Unbiasedness in the Test of Goodness of Fit

By Masashi Okamoto

1. Introduction. Let X_{1}, \ldots, X_{N} be a random sample from the population with the d.f. $F(x)$. We are asked to test the hypothesis H_{0} that $F(x)$ is identical with a specified continuous d.f. $F_{0}(x)$ against all alternatives. For this purpose we shall use the multinomial distribution, dividing the real line into n intervals ($\left.a_{i-1}, a_{i}\right], i=1, \ldots, n$, where $a_{0}=-\infty$ and $a_{n}=+\infty$, so that $F_{0}\left(a_{i}\right)-F_{0}\left(a_{i-1}\right)=1 / n, i=1, \ldots, n$. If a_{i} are not determined uniquely, we may take any values satisfying the conditions. Put $p_{i}=F\left(a_{i}\right)-F\left(a_{i-1}\right)$ and denote by N_{i} the number of X 's that fall into the interval (a_{i-1}, a_{i}]. Then, of course, $\sum_{i=1}^{n} p_{i}=1$ and $\sum_{i=1}^{n} N_{i}=N$. Denote, further, by W the space consisting of n-dimensional lattice points (k_{1}, \ldots, k_{n}), where k_{i} is regarded as the observęd value of the random variable N_{i} (therefore, $\sum_{i=1}^{n} k_{i}=N$).

The test is equivalent with determining the set (acceptance region) in the space W. The set S in W will be called symmetric provided that, if S contains the point (k_{1}, \ldots, k_{n}), then S contains also all its permutations $\left(k_{1}{ }^{\prime}, \ldots, k_{n}{ }^{\prime}\right)$. We shall say, finally, that S satisfies condition O when, if S contains (k_{1}, \ldots, k_{n}) such as $k_{j} \geq k_{i}+2$, then S contains also ($k_{1}, \ldots, k_{i}+1, \ldots, k_{j}-1, \ldots, k_{n}$). It is easily verified that if S is symmetric the convexity implies the condition O. The converse, however, is not necessarily true. For example, we shall consider, in the case $N=12, n=3$, the set S consisting of nine points shown in Fig. 1 and their permutations. S is symmetric and satisfies the condition O, but is not convex, since the middle point $(7,4,1)$ of the points $(8,2,2),(6,6,0)$ does not belong to S.

Fig. 1

2. Theorem of unbiasedness.

Theorem. If the acceptance region R of the test is symmetric and satisfies the condition O, the test of H_{0} is unbiased against any alternative.

Proof. Putting

$$
P=\sum_{\left(k_{1}, \ldots, k_{n}\right) \in R} \frac{N!}{k_{1}!\ldots k_{n}!} p_{1}^{k_{1}} \ldots p_{n}^{k_{n}},
$$

we have to prove that P is maximum when $p_{1}=\cdots=p_{n}$.
Since R is symmetric, P is a symmetric function in p_{1}, \ldots, p_{n}. Thus we have only to prove that, if $p_{1}<p_{2}$,

$$
P(x)=\sum_{\left(k_{1}, \ldots, k_{n}\right) \in R} \frac{N!}{k_{1}!\ldots k_{n}!}\left(p_{1}+x\right)^{k_{1}}\left(p_{2}-x\right)^{k_{2}} p_{3}^{k_{3}} \ldots p_{n}^{k_{n}}
$$

is monotonically increasinfi in x, when $0<x<\left(p_{2}-p_{1}\right) / 2$. In the sequel we shall consider x only in this range.

For any ($n-1$)-tuple (k, k_{3}, \ldots, k_{n}) such that $k+k_{3}+\cdots+k_{n}=N$, let $R_{k k_{3} \ldots k_{n}}$ be the stibset of R consisting of (k_{1}, \ldots, k_{n}) such that $k_{1}+k_{2}=k$. (Some may be null set.) Then $R_{k k_{3} \ldots k_{n}}$ are disjoint and exhaust R. Therefore
where

$$
\begin{equation*}
P(x)=\sum_{\left(k, k_{1}, \ldots, k_{n}\right)} P_{k k_{3} \ldots k_{n}}(x) \tag{1}
\end{equation*}
$$

$$
P_{k k_{3} \ldots k_{n}}(x)=\sum_{\frac{N!}{} \frac{N!}{k_{1}!\ldots k_{n}!}\left(p_{1}+x\right)^{k_{1}}\left(p_{2}-x\right)^{k_{2}} p_{3}^{k_{3}} \ldots p_{n}^{k_{n}}, ~ \text {, }, \text {, }}
$$

