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A Characterization of Quasi-Frobenius Rings '

By Masatoshi IKEDA

In this note we shall consider the problem: in what ring 4 can
every homomorphism between two left ideals be extended to a homo-
morphism of A ? (“ Homomorphism ” means “operator homomorphism ).
We shall call this condition as Shoda’s condition.® When A is a ring
with a unit element, Shoda’s condition is equivalent to the next one:

(@): every homomorphism between two left ideals is given by the
right multiplication of an element of A.

The main purpose of this note is to show that if A is a ring with
a unit element satisfying the minimum condition for left and right
ideals, then A satisfies Shoda’s condition if and only if A is a quasi-
Frobenius ring.

T. Nakayama characterized quasi-Frobenius rings as the rings in
which the duality relations I (r (1)) =1 and r (I (xr)) = hold for every
left ideal I and right ideal 1.2 OQur result gives another characterization
of quasi-Frobenius rings. ,

A denotes always a ring with the minimum condition for left and
right ideals. Let N be the radical of Aand A = A/N = A,+ --- +A, be
the direct decomposition of A into simple two-sided ideals. Then, as
is well known, we have two direct decompositions of A :

700 ' n G0
a=% FZ;AeK,i+Z(E)=K=212eK,iA+r(E) (1)

n  J) .
where E=3 >e,,,e,,(«=1,2, -, n; i=1, 2, ---f(x)) are

k=1 i=1
mutually orthogonal primitive idempotents, Ae,, , =~ Ae,,, = Ae, for
i=1,--, f(x), Ae, , = Ae,,; if ==X and the same is true for e, A4,
and I (x) (r(x)) is the left annihilator (right annihilator) of x. More-
over we use matric wunits ¢, ;(k=1,,n;1ii=1,-, f(x)),
Co11=€01 =€ Co iy =€y, ANA €y, 1Cx, 1 = 8,00 1 Chpiyr -
We start with the following preliminary lemmas.

Ky 1y

1) This problem was suggested by Prof. K. Shoda. Cf. K. Shoda [4].
2) See T. Nakayama [1], [2].
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Lemma 1. If A satisfies (a) for simple left ideals, then A has o right
unit element.

Proof. To prove this, we show I (£)=0 in (1). If I(E)==0, then
it contains a simple left subideal [ 4= 0. The identity automorphism of
[ is given, from (a), by the right multiplication of an element a.
@ = Ea+(a—Fa), where a—FEacr(E). Since I(E) and r(E) are con-
tained in N, =la =[(a—Fa) C N2. Since CN?,[=1[(a—Ea) N°.
Thus we have finally [ =0, which is a contradiction.

Lemma 2. If A has a left unit element and satisfies (a) for simple
left ideals, then A has o unit element and there exists a permutation =
of 4,2, n) such that the largest completely reducible left subideal of
Ae, ; is & direct sum of szmple left subideals which are isomorphic to
Ae,o/Neyo -

Proof. From Lemma 1, A has a unit element. Hence #(N)
= i}lE,(r(N) = KZ"{" (N)E,, where B, — ;?j:em. Er(N) is a two-sided
ideal for each «, since AE,r (N)=Q EAE,\/N)E, r(N)=E,r(N).
If E.r(N)==0 and a==0 is an arbitrary element of E, 7(N), then there
exists an e,,, such that e,,a==0. Ae,,a=~Ae/Ne is obvious. Since
E.r(N ) is a direct sum of simple left ideals which are isomorphic
to Ae/Ne,, each component has the form Ae,, ,ab, and this shows that
E.r(N)y=AaA and E.r(N) is a simple two-sided ideal. Hence
E.r(N)N =0, E,r(N)ZI(N) and consequently r(N)< (V). Since
»(N)E, is the largest'completely reducible left subideal of AE ,r(N)E 0.
Since r(N)ZIU(N), r(N)EA=r(N)E, X E,AE,\/N)=r(N)E,. Hence
r(NYE, is a non-zero two-sided iéeal for each x. Then, from
r(N)= Z}E’ r(N)= ET(N) ., it follows that r(N)E, = FE ., (N)
isa non-zero simple two-mded ideal for each «, where = is a permutation
of (1,2, -.-,n). This shows that the largest completely reducible left
subideal of Ae,, ; is a direct sum of simple subideals which are isomorphic

to Ae,,/Ney, -
In the case of algebras, we have by Lemma 2,

Proposition 1. Let A be an algebra with o finite rank over a field
F. If A has a left unit element and satisfies (@) for simple left ideals,
then A is a quasi-Frobenius algebra.

