A Characterization of Quasi-Frobenius Rings

By Masatoshi Ikeda

In this note we shall consider the problem: in what ring A can every homomorphism between two left ideals be extended to a homomorphism of A? ("Homomorphism" means "operator homomorphism"). We shall call this condition as Shoda's condition.\(^1\) When A is a ring with a unit element, Shoda's condition is equivalent to the next one:

\[(a): \text{every homomorphism between two left ideals is given by the right multiplication of an element of } A.\]

The main purpose of this note is to show that if A is a ring with a unit element satisfying the minimum condition for left and right ideals, then A satisfies Shoda's condition if and only if A is a quasi-Frobenius ring.

T. Nakayama characterized quasi-Frobenius rings as the rings in which the duality relations $l(r(I)) = I$ and $r(l(x)) = x$ hold for every left ideal I and right ideal x.\(^2\) Our result gives another characterization of quasi-Frobenius rings.

A denotes always a ring with the minimum condition for left and right ideals. Let N be the radical of A and $\bar{A} = A/N = \bar{A}_1 + \cdots + \bar{A}_n$ be the direct decomposition of \bar{A} into simple two-sided ideals. Then, as is well known, we have two direct decompositions of A:

\[A = \sum_{\kappa=1}^{n} \sum_{i=1}^{f(\kappa)} Ae_{\kappa, i} + l(E) = \sum_{\kappa=1}^{n} \sum_{i=1}^{f(\kappa)} e_{\kappa, i} A + r(E) \]

(1)

where $E = \sum_{\kappa=1}^{n} \sum_{i=1}^{f(\kappa)} e_{\kappa, i}$, $e_{\kappa, i} (\kappa = 1, 2, \ldots, n)$, $i = 1, 2, \ldots, f(\kappa)$ are mutually orthogonal primitive idempotents, $Ae_{\kappa, i} = Ae_{\kappa, 1} = Ae_{\kappa}$ for $i = 1, \ldots, f(\kappa)$, $Ae_{\kappa, i} = Ae_{\kappa, j}$ if $\kappa = \lambda$ and the same is true for $e_{\kappa, i} A$, and $l(*)$ ($r(*)$) is the left annihilator (right annihilator) of κ. Moreover we use matrix units $e_{\kappa, i, j} (\kappa = 1, \ldots, n; i, j = 1, \ldots, f(\kappa))$.

$c_{\kappa, 1, 1} = e_{\kappa, 1} = e_{\kappa}, \ e_{\kappa, 1, i} = e_{\kappa, i}$ and $c_{\kappa, i, j} c_{\lambda, j, i} = \delta_{\kappa, \lambda} \delta_{i, j} c_{\kappa, i, i}$.

We start with the following preliminary lemmas.

\(1\) This problem was suggested by Prof. K. Shoda. Cf. K. Shoda [4].

\(2\) See T. Nakayama [1], [2].
Lemma 1. If A satisfies (a) for simple left ideals, then A has a right unit element.

Proof. To prove this, we show $l(E) = 0$ in (1). If $l(E) \neq 0$, then it contains a simple left subideal $l \neq 0$. The identity automorphism of I is given, from (a), by the right multiplication of an element a. $a = Ea + (a - Ea)$, where $a - Ea \in r(E)$. Since $l(E)$ and $r(E)$ are contained in N, $l = l(a - Ea) \subset N^2$. Since $l \subset N^2$, $l = l(a - Ea) \subset N^2$. Thus we have finally $l = 0$, which is a contradiction.

Lemma 2. If A has a left unit element and satisfies (a) for simple left ideals, then A has a unit element and there exists a permutation π of $(1, 2, \cdots, n)$ such that the largest completely reducible left subideal of $Ae_\kappa i$ is a direct sum of simple left subideals which are isomorphic to $Ae_{\pi(\kappa)}/Ne_{\pi(\kappa)}$.

