z. Kuramochi: Potential theory and its applications, II. Osaka Math. Journ., 3,
1952, pp. 87-99.

13) R. S. Martin: Minimal positive harmonic functions. Trans. Amer. Math. Soc.,
19, 1941, pp. 137-172.
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to the boundary, if K(r;,a) determines a harmonic function on R, then
{r;} is called a fundamental sequence of ideal points r_ corresponding
to the limit function K(p, r_.). We denote by I' all ideal points, then

K(p, q) is defined for all points of R+I'=R, K(p, q) is harmonic for p
for fixed ¢, and harmonic for ¢ for fixed p. The topology introduced
by the distance

_Kp,7r) _ K(p,7,)
1+K(p, 7)) 1+K(p,1,)

&(ry, ry) of », 7, by &, r,)= sup!
7 |

Pe
is called Martin’s topology, the potential will be defined for the mass-
distribution on R is given by jK(p, ) du(r).

Activity.*® In the neighbourhood v(p,) in Martin’s topology, if there
exists an unit-mass-distribution p such that the potential by p is not
bounded in the neighbourhood of v(p,), then p, is called an active point
to p, .

Theorem 3.1. p,=1lim pi, p,=1im pj and lim G(pi,a) >8>0,

2 J 11
and lim G(pi, a) >8, =0, and if p, is active to p,, then p, is active to p,.

Proof. From the hypothesis there exists a sequence {pi}, {pj} such
that lim K(p?, p}) = oo, then we can extract a subsequence such that

n min
K(pin, pi”)=g€g%’§“-g W8 n=1,2 ... 8>0
1)
then Z%K(piﬂ, P> STnd is the potential required of the mass-
distribution in b(p,).

Corollary. If lim G(pi,a)=6">0, lim G(p],a)=8">0, then the
activity has Symmetr;city property. '

If K(p,p.) is bounded in R, we shall call p_ a singular point.

Let Ky, (v, p.,) be the lower envelope of super-harmonic functions «(p)
such that «(p)= K(p, p.) if p€b,(p.) then K (p, 1) =K, , (D) D)
Martin proved that lim Kbn(p, p,)=K(p,p,) or 0 and is called p, a
minimal point or not a:':cording to lim K, (p, p,,) == 0 or O respectively,
and non minimal points set at most ”negligible (outer harmonic measure
zero), and K(p, p.) is minimal function when p_ is a minimal point.

Theorem 3.2. If p_ is inactive to almost all points of I'—p,_, (except

14) See 4).
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at most negligible set) and moreover if K(p, p.) is bounded, then p_ is
singular minimal point.

Proof. For any given & >0, there exists a finite number of

neighbourhoods b, : Z b, C I'—p_ such that the outer harmonic measure

of o, \I< & and in X v,, K(p, p,) < M, pe}“b,, P, €9,, then on
almost all points of >1v, /\ ' has limits value zero, but K(p, p,) < M
follows that K(a, ¢)=0 if p_ is of harmonic measure zero since K(a, a)=1,
then p,_ is positive harmonic measure thus p_ is a minimal point.

We shall show by an example the condition that p,_ is inactive to
almost all points of I'—p_ is necessary.

(Fig. 2)
Example. Let R,, R,’,, R}’ be rings in the unit-circle |z|< 1 such as
LT S S
(| l<1- 2n+1 o e << Ty
— i . .
1_277,+1 <lzl< 1—2(,,“_1‘5 : n=1,2, ..., respectively.

Put p,=32¢" Mn',‘s’ where M;’ is the module of R/ i.e.
1
2(77{_‘-1) we map R, onto the ring e~M» <|¢| < eM» where
1—

2n+1
2M, is the module of R,, and H(¢) be a harmonic function such as
|H(§‘)|<p},+5°: e My < || < eMn: §,°>0, then there exist a number
N, such that |Max H(¢)—Min H()| < l where Maximum and Minimum
mean the Max. and Min. on |{|=1 and larg ¢| < 22” N, >N.,.

Let R, be mapped onto the ring e Ms <|¢|<eMn, and put

m, — ____%_

22N+ 1)’

= log

in ring R, we denote by 7, the rings such as

eMa—mG+2) < |£]| < Ma=mG+D) | g=MutmG+D) < |£| < o~ Matm(i+2)

In »7, 7 make systems of slits {I7,}, {I2}} : ¢ =0, 2,4,6,..,2N_2;
i=1,23..2"

2" 1 7=123, ..., 2%
Ity e~ Ma=mGH2) < |£| < o= Mumm(G+D) g = (2;,, 7

15) See Chap. IV.
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Where N, is'® the number to be defined in the following manner.

