Osaka Mathematical Journal Vol. 4, No. 1, May, 1952

Linear-Order on a Group

By Masao Ohnishi

Let us discuss here under what condition a group admits a linearorder.¹⁾ Related ideas to my previous paper²⁾ will be adopted.

Preliminaries. A partial-order on a group G is wholly determined by such a subset g of G — we shall call it a (partial-) *ordering set* briefly that satisfies the following two conditions:

1) g is an invariant sub-semigroup with 1,

2) g cannot contain an element (± 1) together with its inverse.

A linear-ordering set is therefore characterized by one more additional condition :

3) It contains either x or x^{-1} for any x of G.

For a finite subset $\{x_1, \ldots, x_n\}$ of G and an invariant sub-semigroup g of G the invariant sub-semigroup generated by x_1, \ldots, x_n and g shall be denoted by $g(x_1, \ldots, x_n)$. Especially the invariant sub-semigroup generated by $\{x_1, \ldots, x_n\}$ alone is (x_1, \ldots, x_n) .

Theorem. The following three conditions are mutually equivalent:

(I) G admits a linear-order.

(II) For any finite subset $\{x_1, \ldots, x_n\}$ of G the intersection of all possible $2^n g(x_1^{\varepsilon_1}, \ldots, x_n^{\varepsilon_n})$, where $\varepsilon_i = \pm 1$, is equal to 1.

(III) For any element a of G there exists an ordering set g_a containing a and having the property:

(*) If $xy (\pm 1)$ belongs to \mathfrak{g}_a , then either x or y belongs to \mathfrak{g}_a .

Such an ordering set in (III) will be called (*)-ordering set.

Proof. We shall divide this into three parts:

(I) \rightarrow (II). By a linear-order on G every element x of G attains a sign $\varepsilon^0 = \pm 1$ in such a way that x^{ε_0} is ≥ 1 with respect to this order. Then obviously all elements of $(x_1^{\varepsilon_1^0}, \ldots, x_n^{\varepsilon_n^0})$ are ≥ 1 , and all elements of $(x_1^{-\varepsilon_1^0}, \ldots, x_n^{-\varepsilon_n^0})$ are ≤ 1 . Therefore the intersection of these two sets is already equal to 1.

¹⁾ Cf. K. Iwasawa, On linearly ordered groups. Journ. of Math. Soc. of Japan, 1 (1948).

Also, P. Lorenzen, Ueber halbgeordnete Gruppen. Math. Zeits. 52 (1949).

²⁾ M. Ohnishi, On linearization of ordered groups. Osaka Math. Journ. 2 (1950).

(II) \rightarrow (III). Let us consider the family of all subsets g of G which have the properties:

(1) g is an invariant sub-semigroup with 1,

(2) For any finite subset $\{x_1, \ldots, x_n\}$ of G the intersection of all possible 2^n g $(x_1^{\varepsilon_1}, \ldots, x_n^{\varepsilon_n})$, where $\varepsilon_i = \pm 1$, does not contain a.

This family being not empty by our assumption (II), and these above properties being clearly of finite character,⁸⁾ Zorn's lemma ascertains that there exists a maximal set g' with respect to them. Then g' contains either x or x^{-1} for any x of G. In fact, if neither $x(\pm 1)$ nor x^{-1} belongs to g', then the invariant sub-semigroups g'(x) and $g'(x^{-1})$ contain the maximal set g' properly, hence they cannot satisfy the above property (2); in other words there exist some finite subsets $\{y_1, \ldots, y_k\}$ and $\{z_1, \ldots, z_s\}$, and the intersection of all $g'(x, y_1^{\pm 1}, \ldots, y_k^{\pm 1})$ and that of all $g'((x^{-1}, z_1^{\pm 1}, \ldots, z_s^{\pm 1})$ contain the element a.

Consequently the intersection of all $g'(x^{\pm 1}, y_1^{\pm 1}, \dots, y_k^{\pm 1}, z_1^{\pm 1}, \dots, z_s^{\pm 1})$ contains a, which contradicts the above property (2) of g'. Thus g'containing either x or x^{-1} for any x, its complement $g_a = G - g'$ proves, as is easily seen, to be the desired (*)-ordering set containing the element a.

Finally (III) \rightarrow (I). Again considering the family of all (*)-ordering sets, there also exists a maximal (*)-ordering set g_0 by applying of Zorn's lemma. We must show that g_0 is really a *linear*-ordering set. Let us now assume that g_0 contains neither a nor a^{-1} for some a(=1) of G. (III) assures us that we can find a (*)-ordering set g_a containing a.

The set $g_0 + g_a - g_0^{-1}$ (here + and -- are the usual set-operations, and g_0^{-1} is the set composed of the inverses of g_0), or what is the same, $g_0 + \{x \in g_a; x \notin g_0, x^{-1} \notin g_0\}$, obviously contains a, and by rather easy computations we know that this set is also a (*)-ordering set, which contradicts the maximal property of g_0 , hence g_0 is a linear-ordering set, and G admits a linear order.

These three parts complete the proof of our theorem.

(Received December 1, 1951)

³⁾ Cf. J. Tukey, Convergence and Uniformity in Topology, Princeton Univ. Fress. (1940), pp. 7-8.