Proof. From Lemma 1, A has a unit element. Hence $r(N) = \sum E_\kappa r(N) = \sum E_\kappa E_\lambda \vee N$ where $E_\kappa = \sum E_\lambda \kappa$. $E_\kappa r(N)$ is a two-sided ideal for each κ, since $AE_\kappa r(N) = (\sum E_\lambda AE_\lambda \vee N)E_\kappa r(N) = E_\kappa r(N)$. If $E_\kappa r(N) \neq 0$ and $a \neq 0$ is an arbitrary element of $E_\kappa r(N)$, then there exists an $e_{\kappa i}$ such that $e_{\kappa i} a \neq 0$. $Ae_{\pi(\kappa)}/Ne_{\pi(\kappa)}$ is obvious. Since $E_\kappa r(N)$ is a direct sum of simple left ideals which are isomorphic to $Ae_\kappa i$, each component has the form $Ae_\kappa a_i$, and this shows that $E_\kappa r(N) = AaA$ and $E_\kappa r(N)$ is a simple two-sided ideal. Hence $E_\kappa r(N)$ is a non-zero two-sided ideal for each κ, since $AE_\kappa r(N) = \sum E_\lambda AE_\lambda \vee N = E_\kappa r(N)$. Since $r(N)E_\kappa$ is the largest completely reducible left subideal of $AE_\kappa r(N)E_\kappa \neq 0$. Since $r(N)E_\kappa A = r(N)E_\kappa (\sum E_\lambda AE_\lambda \vee N) = r(N)E_\kappa$. Hence $r(N)E_\kappa$ is a non-zero two-sided ideal for each κ. Then, from $r(N) = \sum E_\kappa r(N) = \sum E_\kappa A = \sum E_\kappa (\sum E_\lambda AE_\lambda \vee N)$, it follows that $r(N)E_\kappa = E_\pi(\kappa) r(N)$ is a non-zero simple two-sided ideal for each κ, where π is a permutation of $(1, 2, \cdots, n)$. This shows that the largest completely reducible left subideal of $Ae_\kappa i$ is a direct sum of simple subideals which are isomorphic to $Ae_{\pi(\kappa)}/Ne_{\pi(\kappa)}$.

In the case of algebras, we have by Lemma 2,

Proposition 1. Let A be an algebra with a finite rank over a field F. If A has a left unit element and satisfies (a) for simple left ideals, then A is a quasi-Frobenius algebra.

Proof. To prove this, we show that $r(N)e_{\kappa i}$ is simple for each κ.

If $r(N)e_{\kappa i}$ is not simple, then, by Lemma 2, $r(N)e_{\kappa i} = \sum m_j$,
where \(s > 1 \) and \(m_j \cong A e_{e(\kappa)} / N e_{e(\kappa)} \). Since \(m_1 \cong A e_{e(\kappa)} / N e_{e(\kappa)} \), the endomorphismring of \(m_1 \), is isomorphic to \(e_{e(\kappa)} A e_{e(\kappa)} / e_{e(\kappa)} N e_{e(\kappa)} \). On the other hand, every endomorphism of \(m_1 \) is given by the right multiplication of an element of \(e_{\alpha, i} A e_{\alpha, i} \). Since \(r(N) \subseteq l(N) \), elements of \(e_{\alpha, i} N e_{\alpha, i} \) induce zero-endomorphism and those elements of \(e_{\alpha, i} A e_{\alpha, i} \) which are not in \(e_{\alpha, i} N e_{\alpha, i} \) induce isomorphisms. Hence we have a natural isomorphism of \(e_{e(\kappa)} A e_{e(\kappa)} / e_{e(\kappa)} N e_{e(\kappa)} \) into \(e_{\alpha, i} A e_{\alpha, i} / e_{\alpha, i} N e_{\alpha, i} \).

Since \(s > 1 \), this isomorphism is not an onto isomorphism, and \(\text{End}(N) = e_{\alpha, i} A e_{\alpha, i} / e_{\alpha, i} N e_{\alpha, i} \). Similarly \((e_{e(\kappa)} A e_{e(\kappa)} / e_{e(\kappa)} N e_{e(\kappa)} : F) \cong (e_{e(\kappa)} A e_{e(\kappa)} / e_{e(\kappa)} N e_{e(\kappa)} : F) \cong (e_{e(\kappa)} A e_{e(\kappa)} / e_{e(\kappa)} N e_{e(\kappa)} : F) \cong (e_{e(\kappa)} A e_{e(\kappa)} / e_{e(\kappa)} N e_{e(\kappa)} : F) \). This is a contradiction. Hence \(r(N) \) is simple. Then, by Nakayama’s theorem,\(^3\) we have our result.