Proof. To prove this, we show that »(N)e,,; is simple for each «.
If »(N)e,, is not simple, then, by Lemma 2, r(N)e,,, =ZS}mJ,
J=1
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where s >1 and my == Ae,./Ne,.,. Since m; =~ Ae,/Ne,.,, the
endomorphismring of m,;, is isomorphic to e, A€,/ s N r- On
the other hand, every endomorphism of m, is given by the right multipli-
cation of an element of e, Ae,,. Since r(N)Z I (N), elements of
e, ; Ne.,, induce zero-endomorphism and those elements of e,,; Ae,,,
which are not in e, ;Ne,, induce isomorphisms. Hence we have a
natural isomorphism of e, 4e€,.,/€.o New into e, Ae,, /e, ; Ne,, ;.
Since s >>1, this isomorphism is not an onto isomorphism, and
(ercey Alyor/Crcey Neyo : F) == (e,  Ae,, /€., 1 Ne,, ;: F) = (e, Ae, /e, Ne, : F).
Similarly (e, A€ /w0 Nerwo: F) < (e0-100 A€ ~100/ =100 Ner=1¢,
F), where 7*(«) = = (= ( -+ 7 (x))))). Since = is a permutation, it follows
—

that (e Ae/e Ne,: F)vé(ex Ae/e.Ne,: F). This is a contradiction.
Hence »(N)e,,; is simple. Then, by Nakayama’s theorem,” we have
our result.

Proposition 2. Let A be o ring wzth o left unit element. If A
satisfies (@) for every left ideal, then A is a quasi-Frobenius ring.

Proof. By Lemma 2, r(N)e, = ﬁ m; and m; =~ Ae,/Ne,,. Hence
Jj=1

m; = Ae,, @; for a suitable element a; in m;. Assume s >1, then the
correspondences e, &, — €, &; and e, @, — e,,, e, define an automor-
phism of m;+m,. Then, by (a), there is an element ¢ of ¢, Ae, such
that e, 0.0 = €. 0 ANd €y, G20 = €., &y . Hence e, 6,6 = €, 0y
and e, a,(c*—e)=0. c2—e, is in e Ne,. For, otherwise, it is
a unit of e, Ae, and consequently e, =0. Hence ¢ = *e +n,
where 7 belongs to e,Ne,. Since r(N)ZI(N), e, a¢c =¢€,, ¢, (e, +n)
= te,0,. This is a contradiction. Hence » (N)e, is simple. Now
if I(N)e,27(N)e,, than [(N)e, contains a left subideal [ such that
I/r(N)e, is irreducible. We suppose [/7(N)e, ~ Ae,,,/Ne,,, Since
r(N)e, = Ae,.,/Ne.,,, there is a homomorphism 6 between [ and
r(N)e,. This homomorphism 6 is given by the right multiplication of
an element of e ,de,. If x==)\, then e Ae, CN and [.e Ade,
CI(N)N =0. If « =2, 6 is given by the right multiplication of an
element of e, Ne,, since the homomorphisms defined by the elements of
e.Ae, which are not in e Ne, induce isomorphisms. Then [-e, Ne,
CI(N)-N =0. Thus we have contradictions. Hence I (N)e, =7 (N)e,.
Then it follows easily that [ (N)e,;, =7(N)e,, and [ (N)=7r(N). We
write I(N)=r(N)=M. Since E ., M = MFE,, the largest completry
reducible right subideal of e, A is a direct sum of simple right sub-
ideals which are isomorphic to e, A/e, N . Since Me, is simple and is

3) See T. Nakayama [3].
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isomorphic to Ae,.,/Ne,.,, Me,=Ae, . me, for a suitable element e, me,
in Me.. Let x be an arbitrary element in e, Ae,, but not in e, .Ne,; -
Then the correspondence e, me, — 2e,., me, defines an automorphism
of Me.. For if x'e,,, me, =0, then 2’ € A(1—e,,,)\/ N and z'ze,, me,
€A(1—e)\UN)eyo M =0. By (a), this automorphism is given by
the right multiplication of an element of e, A4e,. Furthermore
€.c; Ney, me, =0 is obvious. Hence e, 4e,., me, < e, me,Ade,. On
the other hand, since e,.,me. A is a simple right subideal of e,., M
and K, M is a simple two-sided ideal, e,., M is a direct sum of simple
right subideals of the form é&e,,, me.A, where £ is a suitable unit of
€. Ae,,. But, as was shown, e, de,., me. e, me A. Thus we
see that e, M =e,.,me A is a unique simple left subideal of e, 4.
This completes our proof.