Let 7' be the indirect conformal mapping p ~ % in itself, where %
is the symmetric p is the symmetric point of p with respect to arg & =0,
and 72 is the indirect mapping p ~ D, where P is the symmetric point

of p with respect to arg{,’— —% and T, corresponds to 4 i
57!' 77!' J
T4 and 7”7 so on.

We cut R, by a cut lying on the real axis and identify the new
boundaries lying symmetrically with respect to the imaginary axis and
obtain two new surface R}, R .

If |Ulp) < pit® (8">>0), let N,—oco, then |U(p)—U(Ty(p))|—0
and |U(p)—U(Ty(p))|— 0 and we have %J—»o on the real axis, because

U(p) is harmonic on real axis, thus by the'” boundary problem U(p)
converges to a harmomc function on the part of the new surface R.(R})

lying on e'M"+(4+7)m”gl;lgeM”_(4_?)m” and |U(p)—U(Ts(p)|—0
in this part, consequently there exists a number N, such that U(p) is

symmetric and periodic except at most % with respect to 2N5 directions

Mn Mn
in ez <|¢|<Le2 .

We make slits {S*} in R,,S"=z=1r¢"? such as §=0,

1 1 1

a1 =" Tl w

We denote the image in R, of {I7;} and {I};} of R, by the same
letter and F, and F, two unit-circles |z|<1 with {I7,}, {I?;} and {S"}.
We shall get a Riemann surface F composed of F, and F, with
identifying in the following manner.

Identity two symmetric edges of {I7,}, {I1}}: (n=1,2,...)(,i=1,2,
2N7) lying symmetrically with respect to the axis: argz =0, or —%

of F, (i=1, 2) respectively. In general for 7 in the sector T | <argz

9i-1

16) Y. Toki: On the classification of open Riemann surfaces. Osaka Math., Journal,
Vol. 4, 1952, pp. 191-201.
17) Let ABCD be an rectangle with sides AR, BC,CD, DA and U(z) be a harmonic

function such that U(z)=0; z¢ AB+CD and g—f{ is given when z¢ BC+AD.
On the other hand we denote by N(z,z;) the harmonic function with logarithmic
singularity at zo and N(z)=0: z¢ AB4+CD and giv=0: z€ BC+DA, then we have

U(za)—g NaU ds .

c+p4  Ox

From this we see that if U(z)—0: z¢ AB+CD and ’a—n—‘-»O: z€ BC+AD, then U(z)-0.
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27(k i . .
S%(i;li)= (=0,1,23,...,2°; (n=1,2..) (,i=123..). We
identify {I7,} and {I7}} with edges lying symetrically on the axis
argz:%%(k+—12—). We identify {S”} of F, and F, with the edges.

On the surface let w(p): p €F be a positive harmonic function and
denote by Max w(p) the maximum of w(p) when p lies on |z|=17r, then
|Pl=7r
1
T on+1°

If lim max u(p) > P.*®, then there exists at least one sequence of

Tn ’ .
R, of F, or F, on which min «(p), p C R, = P”, because in R there

exists a curve connecting two boundaries of R, on which u(p)ng,'
where & and &' are positive numbers and Min u(p) = P& ; p </’ follows
that «%(0) tends to infinity. Thus we may suppose without loss of

generality Iim «(p) gP},‘H}"; pER,. Next by the property of N,, and
Tn
N/, we have (Max u(p)—Min u(p)); p lies on |¢{|=1)< %+((Max. u(p)
—Min. (p)): when p lies in the sector 0 <|arg é‘[g% and [¢]|=1)
1 1 1 o .2
p— = —_ — e 5 ( _ —_—
Thus on A, =|z]| \/<l 2n><l i n2>’ | Max u(z)—Min u(z)| < .
This follows that on F, with projection on |z|=2X\,, u(p) tends to
constant @, (=1, 2). It is clear that @,< cc. Finally on F, there is no
non-constant unbounded positive harmonic function, and the dimention
of the class of bounded harmonic functions at most two. In F, there
exists a non constant bounded function vanishing on {S"”}, therefore
the dimension of the class is at least two.