Proposition 2. Let \(A \) be a ring with a left unit element. If \(A \) satisfies \((a) \) for every left ideal, then \(A \) is a quasi-Frobenius ring.

Proof. By Lemma 2, \(r(N) = \sum_{j=1}^{s} m_j \) and \(m_j \cong A e_{e(\kappa)} / N e_{e(\kappa)} \). Hence \(m_j = A e_{e(\kappa)} a_j \) for a suitable element \(a_j \) in \(m_j \). Assume \(s > 1 \), then the correspondences \(e_{e(\kappa)} a_1 \rightarrow e_{e(\kappa)} a_2 \) and \(e_{e(\kappa)} a_2 \rightarrow e_{e(\kappa)} a_1 \) define an automorphism of \(m_1 + m_2 \). Then, by \((a) \), there is an element \(c \) of \(e_{\kappa} A e_{\kappa} \) such that \(e_{e(\kappa)} a_1 c = e_{e(\kappa)} a_2 \) and \(e_{e(\kappa)} a_2 c = e_{e(\kappa)} a_1 \). Hence \(e_{e(\kappa)} a_1 a_2^2 = e_{e(\kappa)} a_1 \) and \(e_{e(\kappa)} a_1 (a_2^2 - e_{\kappa}) = 0 \). \(e_2 - e_{\kappa} \) is in \(e_{e(\kappa)} N e_{e(\kappa)} \). For, otherwise, it is a unit of \(e_{e(\kappa)} A e_{\kappa} \) and consequently \(e_{e(\kappa)} a_1 = 0 \). Hence \(c = \pm e_{\kappa} + n \), where \(n \) belongs to \(e_{e(\kappa)} N e_{e(\kappa)} \). Since \(r(N) \cong l(N) \), \(e_{e(\kappa)} a_1 \pm e_{\kappa} + n = \pm e_{e(\kappa)} a_1 \). This is a contradiction. Hence \(r(N) \) is simple. Now if \(l(N) e_{e(\lambda)} \cong r(N) e_{e(\lambda)} \), than \(l(N) e_{e(\lambda)} \) contains a left subideal \(I \) such that \(l(r(N) e_{e(\lambda)} \) is irreducible. We suppose \(l(r(N) e_{e(\lambda)} \cong A e_{e(\lambda)} / N e_{e(\lambda)} \). Then it follows easily that \(l(N) e_{e(\lambda)} \cong A e_{e(\lambda)} / N e_{e(\lambda)} \). Hence \(l(N) e_{e(\lambda)} \cong A e_{e(\lambda)} / N e_{e(\lambda)} \). Then \(l(N) e_{e(\lambda)} \cong A e_{e(\lambda)} / N e_{e(\lambda)} \). Thus we have contradictions. Hence \(l(N) e_{e(\lambda)} \). Since \(m_1 \cong A e_{e(\kappa)} / N e_{e(\kappa)} \), the largest completriy reducible right subideal of \(e_{e(\kappa)} A \) is a direct sum of simple right subideals which are isomorphic to \(e_{e(\kappa)} A / e_{e(\kappa)} N \). Since \(Me_{e(\kappa)} \) is simple and is

\(^3\) See T. Nakayama [3].
isomorphic to $Ae_{e(x)}/Ne_{e(x)}$, $Me_x = Ae_{e(x)} me_x$ for a suitable element $e_{e(x)} me_x$ in Me_x. Let x be an arbitrary element in $e_{e(x)} Ae_{e(x)}$ but not in $e_{e(x)} Ne_{e(x)}$. Then the correspondence $e_{e(x)} me_x \to xe_{e(x)} me_x$ defines an automorphism of Me_x. For if $x'e_{e(x)} me_x = 0$, then $x' \in A(1 - e_{e(x)}) \setminus N$ and $x'xe_{e(x)} me_x \in (A(1 - e_{e(x)}) \setminus N)e_{e(x)} M = 0$. By (a), this automorphism is given by the right multiplication of an element of $e_{e(x)} Ae_{e(x)}$. Furthermore $e_{e(x)} Ne_{e(x)} me_x = 0$ is obvious. Hence $e_{e(x)} Ae_{e(x)} me_x \subseteq e_{e(x)} me_x Ae_{e(x)}$. On the other hand, since $e_{e(x)} me_x A$ is a simple right subideal of $e_{e(x)} M$ and $E_{e(x)} M$ is a simple two-sided ideal, $e_{e(x)} M$ is a direct sum of simple right subideals of the form $\xi e_{e(x)} me_x A$, where ξ is a suitable unit of $e_{e(x)} Ae_{e(x)}$. But, as was shown, $e_{e(x)} Ae_{e(x)} me_x \subseteq e_{e(x)} me_x A$. Thus we see that $e_{e(x)} M = e_{e(x)} me_x A$ is a unique simple left subideal of $e_{e(x)} A$. This completes our proof.