Remark. From the assumption (a) for simple left ideals, we can
not conclude that A has a left unit element. For example, let F be
a field and A = Fe+Fu, where e2=¢, ue=u, eu =0, u2=0. This
algebra over F' has no left unit element, but it satisfies (a).

If A is a ring and not an algebra, then we can not conclude that
A is a quasi-Frobenius ring, from the assumption (a) for simple left
ideals and the existence of a left unit element. For example, let F(«)
be a rational function field over a field F and A = F(x)+uF(x), where
u? =0, xu = ux?. Then this is not a quasi-Frobenius ring, but it has
a unit element and (a) is valid for simple left ideals.

Proposition 3. If A is a ring in whick (@) s valid for simple left
ideals and the same is true for simple right ideals, then A is o quasi-
Frobenius ring.

Proof. By Lemma 1, A has a unit element. »(N)=I1(N)=M,
Me, = Zs} my and e, M = é n,, by Lemma 2. As was shown in the
=1 k=

proof of Theorem 2, e, A4e ., me, < e, me Ae,, if we write
m, = Ae,, me,. Similarly e, Ae.., me, 2 e, me Ae,, since e, me, A
is a simple right subideal of e,,, M. Hence e,, 4e o me, = e, me, Ae, .
On the other hand, m; has the form m,& = Ade,, me, £, where £ is an
element of e.de,. Hence s =1 and similarly » =1. Thus 4 is a quasi-
Frobenius ring.

Lemma 3. Let A be a quasi-Frobenius ring and let 1 =1,\/1, be a
left ideal homorphic to o left ideal ! by a homomorphism 6, where 1, and
[, are two left subideals of 1. If the homomorphisms from [, and [, into
[" induced by 0 are given by the right muliplicatios of elements a, and a,
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respectively, then there is an élement a such that 0 is given by the right
multiplication of «.

Proof. Of course I’ =1¢\/1{. Then elements a, and @, define the
same homomorphism for [, /\I[,. Hence a,—a,er ;1) =r(;)
\J7 (1), since A is a quasi-Frobenius ring. Hence a,—a, =r,—7r, for
suitable 7, €7 (l,) and r,€r(l,). We write a,+7, =a,+7, as a. Then
@ defines 6 for [. For if I, is an element of [,(: =1, 2), then
la=1(a,+r)=1la =1?.

Theorem 1. Let A be o ring with o unit element. Then A satisfies
Shoda’s condition if and only if A is a quasi-Frobenius ring.

Proof The “only if” part follows from Proposition 2.

We shall prove the “if ” part. If a left ideal I’ is a homomorphic
image of a principal left ideal I = Aa, then I’ is also a principal ideal.
We denote this homomorphism by 8, and show that @ is given by the
right multiplication of an element. Since # is a homomorphism,
l(e)=1(ad) 1 (a®) =1(a’4). Since A is a quasi-Frobenius ring, 7 (I (¢4))
=ad Dr(l(a’A)) =a’A. Hence there is an element ¢ such that a® = ac.

Since every left ideal | has a finite basis, we can write

I=\_x/Aa.t. Then, by Lemma 3, every homomorphism between two
i=1

left ideals is .given by the right multiplication of a suitable element.
This completes our proof.

Therem 2. Let A be a quasi-Frobenius ring. Then for every isomor-
phism 0 between two left ideals we can choose a suitable unit which
defines 0, that is, every isomorphism between two left ideals can be
extended to an isomorphism of A.

Proof. Let ¢ be an isomorphism between | and [’. Then, by
Theorem 1, there is an element a, which defines 6, that is, la, =1'.
Then la,r (I') =1'r (I") =0. This shows that a,r (') < » (I).

Case L. a,r(I") =17 (D).

If » is an arbitrary element of »(I), then there is an element »' in
r(I") such that @’ =r. Let 6! be the inverse isomorphism of ¢ and
let b,-1 be the element which defines 6-'. It is easy to see that
1—agby-r =7r,€7r({). Then a,by~1+7)) = ab,_,+7r, =1. Hence a, is a
unit.®

Case II. a,r (IS 7 (D).