On the surface K(p, p,) < M for every ideal point of Martin’s
topology and is spanned by two bounded harmonic functions H,(p) and
H,(p) and since F has only one boundary components I' has infinitely'®
many points (density of continum) singular points and only two of them
are minimal. R. S. Martin proved the set of non minimal points is F, and
conjuctured!® that this set was non dense in I, but our example shows
that his conjucture is not always true on an abstract Riemann surface,
because the set of ideal points of this example is isomorphic to the
closed interval [0, 1] and only two ends correspond to minimal points.

[im max u(p) < P72 where r =
n

Theorem 3.3. Let R be a F-type covering surface, over a null-
bouudary Riemann surface then on R there is no singular minimal function.

18) M. Brelot: Sur le principe des singularités positive et la topologie de R.S. Martin,
Annales Univ. Grenoble, sci. math. phys., 23, 1947, pp. 113-138,
19) See 13).
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Proof. Let u(p) be a singular minimal function, it is easy to see
that «(p) takes zero or maximum M on I' except outer harmonic measure.
Consider u(p) in R*: |z|< 1 then u(z) has angular limits M on a
positive measure set G, we divide R into a system of enumerable
neighbourhoods non overlapping and without lacunary, then there exists
at least one ! such that the image E, of A.B.P.s lying on b} has
common positive measure set Ei with G. If Mu/R%, E{)= u(z), where
# R, E) harmonic measure of Ei, then we divide b} into finite number
set v}, v} ... non overlapping and on lacunary and consider Mu(R", E?),
it is clear that w(R™, E?) < w(R*, E%) and lim Mp(R®, Ei*)=0 by
adequate subdivision, consequently there exists a harmonic function such
as u(p)= u*(p)=0. This contradicts the minimality of «(p).

2. On subsurfaces

Theorem. 3.4. Let Rc€O, and S be o subsurface with at most

enumerable infinity of analytic curves {C,} as its relative boundaries
A

which are converging to the boundary of R. When we denote by S the

doubled surface of S being symmetric with respect to {C,}, then S is
conlained in O, too.

Proof. Denote by R,, the exhaustion of B with relative boundary
I',,, and by w,(p) the harmonic function in R, —F, such that o,(»)=M,,
if pel',,, 0 {P)=0 if p is contained in the boundary of F,, where F,

is a compact disc contained in S/\ R and S gz”ds= 2w, then
boundary of Fy
it is clear limm M,=-oco. Put z,=e*nt"n—1reo, where hn(p) is the
conjugate of w,(p). Denoting by F¥ the symmetric disc is S of F,.
If Sis a positive boundary Riemann surface, then there exists a
non negative harmonic function w(p) such that 0 < w(p) <1, w(p)=0

if peboundary of F, and F§ and D(w) <M, 2% =0 if pe SC,,

Sw §—Fo—F% on
and ——ds=m.

bounday of Fy
Regarding w(p) in S/\R,—F,, and denoting by " the curve on
which |z,|=7r. Put L(r,)= g lgTw Pmdl (= 7),

Orm

2
then L¥r,) < 271, s g%‘i 7,.d0 ,
o, "
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M M
n ern e’ n

_ ow\? | 1 /ow LX(r) aD ¢
S I;e(w)F = { S {<§ﬁ-> +F<W)} rdrdé , j Br dr < g ar dr < D{w),
ﬂ m 0 0 1 0

Let R,,— R then ¢ — co, we have D(w)—> oo, this is a contradiction.
We denote by S,, and S,y the class of sub-Riemann surface on

which any bounded harmonic function vanishing or with vanishing normal

derivative on the relative boundary of S must reduce to a constant.

Theorem 3.5. If there is no singular minimal point on the boundary
of S, then '
Sox T Sos -

Proof. Let u(p): p€S be a non-constant harmonic function such
as 0 < u,(p) <1 and vanishes on the relative boundary of S, since there
is no singular points there exists u,(p)==u,(p): lim uy(p) = lim u,(p) = 1.
Put uy(p) = u,(p)—u,(p), we denfine new functions u,(p)*::i=1,23
such that «¥(p)=%,(») on SN\, and symmetric with respect to the
relative boundary of S where I',, is the relative boundary of S,, being
an exhaustion of S, and we extract {u}(p)} converging uniformly to
wf(p), then 1= wk(p)= uf(p)+uf(p). limu¥(p) >0, hence there is at
least a non-constant bounded harmonic function with vanishing normal
derivative. . '

As the Yspecial case if the genus of S is finite then this theorem is
affirmed. Because S can be mapped onto the subsurface of a null-
boundary Riemann surface, then by theorem 1.2 the universal covering
surface is F-type.