Remark. From the assumption (a) for simple left ideals, we can not conclude that A has a left unit element. For example, let F be a field and $A = Fe + Fu$, where $e^2 = e$, $ue = u$, $eu = 0$, $u^2 = 0$. This algebra over F has no left unit element, but it satisfies (a).

If A is a ring and not an algebra, then we can not conclude that A is a quasi-Frobenius ring, from the assumption (a) for simple left ideals and the existence of a left unit element. For example, let $F(x)$ be a rational function field over a field F and $A = F(x) + uF(x)$, where $u^2 = 0$, $ux = xu$. Then this is not a quasi-Frobenius ring, but it has a unit element and (a) is valid for simple left ideals.

Proposition 3. If A is a ring in which (a) is valid for simple left ideals and the same is true for simple right ideals, then A is a quasi-Frobenius ring.

Proof. By Lemma 1, A has a unit element. $r(N) = l(N) = M$, $Me_x = \sum_{j=1}^s m_j$ and $e_{e(x)} M = \sum_{k=1}^t n_k$, by Lemma 2. As was shown in the proof of Theorem 2, $e_{e(x)} Ae_{e(x)} me_x \subseteq e_{e(x)} me_x Ae_{e(x)}$, if we write $m_1 = Ae_{e(x)} me_x$. Similarly $e_{e(x)} Ae_{e(x)} me_x \subseteq e_{e(x)} me_x Ae_{e(x)}$, since $e_{e(x)} me_x A$ is a simple right subideal of $e_{e(x)} M$. Hence $e_{e(x)} Ae_{e(x)} me_x = e_{e(x)} me_x Ae_{e(x)}$. On the other hand, m_1 has the form $m_1 \xi = Ae_{e(x)} me_x \xi$, where ξ is an element of $e_{e(x)} Ae_{e(x)}$. Hence $s = 1$ and similarly $r = 1$. Thus A is a quasi-Frobenius ring.

Lemma 3. Let A be a quasi-Frobenius ring and let $I = I_1 \cup I_2$ be a left ideal homorphic to a left ideal I' by a homomorphism θ, where I_1 and I_2 are two left subideals of I. If the homomorphisms from I_1 and I_2 into I' induced by θ are given by the right multiplications of elements a_1 and a_2
respectively, then there is an element \(a \) such that \(\theta \) is given by the right multiplication of \(a \).

Proof. Of course \(\Gamma = IJ \). Then elements \(a_\lambda \) and \(a_2 \) define the same homomorphism for \(Ix f \). Hence \(a_\lambda - a_2 = r_2 - r_1 \) for suitable \(r_1, r_2 \in r (I) \). We write \(a_1 + r_1 = a_2 + r_2 \) as \(a \). Then \(a \) defines \(\theta \) for \(I \). For if \(l_i \) is an element of \(I_i (i = 1, 2) \), then \(l_i a = l_i (a_i + r_i) = l_i a_i = l_i^0 \).

Theorem 1. Let \(A \) be a ring with a unit element. Then \(A \) satisfies Shoda's condition if and only if \(A \) is a quasi-Frobenius ring.

Proof. The "only if" part follows from Proposition 2.

We shall prove the "if" part. If a left ideal \(I' \) is a homomorphic image of a principal left ideal \(l Aa \), then \(I' \) is also a principal ideal. We denote this homomorphism by \(\theta \), and show that \(\theta \) is given by the right multiplication of an element. Since \(\theta \) is a homomorphism, \(l (a) = l (aA) \subseteq l (a^A) = l (a^A) \). Since \(A \) is a quasi-Frobenius ring, \(r (l (aA)) = aA \supseteq r (l (a^A)) = a^A \). Hence there is an element \(c \) such that \(a^c = ac \).