Σ extending over all n-tuples $\left(k_{1}, \ldots, k_{n}\right)$ belonging to $R_{k k_{3} \ldots \dot{k}_{n}}$.
Since R is symmetric and satisfies the condition O, all $R_{k k_{3} \ldots k_{n}}$ are symmetric and satisfy the condition O with respect to k_{1}, k_{2}. Thus, if not null set,

$$
R_{k k_{3} \ldots k_{n}}=\left\{\left(i, k-i, k_{3}, \ldots, k_{n}\right): j<i \angle k-j\right\},
$$

where j is a non-negative integer $\angle k / 2$, depending on k, k_{3}, \ldots, k_{n}, and so

$$
\begin{align*}
P_{k k_{3} \ldots k_{n}}(x) & =\sum_{i=j}^{k-j} \frac{N!(k-i)!k_{3}!\ldots k_{n}!}{i!}\left(p_{1}+x\right)^{i}\left(p_{2}-x\right)^{k-i} p_{3}^{k_{3}} \ldots p_{n}^{k_{n}} \\
& =\frac{N!}{k!k_{3}!\ldots k_{n}!} p_{3}^{k_{3}} \ldots p_{n}^{k_{n}} \sum_{i=j}^{k-1}\binom{k}{i}\left(p_{1}+x\right)^{i}\left(p_{2}-x\right)^{k-t} . \tag{2}
\end{align*}
$$

Put

$$
\begin{equation*}
B_{j}(x)=\sum_{i=j}^{k-i}\binom{k}{i}\left(p_{1}+x\right)^{i}\left(p_{2}-x\right)^{k-i} . \tag{3}
\end{equation*}
$$

If $j=0$,

$$
\begin{equation*}
B_{0}(x)=\sum_{i=0}^{n}\binom{k}{i}\left(p_{1}+x\right)^{i}\left(p_{2}-x\right)^{k-i}=\left(p_{1}+p_{2}\right)^{k} . \tag{4}
\end{equation*}
$$

If $1 \angle j \angle k / 2$, denoting by the prime the derivative with respect to x.

$$
B_{j}^{\prime}(x)=\frac{k!}{(j-1)!(k-j)!}\left\{\left(p_{1}+x\right)^{\jmath-1}\left(p_{2}-x\right)^{k-j}-\left(p_{1}+x\right)^{k-j}\left(p_{2}-x\right)^{i-1}\right\} .
$$

Since $j-1<k-j, p_{1}+x<p_{2}-x$, we have

$$
\begin{equation*}
B_{j}^{\prime}(x) \geqq 0, \text { for } 1 \leq j \leq k / 2 . \tag{5}
\end{equation*}
$$

With (2), (3), (4) and (5), we have

$$
P_{k k_{3} \ldots k_{n}}^{\prime}(x) \geq 0 .
$$

This and (1) imply

$$
P^{\prime}(x) \geq 0
$$

and this completes the proof.

3. Applications.

(1) The χ^{2}-test. The acceptance region R of the χ^{2}-test consists of the points $\left(k_{1}, \ldots, k_{n}\right)$ such that

$$
\sum_{i=1}^{n}\left(k_{i}-N / n\right)^{2} \leq c^{2}
$$

where c is a constant depending on the level of significance of the test. R is readily seen to be symmetric. In order to verify the condition O, we have only to show that

$$
\cdot\left(k_{1}+1-N / n\right)^{2}+\left(k_{2}-1-N / n\right)^{2}<\left(k_{1}-N / n\right)^{2}+\left(k_{2}-N / n\right)^{2},
$$

when $k_{2} \geq k_{1}+2$. This inequality follows from the relations

$$
\begin{aligned}
& \left(k_{1}+1-a\right)^{2}-\left(k_{1}-a\right)^{2}=2 k_{1}+1-2 a \\
& <2 k_{2}-1-2 a=\left(k_{2}-a\right)^{2}-\left(k_{2}-1-a\right)^{2} .
\end{aligned}
$$

Thus, by the theorem of the preceeding section, the χ^{2}-test of H_{0} is unbiased. This fact was mentioned by H. B. Mann and A. Wald [1], but as they used the Taylor expansion of the power, it is only the local unbiasedness that they proved.
(2) David's test. The acceptance region R of David's test [2] consists of (k_{1}, \ldots, k_{n}) such that at most $c k$'s are zero, where c is again a constant depending on the level of significance.
R is symmetric. As for the condition O, let $A=\left(k_{1}, \ldots, k_{n}\right) \in R$ and $k_{j} \geq k_{i}+2$. If $k_{i}=0$, the number of zeroes in $B=\left(k_{1}, \ldots, k_{i}+1\right.$, $\ldots, k_{j}-1, \ldots, k_{n}$) is smaller by one than that in A. If $k_{i}>0$, both are equal. Therefore $B \in R$, and the condition O is satisfied.

Thus, David's test is also unbiased. The author proved it in his recent paper [3], but the proof was lacking in generality and simpleness.
(Received July 10, 1952)

References

[1] H. B. Mann and A. Wald, On the choice of the number of class intervals in the application of the chi-square test, Ann. of Math. Stat., 13 (1942) 306-317.
[2] F. N. David, Two combinatorial tests of whether a sample has come from a given population, Biometrika, 37 (1950), 97-110.
[3] M. Okamoto, On a non-parametric test, Osaka Math. J. 4 (1952) pp. 77-85.