Remark. The condition that there is no singular point is necessary
is easily shown by examples.

Extension of L. Myrberg’s theorem?®,

Theorem 3.6. Let w(p); p€R and D(u(p))< co, then u(p) is ex-
pressed by Poisson’s integral in R*; |z|<1.

Proof. Let V(z) be sub-harmonic function such as S |V(z)|do < M

12

and G be a simply connected domain in |z|<(1 with boundary I', then

[1vido <m,

I

20) L. Myrberg: Bemerkungen zur Theorie der harmonischen Funktionen. Annales
Acad. Sci. Fenn., 107, 1952.
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where do is harmonic measure with respect to G. In fact denote by
V*(z) the upper envelope of sub-harmonic function such as V*(p) <|V(p)|
if pe {(|z]<1)—GY4, then V*(0)=|V(0)|, hence

M= g |V|do = V*0) = S | V(P)|de .
zl=1 T

Let G(p, p,) be the Green’s function of R with its pole at p,,
when z=0 is the of p,, and put e %" =re?, then M = Dp (u(p))

2z
1 ( o%re*
= “ gradzu(p)rdrd0=7j (a/r )

G >logr 0
R N\E[G >logr], since Fis a subsurface of R and has the boundary
in |2|>>1 except measure zero set. We map F} onto |£|< 1, then the
|z|=r in F? is transformed onto a closed curve in |£|<(1, by the

preceding we have

do = j u’dp, where F,=

nguzro@: j u*d0 implies S lulzdf)gM:lii_mfrigl
el = lz|== 7, )

thus, this can be expressed by Poisson’s integral.

Corollary. O,; C Ogzpp=104,.

Assuming that D (u(p))< oo, we map R” onto |z|< 1, then there
exists a constant M, such that any one of the set where u(z)= wu(p)
has angular limits > M +§, between M,+3, and M,—3§, and < M,—39,
has positive measure. We denote by Gps, 5, = E[u(p) = My+5,] N\ R,
Gt = B[ My+8, > u(p) > My—8,1 N\ B, Gpry—s, = E[u(p) < My—3,]
N\ R, and R, be an exhaustion with relative boundary I, , let
Un(D) = My+8, when D€ Gpgyppy N\ Tm» %n(p)=u(p), When pe Gyt
NTLwm, W)= M,—8, when p € Gpg,_5,/\I'm, respectively, we define a
harmonic function «*(p) by extracting from uniformly convergent
sequence of u,(p). It is clear by Dirichlet principle D (u*(p)) < D(u(p))
<M. On the other hand, we map Gpy,+s, (Gar,-»,) Onto |£|<’1, then

the boundary of Gpris,(Gar,—5,) €xcept relative boundary where

w(p) = M,+8,{M,—38,) has positive measure, consequently u*(p) is non
constant.

Chapter IV. Behaviour of analytic functions

1. Analytic functions on O,
We consider the behaviour of analytic functions defined on an
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abstract Riemann surface or a covering surface, at first we prove next
simple theorem.

Theorem 5.1. Let R' be the remaining surface after a compact set
of R is removed, if R€ 0, and €0, then there exists no analytic bounded
functions exist.

In fact on R’, let A(p) be a bounded analytic function, then by
theorem 3. 3. on R’ no singular minimal function exists, but on the ideal
boundary has positive measure, hence there is a non-constant bounded
harmonic function with the value 0 on the relative boundary of R/, it

follows R€ 0y .
We investigate the behaviour of the boundary of Riemann surface

when it is given as a covering surface over the a z-plane.

Theorem 5.2.%0 (W. Gross). Let z=2z(p): p€R, be meromorphic
and R be a Riemann surface of O,, denoling by p = p(z) ils inversed
function, if p=p(z) is regular at z,, then we can continuale z(p)
analytically on half lines: z =z,+1re® (0 < r < + o) ewxcept for 6 of
anguler measure zero.