Since every left ideal \(I \) has a finite basis, we can write \(I = \bigvee_{i=1}^n Aa_i \). Then, by Lemma 3, every homomorphism between two left ideals is given by the right multiplication of a suitable element. This completes our proof.

Theorem 2. Let \(A \) be a quasi-Frobenius ring. Then for every isomorphism \(\theta \) between two left ideals we can choose a suitable unit which defines \(\theta \), that is, every isomorphism between two left ideals can be extended to an isomorphism of \(A \).

Proof. Let \(\theta \) be an isomorphism between \(I \) and \(I' \). Then, by Theorem 1, there is an element \(a_\theta \) which defines \(\theta \), that is, \(l a_\theta = l' \). Then \(l a_\theta (l') = l r (l') = 0 \). This shows that \(a_\theta r (l') \subseteq r (l) \).

Case I. \(a_\theta r (l') = r (l) \).

If \(r \) is an arbitrary element of \(r (l) \), then there is an element \(r' \) in \(r (l') \) such that \(a_\theta r' = r \). Let \(\theta^{-1} \) be the inverse isomorphism of \(\theta \) and let \(b_{\theta^{-1}} \) be the element which defines \(\theta^{-1} \). It is easy to see that \(1 - a_\theta b_{\theta^{-1}} = r_0 \in r (l) \). Then \(a_\theta (b_{\theta^{-1}}+r_0) = a_\theta b_{\theta^{-1}} + r_0 = 1 \). Hence \(a_\theta \) is a unit.\(^4\)

Case II. \(a_\theta r (l') \supseteq r (l) \).

In this case, \(l = l (a_\theta r (l')) \supseteq l (r (l)) = l, \) since \(A \) is a quasi-Frobenius

\(^4\) Since \(A \) satisfies the minimum condition for left and right ideals, if \(ab = 1 \), then \(ba = 1 \).
ring. It follows, from \(l a^\alpha (l') = 0 \), that \(l a^\alpha \subseteq l' \). But \(l a^\alpha \supseteq l a^\alpha = l' \). Hence \(l a^\alpha = l' \). Let \(I \) be an element of \(I \) and \(l a^\alpha = l' \), then \(l' \) is in \(V \) and there is an element \(l \) of \(I \) such that \(l a^\alpha = l' \). Hence \((l - l)a^\alpha = 0 \). Since no element of \(I \) is annihilated by \(a^\alpha \), \(I \) is the direct sum of \(I \) and \(I_0 \) which is annihilated by \(a^\alpha \). Let \(\beta \) be an element of \(I \) and \(l a^\alpha - V \), then \(l' \) is in \(I \) and there is an element \(I \) of \(I \) such that \(l a^\alpha = l' \). Hence \((I - I)a^\alpha = 0 \). Since no element of \(I \) is annihilated by \(a^\alpha \), \(I \) is the direct sum of \(I \) and \(I_0 \) which is annihilated by \(a^\alpha \). Let \(A \) be a simple left subideal of \(I_0 \). We write \(A = a^\alpha / N \). Since \(r (I)/r (I*) \epsilon \ast \epsilon \ast \), it follows evidently that \(r (I) = r (I*) \) for a suitable element \(r \) of \(r (I) \). Since \(r (I) = r (I*) \), the homomorphism defined by \(a^\alpha + r \beta b \), for an arbitrary \(b \) of \(A \), coincides with \(\beta \) in \(I \). \(I^\beta (a^\alpha + r \beta b) \) is homomorphic to \(I^\beta \) and contains \(I (a^\alpha + r \beta b) = l' \). Now if we take a suitable \(b \), then \(I (a^\alpha + r \beta b) \) is actually different from \(l' \). For otherwise, \(A = a^\alpha / N \) is homomorphic to \(I^\beta \) and contains \(I (a^\alpha + r \beta b) = l' \) for every \(b \) of \(A \). Hence \(A = a^\alpha / N \). Since \(A = a^\alpha / N \) is a simple two-sided ideal, \(ME_\epsilon = A = a^\alpha / N \) and \(I^\beta b^{-1} = I \supset ME_\epsilon \). On the other hand \(ME_\epsilon = E_\epsilon (A) = I^\beta b^{-1} \supset ME_\epsilon \). Thus \(I \) contains \(A = a^\alpha \). But this contradicts \(I \supset I_0 = 0 \). Thus we can take an element \(b \) such that \(I^\beta (a^\alpha + r \beta b) \supset I' \). Obviously \(I^\beta (a^\alpha + r \beta b) \supset I^\beta \). We write the isomorphism between \(I \) and \(I^\beta \) defined by the right multiplication of \(a^\alpha + r \beta b \), by \(\beta \). Then \(\beta \) coincides with \(\beta \) in \(I \), as was shown.

