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On Systems of Structures of a Completely Regular Space

By Taira SHIROTA

Considering the set of all structures® over a completely regular
space R, we propose to investigate the connections between the alge-
braic properties of the set and the topological properties of R. To
this purpose we introduce in the following an order into the set in
question and characterize among others the space R which has either
the maximum or the minimum for certain subsystems of the ordered
system thus obtained, and determine further the cardinal numbers of
the ordered systems in the case when R is metrizable.

For the notations we follow those used by Tukey ».

§1. Definitions and remarks.

DEFINITION. Let gR be a structure over a completely regular space
R with a basis §{l1,|A} and let g’R be another structure over the
space R with a basis {%B,|B}, then we write gR>¢'R, if for any
B, € {B,|B} there exists U, € {U,]A} such that B, >U, i.e., if the
identical mapping of R on itself is a uniformly continuous mapping of
gR onto g'R. '

It is clear that the set of all structures over a completely regular
space R is considered as an ordered system in this order. Let us denote
by D(R) this ordered system and let D,(R) be the subsystem of D(R).
which consists of all totally bounded structures over R. Let m be an
infinite cardinal number. We say that a structure gR is an m-structure,
if the uniformity of gR contains a basis {U,|4} with |A] <m?,
and we denote by Dy (R) the set of all m-structures over R.

Evidently D(R), D,(R) and Dp(R) are not only ordered systems,
but also directed systems and D(R) and D,R) have always the maxi-
mal element. Moreover an R8,-structure is a metric space.

1) John W. Tukey, Convergence and uniformity in topology (1940). We
will use “‘structure” to mean “struct” used by Tukey and in this note we will
refer this book by the letter T.

2) The cardinal number of a set A will be denoted by |A| and small Ger-
man letters will be used for infinite cardinal numbers.
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By Raouf Doss’ papers ®, it is known that we can characterize the
space which satisfies the condition: D{(R)=D,(R) as well as the space
whose D(R) contains only one element.
’ In the following we will use ‘“‘space” to mean ‘“completely regular
space”.

§ 2. In this paragraph we shall characterize the space for which
Dy(R) has the minimum.

Lemma 1. Let gR be a structure of a space R and let {1I,|A} be
some basis for the uniformity of gR and let = {F,|A} be a family
of closed sets having the following properties:

1) if a,B€A and if a<B*%, then F, D F,,

2) the intersection of all F, is void, i.e., [El F,=0, then there

exists a |A|-structure ¢g'R such that ¥ is a Cauchy family of g’R and
such that g’R<gR.

Proof. Foreach ac A, let B, =(R—F,)oU,». {B,|A} will ba seen
to be a basis for the uniformity of the structure over R satisfying
the statements of the lemma.

We shall show first that {¥,|A} satlsﬁes the conditions of a basis
for some uniformity. If a« <8, then %, >§B ®, because U >11 and
F,>F, For two «,B, there exists y€A such that ua>u, and
1, >11,, hence ¥, >B, and B, >%,.

Next we shall show that {®B,|A} agrees with the torology. For
any point ¢ € R there exists F, from the condition 2) such that ¥, % a.
Since F, is closed, there exists 8 such that S(e, I1,) N\ F,=0. Then
if vy>8,a, S(a, 1,) N\ F,=0 and hence a ¢ S(F,, U,), whence S(a,B,)=
-S(a, ;). Now if U is an open set of R containing a, there exists a §
such that S(e, ;) CU. If v > a, B, 8, then S(a, B,)=S(a, U,) T S(a, U;
C U.

Let ¢’R be the structure with the basis {8.|4}. Then it is obvious

3) Raouf Doss, On uniform spaces with a unique structure, Amer. J. Math.
71 (1949). Raouf Doss, On continuous function in uniform spaces, Ann. of
Math. 48 (1947).

4) We say that «<f8 if U is a A-refinement of U,, i.e., uaﬁup.

5) For a covering 1 of R and for a subset H of R, the restriction Holl of
U to H is a covering of R consisting of the set S(R—H, ) and those sets of
U included in H. Cf. T. p. 45.