2. Gross’s property

Let R be a Riemann surface of O,,, then any connected piece has
no lacunary of positive capacity projection, this implies B has Iversen’s
property. In regarding above result we ask if the Gross’s property
holds in a surface of O,,.

Theorem 5.3. A Riemann surface of O,, has not always Gross’s
property. This fact tells us the essential condition for B to have the
Gross’s property is the “force” and not complexity of the ideal boundary
and character of O,.

Example.

1) Let G be a curvilinear rectangle with sides C, —a < R(z) < a,
J@)=0. Cy:z+a=¢@) ae=90), 0<y=<b C;: —a<R()<q,
J)=b. Cp:v—a=9y), —0=9¢0), b=y=0, and U()=0 be a
positive harmonic function such that U(z) = M, if z€C,+C,: U(z) =0,
if zeC,+C;, then there exist a curve [ connecting C, and C, on which

Min U(z) = «(0, 2) where w(z) is a harmonic function in a rectangle with

21) K. Noshiro: Open Riemann surface with null boundary. Nagoya Math. Journ.,

3, 1951, pp. 73-79.
Z. Kuramochi: Potential theory and its applications, I. Osaka Math. Journ., 2, 1951,

pp. 123-175.
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vertices (—a,0), (¢,0) and (a,ib), (—a,ib) and w(z)=1 if z€segment

(a, 0)(a, ib), (—a, 0)(—a, b) and w(z) = 0 if z €(—a, 0)(a, 0), (—a, ib)(a, ib).
Because, let f(z) be a function mapping the curvilinear rectangle onto

at+e
the rectangle (—a’,0)(a’,0)(a, ib) (—a',ib) then 2o’ < S (g—i‘da, and

b o—a —-at+@

ol

40 < 20 S S |f']? dedy = 4aa’d, it follows % < From this fact we

0 ¢t+a
easily have our assertion.

1+ +-- +2,,_

2) The nwmber P,_,. Put r,= %XZ y Sp=1ln_1
21+ e +2n_2 B
=1 (7',, P 1)—— «(2"*—1), and R, be a ring 7, .+,
<|2|< r4—5,, and M, be the module of E,, M, = log > 2 +1 2 +1  The
3.2+1
transformations “ring R, (z-plane)— the rectangle (—=, 0), (=, 0) (=, iM,)
(—m,iM,)— upper half y-plane ( =1 ,B=—1, D=1, E=%>
— the unit circle of the $-plane”, are carrled by
€=_1_§ dn < (1+z)7;+v (1—z)
_ .2 — 2 23’ .
2 TV (A—7") (A—i"y") (1—z)n+¢%(1+z)

- ~=(3z;)
respectively, through some calculation we have w(z]lgl,,) ~.='§eé "

71:2(.L.) .
Put P, ,=32¢ ‘Ma/, (Fig. 3)
3) The number u,. Let I: be slits such as; r,—s, <7 <7r,+¢,.

0= 227:: ,v=1,23 .., 2" and R, DR, be rings such as R,: r,+t,.,

=1 = Tae1—Sa-1- B r,,_1+% taaiZ<r< fr,,—i—(l) S.» and U(z) be har-
monic in R’-—Z I“—Z,Z_1 ,and 0 K< Uz) < 2P}li§1" : 8, >0, and vanishes

on 21“4—2 I, ., then there exists p; such that Max U(z), (when z is
contamed in R) < lz for p, >p,. We define p, = Max (u;, pi’1).
/

4) The number u)’ and u,. Let U(z) be a harmonic function such
as [U(z)|;2P}1ﬁ° if z€ R;’ then there exists p,”” such that |Max U(z)

—Min U(z)|, (when =z lies on ¥ = 4,/(1',,_1+E ta_1) (7’,,-—% s,) and
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0<|argz|< 27, for py= ul’. Put m,—Max [u, u/’].

= 2,,,;1.)

5) The number N,. Let U(z) be a harmonic function such as
Pl oMnt L

0< U(z)gZP},ﬂ" in R,—>"I—3>11,,,, then there exists a number N,

3 Iv

. /
such as if U(Z)éﬁ on & I iv=12..,2" =12 .., 2,

n+1-
length I® < length I"+*
Nn ’ Nn—l

respectively, U(z) must satisfy the condition that Max U(z) g% , when

except any measurable set of having measure <

z€R!. We denote such number by N,.