Since our assertion is true for \(A \), suppose now that our assertion is true for every left ideal \(L \) for which \(A/L \) has a shorter composition length than that of \(A/I \). Then we can choose a unit \(a^\alpha \) for \(\Theta \). \(a^\alpha \) defines \(\Theta \) for \(I^\beta \), hence \(a^\alpha \) defines \(\beta \) for \(I \). This completes our proof.

The following lemma is trivial.\(^5\)

Lemma 4. Let \(A \) be a ring with a unit element. If every residue class ring of \(A \) satisfies Shoda's condition, then \(A \) is a uni-serial ring, and conversely.

Theorem 3.\(^7\) Let \(A \) be such a ring with a unit element that if \(I/m \sim I'/m \) for any two left ideals \(I, I' \) with their common left subideal \(m \), then for every homomorphism \(\Theta \) from \(I/m \) onto \(I'/m \) there is such a homomorphism \(\Theta \) from \(I \) onto \(I' \) that is given by the right multiplication of an element of \(A \) and that coincides with \(\Theta \) in \(I/m \). Then \(A \) is a direct sum of a semi-simple ring and completely primary uni-serial rings, and conversely.

7) Cf. K. Shoda [4].
Proof. It is clear that every residue class ring satisfies Shoda’s condition. Hence A is a uni-serial ring. Since the above assumption holds for primary components of A, we prove our assertion for a primary uni-serial ring A_1 satisfying the above assumption. If A_1 is neither a simple ring nor a completely primary uni-serial ring, then A_1 is a total matrix ring of degree $n > 1$ over a completely primary uni-serial ring D. The radical N_D of D is a principal ideal: $N_D = D\pi$. Then the principal ideal $A\pi = \pi A$ is the radical N of A. Let $N^{p-1} = 0$ and $N^p = 0$. Then $N^{p-1}e_1 = A\pi^{p-1}e_1 = Ae_1\pi^{p-1}$ and $N^{p-1}e_2 = A\pi^{p-1}e_2 = Ae_2\pi^{p-1}$ are the unique simple left subideals of Ae_1 and Ae_2, respectively. $Ae_1\pi^{p-1} = Ae_2\pi^{p-1}$ by the correspondence $e_1\pi^{p-1} \leftrightarrow c_{12}\pi^{p-1}$. Then $N^{p-1}(e_1 + c_{12}) = A(e_1 + c_{12})\pi^{p-1}$ is a simple left ideal and contained in $A(e_1 + c_{12})$. Since $A(e_1 + c_{12})$ is an indecomposable left ideal, $N^{p-2}(e_1 + c_{12})$ contains $N^{p-1}(e_1 + c_{12})$ as its unique simple left subideal. It is clear that $N^{p-2}(e_1 + c_{12})/N^{p-1}(e_1 + c_{12}) \approx N^{p-1}e_1 + N^{p-1}e_2 / N^{p-1}(e_1 + c_{12})$. But, as was shown, $N^{p-2}(e_1 + c_{12})$ is not isomorphic to $N^{p-1}e_1 + N^{p-1}e_2$. This contradicts our assumption. Thus if A_1 is a primary uni-serial ring satisfying our assumption, then A_1 is either a simple ring or a completely primary uni-serial ring. The converse is trivial.

Remark. Let A be such a ring with a unit element that if $I/m \sim I'/m$ for any two left ideal I, I' with their common left subideal m, then for every homomorphism θ from I/m onto I'/m and every endomorphism φ of m there is a homomorphism Θ from I onto I' which is given by the right multiplication of an element of A and coincides with θ in I/m and with φ in m. Then A is a semi-simple ring and conversely.

(Received March 28, 1952)

References