A
6) 1f U>B and ADB, then Boll>AoD,
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that gR>¢’'R and that J is a Cauchy family of g’R, because for any
a, B,<1, and for any point ecF, F, S(a, U,)\J S(F,, 1,)=S(s, B,).
Thus the lemma has been proved. ,

Lemma 2. Let R be a locally bicompact space whose character
is <m and let A be a set of cardinal < m. Then for any totally
bounded m-structure gR with a basis {8,]A} and for any open basis
U={U,}, where U, is bicompact and a € A, if the family 1 is additive,
then the collection

P={U,on,|U,€ {N,|A} & U,ell}

is a basis for the uniformity of the minimal structure of D,(R) and
[P < m.
Proof. We see first that P is a basis for some uniformity, because

A

if a,8,veA and a<v, B< v and if U;, U, e, then Us-U, N\ Usoll, >
(Us\J U)o1, and (Uz\J U)-U, € B, since U is additive.

We shall show next that the uniformity agrees with the topology.
For any point @ pf R and for an open set G containing @, there exists
n,e{n,|A} such that S(a,U,)C G Without loss of gererality, we
may suppose that Gell. Hence GoU,e%B, and then S(a, Goll,)=
S(a,1,) C G. Evidently U,lU, is a finite covering, since 1, may be
considered as a finite covering. Therefore P is ‘a basis for some
uniformity of totally bounded structure.

Let gR be this structure. We see that gR is the minimum of
D(R) and D,(R); that is, if U,oll,e P, then Usoll,€ O for any unifor-
mity Q which agrees with the topology. To prove this let U,-1l, be
{S(R—U,, 1), U,,U,,...,U,} and let F=R-S(R-U,U,). Then
F C U, hence F=F C U,, thus F is bicompact. For any a ¢ F, there
exists U,,, such that acU,,, hence therAe exists two coverings
Biays Brray such that By, Biray € QD Brra, << By and S(a, Bya,)
Uia»» Then S*a, B,/,,) T S(a, Byq,) and {S(a, B,,q,)|e€F} is an open
covering of F. Since F is bicompact, there exist a finite number of

points a,,dy, ..., 6, such that \JS(@,By@y) DF. Then evidently
m i=1

B= N\ By@ape. It is to prove that B<U,U,. To show this,
i=1 ,,

let V=/\Vy(,) be an element of B where Vy(a)€Byay. If VT

S(R—-U,,1,), then V N\ F-=0, hence there exists a point ¢ and a point
a,€ {a,|i=1,2, ..., m} such that eV F and ac S(a,;, By cayp). Since
V Vyrcap, we have a€Vycap N\ S(as, Bycap), therefore Vycap C
S(S(ay, Bycan), By cap) C S(ay, Bycas)), whence V CUicay) € Ugol,. Thus
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we have B < U,ol,.
Evidently we have

Lemma 3. If 11 >%8 for two open coverings 1l and  of a space
R and if |8|=m for any open refinement ¥ of 11, then there exists
a subset A of R with potency >m such that for any point » of R
there exists at most an a € A such that S(p, T) and S(a, W) have points
in common.

Theorem 1. The following conditions on a space R are equivalent :

1) Dy(R) has the mingmum,

2) Dw(R) contains the minimum of D(R) and D,(R),

3) R is locally bicompact and its character < m.

Proof. In view of Lemma 2, 3) implies 2). It is evident that
2) implies 1). Thus we have only to prove that 1) implies 3). Let gR
be the minimum of Djy(R), and let {lI,|A} be a basis for the unifor-
mity of gR, the potency of A being <m. Then we show first that
for any U,€ {ll,|A} there exists an open covering 11,/ such that 1,/< U,
and |1,/|<m. Suppose on the contrary that there exists some 11, ¢
{11,|A} such that for any W<'U,, |1| >m. Then by Lemma 3 there
exists an open covering We {U,|4} and a subset F satisfying the
statement of the lemma. Since |A|<|F|, there exists a .1-1 corre-
spondence f between A and a subset of F. For any finite set =

(@, @y een s @), let Fy=f(A)—\] fcad, Ne= A Uy and let I' be the set of
t=1 t=1

all finite sets of A. Then for the basis {1I;|I'} for the uniformity of
gR and for {F3|I'}, the statement of Lemma 1 is satisfied. Hence
there exists a g’R e D(R) such that g¢’R<gR and such that {F;|I'} is
a Cauchy family of g’R. But {F;|I'} is not a Cauchy family of gR,
since for all F; and for all a€ R, S(a, T8) does not contain F;. Hence
9'R ==gR. This contradicts the minimality of gR.