6) Let o(l): [0 <¢<1] be absolutely continuous, almost every
where derivable and integrable and mes E[ ¢'({)] = 0 =mes E[ ¢'(t) = oo]
=0, then there exist «; and «, depending only on ¢ but on E such that
Ky gg | 9'(t)|dt > «x,, where E is any measurable set with measure §,.

+

7) Let G be a domain in the z-plane with boundaries composed
of analytic curves v, v, ... y,-1, 7, if We map G onto the ring 1 < || < e®
so that i, y,s ¥2s -, va—1 may correspond to |¢{|=1, |{|=e® and
radial slits in this ring R. Let U(z) be harmonic in G and U(z) = ¢,(?)
if z€q,, UR)= @, (z) if z€q, respectively, then Dy U(z))= Dx(U(S))

1 25“
22N
v

functions from U(z) and ¢(z).

> | p1(€i®)— p,(ei?)|* d6 where U(e™) and ¢,(ei®) are the transformed

Proof. Let 7(z) be harmonic such that 7(z)= @(<S) if |&|=1 or
|S|=¢€® and %:0 if e radial slits v;_, i=2,3,...,n—1.,, where
v; are the images of v,, then

— O ge
D(r, U—r) = S_l (U—n) T ds =0,
71+t 27
D(U)—D(r) =D(U)—2U, )+ D(r)=D(U—7)=0.
1 7
L — o .
but clearly D(v) > 5 S | p(S)— @u(S)]|dO .
v (Fig. 4)

8) In the z-plane with slits I}, »=1,2, ..., 2", we enclose I; by

a simple closed curve Jy such that
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TPy 2wy s 27y T

|2]= =g, g — g g S A8 RS g g
TatTat <)o) g TantTe arge =22 —
o= Tt e Sargr S T
and let L) and LY half lines such that
Ly: 0<|z|<Lc0, argz=—22-7f,,i+r:—2—.§m,
LyY:0<|z]| Koo, argz = 22,“, +7t+2 o
Ly: 0<|z|<co, argz = -‘27:—:+

We denote by G} the domain with boundaries L, Lz, ZJ,,‘,, I® and map
it onto the ring 1< |w|< ™", so that Ly+L¥, I} and S Ji may be

<

transformed onto |w|= ™", |w|=1 and radial slits Iy, > Ik

=Y
respectively In this mapping any measurable set of positive measure
Z-N— on I} is transformed onto a measurable set of positive angular meaure

n

1

than
k.,

bounded by J; and I of module M is transformed onto a domain
bounded by their images denoted by Jk., and Li,,=(|w|=1). Let e
be the distance of Jy,, from w =0 and define the number by

N
ph= el )3%}”?2 +2802M . We choose «, such that e™ < e, 2 < e
o b 10

9) a) Let R be aring 1<|5|<ef and S;, Si be slits such that

and smaller than %, from (6), and the doubly connected domain

B 26
S,:e0 <|S|<Zec, arg%'_&;l (k=12 ..,0,
T 58
Si:es <|S|Lee, argg_—zll (=12 ..,D,

l

we make two same rings with the same slits (R—31S,—>1S;) and con-
nect crossweise two surfaces with S, and S; with same projection
then we have two-sheeted Riemann surface . Denote by ¢ the point
having the same projection as ¢ and S(§)=|U(§)—U(§')| be a sub-
harmonic function on R such that 0 < U(§) < P and vanishing on all
branch points (end points of S, and S;) then there exists a constant X,
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8
such that |S(S)|<AP: A< 1, when |S|=e? where A depends con-

ﬁzz)
T

tinuously on only the ratio In the following we fix two bounds

M= ?gN so that A may be always smaller than A,.

b) The number s, and ¢,. We choose s, and ¢, such as

P_,+28029P-n
> Tntl 2 pplidngi-s o L
270l (I (smw —a)< ;@ et “n
(Fig. 5)

In the ring; Ri; 1 <|w|< e®*, denote by C77, Cry (m,v fixed
i,j=1,...,q,) rings and H; circle such as

Cr3: 2a,—o(i(i—1)+2§—1) < log|w| < 2a, —yi((i—1)+ 2 —1+1)
~n-v. o e . _ sra s _ An
" gi(i—1)+2f—1<log|w| < o(i(i—1)+27 —1+1), Y=o g, 1)
H™v: log|lw|= «,, i>7,
We make slits S73/, Stik, S S, S?',‘; such as (u, v, fixed i, =1, ..., q,,
i=7)=0.
S Zan——ry(z’(i——l)+2j—1——é~> < log|w|< Zan—y<i(z'—1)+2j—1 +%)