In this case, [ =1 (a,r (")) 21 (r (1)) =1, since A is a quasi-Frobenius

4) Since A satisfies the minimum condition for left and right ideals, it ab=1, then ba=1.
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ring. It follows, from la, (I') =0, that la, C1'. But lo, Dla,=1".
Hence lo, =1'. Let I be an element of [ and lg, =1, then I' is in I
and there is an element I of [ such that le, =1'. Hence (I-1)a, =0.
Since no element of ! is annihilated by a,, [ is the direct sum of I and
I, which is annihilated by a,. Let Ae,. a (=~ Ae,./Ne,.,) be a simple
left subideal of [,. We write Ae,,a+1 =1*. Since [*/I =~ Ae,,/Ne,,
it follows. evidently that »({)/r(I*)~e A/e,N. Hence r([)=reA
\J r (I*) for a suitable element  of r (I). Since r¢, A C 7 (I), the homomor-
phism defined by @, +7eb, for an arbitrary b of A, coincides with ¢ in
I. I*(a,+red) is homomorphic to [¥ and contains [ (a,+7eb) =1. Now
if we take a suitable b, then [ (a,+red) is actually different from [’.
For otherwise, Ae,,a (a,+red) = Ae,, aredb | (a,+redb) =1 for every
b of A. Hence Ae,,,are A I'. Since Ae,.are, ME® and ME, is
a simple two-sided ideal, ME, = Ae,, are, A 1" and 'by-1 =1 DO ME,.
On the other hand MFE,=FE,.,M contains every simple left ideal
which is isomorphic to Ae,./Ne,. . Hence ME, contains Ae,,,a.
Thus [ contains Ae,,,a. But this contradicts I N\{, =0. Thus we can
take an element b such that [*(a,+7eb)22!'. Obviously [*(a,+7eb)
=~ [*.. We write the isomorphism between [* and [*(a,+reb) defined
by the right multiplication of a,+7eb, by ®. Then ® coindides with
0 in [, as was shown. o

Since our assertion is true for A, suppose now that our assertion
is true for every left ideal L for which A/L has a shorter composition
length than that of A/I. Then we can choose a unit a, for 0. ae
defines ® for [*, hence a, defines @ for I. This completes our proof.

The following lemma is trivial.®

Lemma 4. Let A be a ring with a unit element. If every residue
class ring of A sutisfies Shoda’s condition, then A is a uni-serial ring,
and conversely.

Theorem 3.” Let A be such a ring with o wunit element that if
[/m~U/m for any two left ideals I, \' wilh their common left subideal
m, then for every homomorphism 6 from I/m onto !'/m there is such «
homomorphism © from | onto I' that is given by the right multiplication
of an element of A and that coincides with 0 in [/m. Then A is a direct
sum of @ semi-simple ring and completely primary wuni-serial rings, and
conversely.

5) See T. Nakayama [2] p. 10.
 6) See M. Ikeda [5] p. 239. Cf. K. Shoda [4].
7) Cf. K. Shoda [4].
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Proof. It is clear that every residue class ring satisfies Shoda’s
condition. Hence A is a uni-serial ring. Since the above assumption
holds for primary components of A, we prove our assertion for a
primary uni-serial ring A, satisfying the above assumption. If A4, is
neither a simple ring nor a completely primary uni-serial ring, then A4,
is a iotal matric ring of degree n >1 over a completely primary uni-
serial ring D. The radical N, of D is a principal ideal: N, = D=
==zD. Then the principal ideal A= = =A is the radical N of A. Let
N2 (0 and N°=0. Then N*-le, =An’"le; = Ae,n*"! and N°"le,
= An*-le, = Ae,=*~! are the unique simple left subideals of Ae, and
Ae, respectively. Aen°!= Ae,z*"! by the correspondence e;7z""!
> ¢,m*" 1. Then N*~Ye;+c¢q,) = A (e;+¢1,) z°~1 is a simple left ideal and
contained in A (e;+c;,). Since A(e,+c,,) is an indecomposable left
ideal, N°-%(e,+c,,) contains N° (e, +cy,) as its unique simple left sub-
ideal. It is clear that N° e ,+c¢y,)/N°" e, +c¢y,) = N°1le;+N*"le,
/N°"Ye, +c¢y,). But, as was shown, N°~2(e,+c,,) is not isomorphic to
NPf-le, +N°*-le,. This contradicts our assumption. Thus if 4, is a
primary uni-serial ring satisfying our assumption, then A, is either a
simple ring or a completely primary uni-serial ring. The converse is
trivial.

Remark. Let A be such a ring with a unit element that if
[/m ~1U'/m for any two left ideal I, [’ with their common left subideal
m, then for every homomorphism 6 from [/m onto I'’/m and every
endomorphism ¢ of m there is a homomorphism ® from [ onto [’ which
is given by the right multiplication of an element of A and coincides
with ¢ in I/m and with @ in m. Then A is a semi-simple ring and
conversely.

(Received March 28, 1952)
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