Now let ®={U|Uecll,),a€ A}. Then @ is an open basis of R and
|®| < mem=m, hence the character of B < m.

It remains now to show that R is locally bicompact. For if
{F,|A} and {F./|A} are two Cauchy families of gR and if both of
them do not converge, where we may suppose that both of them
satisfy the conditions 1) and 2) of Lemma 1, then {F,|A} and {F,|A}
are equivalent. Since the family {F,\JF.,/|4} and gR satisfy
the statement of the lemma, there exists ¢g'Re€ Dy(R) such that
g'R<gR, and such that {F \JF,/|A} is a Cauchy family of g’R. And
since gR is the minimum of Dy(R), gR=g'R, so that {F,\/F,/|A} is
a Cauchy family of gR, therefore {F,|A} and {F,|A} are equivalent.
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Then the completion gR of gR is bicompact and gR—gR can contain
at most one element, hence R is locally hicompact,

Corollary. For a metrizable space R, DR,(R) has the minimum if
and only if R is locally bicompact and separable.

Corollary. The following conditions on a space R are equivalent :

1) D(R) has the minimum,

2) D,(R) has the minimum,

3) D(R) is a complete lattice,

4) D,R) is a complete lattice,

5) R is locally bicompact.

§3. Let D(R) be the set of all complete structures over R and
let Dem(R)=D(R) "\ D, (R).

Theorem 2. The following conditions on @ space R are equivalent :

1) Dcyw(R) has the minimum,

2) Dem(R)=Du(R)=+0,

3) D(R) contains only one element,

4) R is bicompact and the character of R < m.

Proof. Clearly, 3) implies 1), and 4) implies both 2) and 3). Thus
we have only to show that 1) implies 4) and that 2) implies 4).

(i) Let gR be the minimum of Dy(R) and let {U,|A} be a basis
for the uniformity. Suppose that gR is not totally bounded. Then
there exists a Ne {U,|A} such that every refinements of 11 are not
finite. By Lemma 3, there exist B¢ {U,|A} and a countable subset
fa,|n=1,2,3,...} of R such that they satisfy the statement of the
lemma. Now let F,=f{a,|i=n,n+1,...} and let P,={a_,_,, a,,} for
every n=1,2,.... Moreover for each U,< ¥ let B,,={SP,U,)|i=
n,n+1,...}\J{U|Uel, & UN\F,,.,=0}. Then by the same method
of the proof of Lemma 1, there exists a structure g’R whose unifor-
mity contains {¥,,|acd’ & n=1,2,...} as a basis and which is
m-structure, where A’ consists of all « € A for which ,< %, and that
g'R==gR. Now we shall show that g’Re€ D.y(R). For this, let
x((an)|A'xN)? be a Cauchy phalanx of g’R. Then for each (a,n)
there exists a point a€ R such that x((an)|A’xN) is decided for
S(a, B,,). Then S(a,%V,)=S(,U,) or S(a,B,,)=S(e,1,)\JSEL,1U,).
Let S(as, U,), i=1,2,3 be such sets that x((an)|A’xN) is not de-
cided against S(ax, 11,) for i=1,2,3 and that x((an)|A’x N) is decided

7) Let A’XN be the (direct) product of the directed system A’ and the
linear ordered set N consisting of all positive integers. Cf. T. p. 7.
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against R— \J S(@x,1,), where a.,a:;a.; are not always different

i=1,2,3

points. Let Bo={S(ax, 1)]i=1,2,3}\/ (B~ \/ S(@., 1)}, then

{B.,|A’xN} is a collection of finite coverings. Now, let B be {B|
x((an)|A’x N) is decided against Bj. Then {®.,} and B satisfy the
condition of the Tukey’s lemma®. Hence there exists a phalanx
x'((an)|A'x N) such that for each ac A’ it is decided for a set of
{S(ax, U,)|i=1,2,3}. Hence x'((an)|A’xN) and x((an)|A’'xN) are a
Cauchy pair of g’'R and x'((an)|A’xN) is a Cauchy phalanx of gR.
Since gR is complete, x'((an)|A’xN) converges to a point a€R,
X ((an)|A’'x N) converges to the same point a. Thus we prove that
g'ReD. (R). But this contradicts the hypothesis that gR is the
minimum of Dcm(R). Hence gR is totally bounded and complete, i.e.,
R is bicompact and hence the character of R < m, since |A| < m.