HA 26¥,.-f7<i(i—1)+27'—1——é—> <loglw|< 2a,,-7<z'(1;_1)+2j_1+%>
St «y(i(i—l)+2y‘—1 +%> < log|w|< ry<i(i—1)+2j—1 +%>

Srge: o(i-1+2i-14 L) <loglw] < 51614214 2)

argw =27 =123 .1,

n

where M > -7 > N.

I
Let F(1), F(2)... F(2% 1), F(1) F(2) ... F(2%~1) be 2% equal examplars of
ring B with slits ST, i SEANA

We connect F(z) F(z) crosswise on  SP, S, ST, STk
1=1,23,..,¢,, «c=1,2 ...,1,

22) We map R with slits S,S,S‘:',,S:’ onto a band by n=log ¢. Put V(n)=U({)-U({),
then V() is single-valued and has same absolute values on two edges of each S or S and
opposite signature. Let V*(({) be a harmonic function with value Max (0, V(%)) on the
toundary and S7,S,S,S5’, then lV(C)igV*({)=SV*(§)g—f(§,£)dsg, from this we see easily
A depends on the ratio ? .
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Let T, be transformation z <> %, where z and Z are points of F(¢)
A
and F(¢) having the same projection.

We connect
F(1) . F(2) F3)  ~F4) -
A >< A A >< A on Si:2u¢’ etc. i=2'---Qn
F(1)7 *F(2) F(3)” “F4) -

and by T, corresponding transformation.
In general connecting and corresponding transformation are

T, F(2"+1) o F(2m 42172 4 1)
F(2"+2) o P2 42724 2)
F(2m+2"—2) (—)I?'(Z'm+2"—l) m:O 1 2 e, q '—j
F2"+27 41) o F(2"+1)
F(2m+29242) o F(2"+2) on S,p: i=7, j+1l...q

F2+2971) o R(2m 42972

We denote by ]F(z’)—Iﬁ(z')l the maximum |U(w,)—U(w,)|, where w,,
w; have the same projection lying |w|= €™, then by a) we have

|F(1)~ F(D)| <)\,‘1n2_p1+50
IF(l) —F(2- 1+])|<)\,q‘1+12P1+60

Taking account of the property of s, and q, we see that there is at

least s, examplars on which U(w) has equal value except at most %—

when w lies on |w|= €™ : H™.

Structure of the surface (Fig. 6)
F, is the unit-circle |z|< 1 with slits I}: n=1,2,...,v=1,2, ...,
2 F,(n=1,2,...) be the z-plane with slits I;. We map G, onto

ML ) 2
1<|w|<e”™ and define the ring 1 <|w|<Le

have made slits Sty., Sty/, ';},’(, SQ"‘,‘,‘C, conversely in the z-plane i.e., we

147)

and in 9) in R} we

denote by the same letter Sz the image S73,, S’;,ﬁ’, s S'm in F, of

the w-plane. Now by F, we denote the z-plane with slits I}, S7},, S’;,‘,
A

s St and by FR, F3 .. F2q"“1, F; ... ﬁ’iq"“l examplars of the z-plane

with equal slits S73,, Sy, Sw s S;‘}’K.
On the unit-circle |z|<(1 we take a disc |z|< »,+s5, having slits
I',...,I), we connect Fi(n=1,...,m) and F,N\(|z|<7,+5n,), ON
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. . o A Aog
I;(v=1, ..., 2"") crossweise. Connect F} with F2... F %1 F} .. F 1
on Sy, Sp., Swr., S».(»=1,2,..., ) in the manner mentioned in 9) b).

In such a way we have a Riemann surface R,, which covers the part
12| < T+ Sy 142704200 ... 427" times and the part [z]|>7,+Sn,

29142724 ... 429" times, and R, has only one botindary component.
Put R =\/JR,,, then R is the required Riemann surface.

Proof of the theorem.

1) There exists no positive harmonic funclion on E.

