Linear-Order on a Group

By Masao Ohnishi

Let us discuss here under what condition a group admits a linearorder. ${ }^{1)}$ Related ideas to my previous paper ${ }^{2)}$ will be adopted.

Preliminaries. A partial-order on a group G is wholly determined by such a subset g of G - we shall call it a (partial-) ordering set briefly that satisfies the following two conditions:

1) g is an invariant sub-semigroup with 1 ,
2) g cannot contain an element ($\neq 1$) together with its inverse.

A linear-ordering set is therefore characterized by one more additional condition :
3) It contains either x or x^{-1} for any x of G.

For a finite subset $\left\{x_{1}, \ldots, x_{n}\right\}$ of G and an invariant sub-semigroup g of G the invariant sub-semigroup generated by x_{1}, \ldots, x_{n} and g shall be denoted by $\mathfrak{g}\left(\dot{x_{1}}, \ldots, x_{n}\right)$. Especially the invariant sub-semigroup generated by $\left\{x_{1}, \ldots, x_{n}\right\}$ alone is (x_{1}, \ldots, x_{n}).

Theorem. The following three conditions are mutually equivalent:
(I) G admits a linear-order.
(II) For any finite subset $\left\{x_{1}, \ldots, x_{n}\right\}$ of G the intersection of all possible $2^{n} \mathrm{~g}\left(x_{1}^{\varepsilon_{1}}, \ldots x_{n}^{\varepsilon_{n}}\right)$, where $\varepsilon_{i}= \pm 1$, is equal to 1 .
(III) For any element a of G there exists an ordering set \mathfrak{g}_{a} containing a and having the property:
(*) If $x y(\neq 1)$ belongs to \mathfrak{g}_{a}, then either x or y belongs to \mathfrak{g}_{a}. Such an ordering set in (III) will be called (*)-ordering set.
Proof. We shall divide this into three parts:
(I) \rightarrow (II). By a linear-order on G every element x of G attains a sign $\varepsilon^{0}= \pm 1$ in such a way that $x^{\varepsilon_{0}}$ is ≥ 1 with respect to this order. Then obviously all elements of ($x_{1}^{\varepsilon_{1}^{0}}, \ldots, x_{n}^{\varepsilon_{n}^{0}}$) are ≥ 1, and all elements of $\left(x_{1}^{-\varepsilon_{1}^{0}}, \ldots, x_{n}^{-\varepsilon_{n}^{0}}\right)$ are $\leqq 1$. Therefore the intersection of these two sets is already equal to 1 .

[^0](II) \rightarrow (III). Let us consider the family of all subsets \mathfrak{g} of G which have the properties :
(1) g is an invariant sub-semigroup with 1 ,
(2) For any finite subset $\left\{x_{1}, \ldots, x_{n}\right\}$ of G the intersection of all possible $2^{n} \mathfrak{g}\left(x_{1}^{\varepsilon_{1}} ; \ldots, x_{n}^{\varepsilon_{n}}\right)$, where $\varepsilon_{i}= \pm 1$, does not contain a.

This family being not empty by our assumption (II), and these above properties being clearly of finite character, ${ }^{2)}$ Zorn's lemma ascertains that there exists a maximal set \mathfrak{g}^{\prime} with respect to them. Then \mathfrak{g}^{\prime} contains either x or x^{-1} for any x of G. In fact, if neither $x(\neq 1)$ nor x^{-1} belongs to g^{\prime}, then the invariant sub-semigroups $g^{\prime}(x)$ and $g^{\prime}\left(x^{1}\right)$ contain the maximal set g^{\prime} properly, hence they cannot satisfy the above property (2); in other words there exist some finite subsets $\left\{y_{1}, \ldots, y_{k}\right\}$ and $\left\{z_{1}, \ldots, z_{s}\right\}$, and the intersection of all $\mathfrak{g}^{\prime}\left(x, y_{1}^{ \pm 1}, \ldots, y_{k}^{ \pm 1}\right)$ and that of all $\mathfrak{g}^{\prime}\left(\left(x^{1}, z_{1}^{ \pm 1}, \ldots, z_{s}^{ \pm 1}\right)\right.$ contain the element a.

Consequently the intersection of all $\mathfrak{g}^{\prime}\left(x^{ \pm 1}, y_{1}^{ \pm 1}, \ldots, y_{k}^{ \pm 1}, z_{1}^{ \pm 1}, \ldots, z_{s}^{ \pm 1}\right)$ contains a, which contradicts the above property (2) of \mathfrak{g}^{\prime}. Thus g^{\prime} containing either x or x^{-1} for any x, its complement $\mathfrak{g}_{a}=G-\mathfrak{g}^{\prime}$ proves, as is easily seen, to be the desired (*)-ordering set containing the element a.

Finally (III) \rightarrow (I). Again considering the family of all (*)-ordering sets, there also exists a maximal (*)-ordering set g_{0} by applying of Zorn's lemma. We must show that g_{0} is really a linear-ordering set. Let us now assume that \mathfrak{g}_{0} contains neither a nor a^{-1} for some $a(\neq 1)$ of G. (III) assures us that we can find a (*)-ordering set g_{a} containing a.

The set $g_{0}+g_{i}-g_{0}^{-1}$ (here + and -- are the usual set-operations, and g_{0}^{-1} is the set composed of the inverses of \mathfrak{g}_{0}), or what is the same, $\mathfrak{g}_{0}+\left\{x \in \mathrm{~g}_{a} ; x \notin \mathrm{~g}_{0}, x^{-1} \notin \mathrm{~g}_{0}\right\}$, obviously contains a, and by rather easy computations we know that this set is also a (*)-ordering set, which contradicts the maximal property of \mathfrak{g}_{0}, hence \mathfrak{g}_{0} is a linear-ordering set, and G admits a linear order.

These three parts complete the proof of our theorem.
(Received December 1, 1951)

[^1]
[^0]: 1) Cf. K. Iwasawa, On linearly ordered groups. Journ. of Math. Soc. of Japan, 1 (1948).

 Also, P. Lorenzen, Ueber halbgeordnete Gruppen. Math. Zeits. 52 (1949)
 2) M. Ohnishi, On linearization of ordered groups. Osaka Math. Journ. 2 (1950).

[^1]: 3) Cf. J. Tukey, Convergence and Uniformity in Topology, Princeton Univ. Fress. (1940), pp. 7-8.