Let U(2) be a positive harmonic function in R and Max U(z) be the
maximum of U(z) on F, with projection on |z|=7,+t,, then lim Max
U(z) < Py*8%-; 6 >0. K O

If there exist a infinitely many #,+%, on which Max U(z) > P1+$
where 8 >0 then by 1) the ring 7,,+t,., <|2|< 7,—S, contained in
F,, there is a closed curve which is a proper cut (dividing cut) on which
Min U(z) = &' P, this follows that U(0) — co. Hence if U(z)== constant
infinity, we may suppose lim U < P}l+6°. On R,—R,_, we

” ‘Zl=rn—~l+tn—-l
denote by Tx2) (v=1, 2, 3, ..., 2*) the conformal mapping in itself such
that 2z« Z where Z is the symmetric point of z with respect to the
1 < 1 )
27Z'<1J+—2-»> 2x u+;2_

2#71. or 7=+ 2!’%

ing surface over 0 <|z|< oo, covers 73‘:124’—7:?‘ <lz|< ﬁigﬁl 2% 4 q

*
setraight L) : arg z = , R,—R,_, is a cover-

times the other part of the z-plane 2% times, R,—R,_, has only two
boundary components on which U(z) < PLT% then also in R,—R,_,. Put
U(z) =|U(z)—U(T¥(2))|, then U(z) =0 on all points of R,—R,_; with its
projection contained in E;;; Denote by V’(z) a harmonic function such

that V/(z)=0, z€ R,—R,_, if z has projection on L}, LY, V/(z)= PLt%

n+1
if z is contained in the boundary of R,—R,_, i.e. z€F, and |z|=
""“12—'1'—7"'0r |z]=7;"+2—r”“‘—1. Denote by R} the surface composed of ﬁ',i,

I:’f.: i=1,273,..,2% 1 which is a part of F bounded L? and L* and
the part of F, contained in > J) which is connected with Fi on >'I
and 318" +S+5'+S and V*(zv) be a harmonic function on R, such that
VNz)=0 if z lies on L} or LY of F% or F and Vz)=PL'Y if 2 lies
on >1J) of F,. We investigate the behaviour of V*(2) on R,, since the
part of F, bounded by >} J! is composed of at most 2»—1 doubly con-

nected domains with mcgdule M, then the Dirichlet integral of V(z)
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on R} is smaller than the Dirichlet integral of the harmonic function
being zero on Zv]J,,’; and =2 P}zﬂ" on ‘;I;, over the part of ', bounded

by VJY and 0I; v=1,23,..., 2% ", then we have

1 1 21:?0
—— (9Hn— n
Dpy(V(2)) < 5 (2"7 )~y e
If V"(z)g% on the measurable set of measure larger than kl of at

H) of F,', then on account of 9) there exist at least s, examplars of F

or F' such that V¥ (z) = l on a measurable set of measure >—k— on H

where measure of set means the measure of the image when G, is
mapped on eP”>|w|>1. then

P~+260 2ﬂn

D(VNz)) = |-y (mm_a )Z sma)

This contradicts the property of ¢, and s,

If |VNz)—VNz,)|= l on the measurable set of measuere > —l:— of
at H), where arg V“(zl)-— arg V*(z;) and lie on |w|=1 and lwl_e
of F,/ respectlvely, then by 7) and 8), we have

~+23(‘ Iz
1 P02k
NQ%4 =
Dpy(V ()= 2an’k,a, = ’

(n)

where right hand is the Dirichlet integral over the part of F bounded

by J? and I}, this contradicts to 3) therefore VAz)< % except Z:l_ angular

measure at any of Iy. On the other hand U(z) is sub-harmonic and
*¥ %% =
< P1+8 and vanishes on Ly+L'y, then U(z)<V"'(z): AM=2x A+1,
T

A+ 21 where ]arg LV—argL"[:largL —arg L} =5- lfl(z)l<i on

lenzgvth i measure set thus |U()—U(TY =) < <£ in ring

R} but v is arbitrary, accordmgly U(z) is symmetric and peI'IOdlC with
respect to 2 directions L; except at most % in step by 2) |Max U(z)

—Min U(z)|<%, when |z|=1r¥, where Wf:x/(m—1+utn N7re— 11 S,)-

It follows that U(2) must be a constant.

2) As F, is a subset of the unit-circle, it is clear that R has not
Gross’s property and on account of theorem 5.2, B is a positive boundary
Riemann surface.

every I, except

(Received September 19, 1953).