(ii) We proceed to prove that 2) implies 4). For this we suppose
that De(R)=Dyw(R)=+0 and R is not bicompact. Now choose a
gR € De(R), then gR cannot be totally bounded, hence by the same
method of the above proof, there exists a covering U e {1.}, where
{11} is a basis for the uniformity of gR, and there exists a countable
subset {a,|n=1,2,...} of R, such that they satisfy the statement of
Lemma 3. Let F,={a,|i=n,n+1,...} and let L, ,=R-F, U,
Then it is obvious that {8,,} is a basis for some structure g’R and
that ¢g'R € Dy(R)— Dew(R), since {a,} is a Cauchy sequence of g'R and
has no limit point. Hence Dew(R)==Dn(R). Thus 2) implies that B
is bicompact, and that the character of R is < m, since Dy(R)=-0.

Corollary. The following conditions on a metrizable space R are
equivalent :

1) Dcyo(R) has the minimum,

2)  Dego(B)=Dyo(R), .

3) Dcyo(R) contains only one element,

4) R is bicompact.

Corollary. The following conditions on a space R are equivalent :

1) D,(R) has the minimum, ‘

2) D(R)=D(R),

3) Dy(R) contains only one element,

4) R is bicompact.

§4. In this paragraph we shall characterize the space R whose

8) Cf. T. p. 33.
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Dpy(R) has the maximum. :

Lemma 4. Let R be a fully normal space and let R’ be the set of
all cluster points of R. If R’ satisfies the following conditions:

1) the character relative to R <m?®,

2) if U is an open covering of R, there exists an open refinement
B of U such that [{V|V N\R'+0 & VeB}|==n, where n is the smal-
lest cardinal number satisfying the condition m"Z==m, then the
a-structure ¢R 1® is contained in Dy(R).

Proof. Let {U,|A} be the uniformity of aR and let B={U}
be the basis of R’ relative to R such that |8|< m. Then, by the
conditions 1) and 2), for each « there exists an open refinement %8, of
1, such that it satisfies the condition 2) and such that if Uec 9%, and
UNR'=0, then Ue®B, and if UeB, U\ R'=0, then U contains only
one point. It is obvious that the collection {%B,|A} contains open
coverings of cardinal < m, hence we can rewrite it by {8,|4’} where
|A"| < m. Now for any U, € {8,|A’}, there exists a normal covering
B, , such that B, =B, ,. Let I' be the set of all finite subsets of A/,
and for any o=(a,, a3, ..., a) €L, let W, =By, i /\ Bus, i /\ ... /\ Buy, i-
Then if o>, W, < W, and so {W,|I'} is a basis for some unifor-
mity. Obviously {2,|1'} agrees with the topology, the uniformity is
that of the a-structure, and |I'|< m. Hence aR € Dy(R).

Lemma 5. For a fully normal space R, if gR € Dy(R) and if every
(bounded) continuous real-valued functions of R are uniformly con-
tinuous with respect to gR and to the usual metric of the space of real
numbers, then the set R’ of all cluster points of R satisfies the con-
ditions 1) and 2) of Lemma 4, where we use m in place of n in 2).

Proof. Assuming that gR satisfies the conditions of Lemma 5, we
suppose that there exists an open covering 1 such that it dozs not
satisfy the condition 2) of Lemma 4 with n=m. Then it is obvious
that there exists a set F with the potency > m and an open covering
B such that they satisfy the statement of Lemma 3 and such that
FCR'. Now let {l1,|A} be a basis for gR and then we may assume
that |A|<m. Since |F|= m, there exists a 1-1 mapping p of A onto

9) For a space R and a subset M of R, we say that the collection B of
open sets of R is an open basis of M relative to R if for any point @ of M and
for any open set G of R containing. g, there exists an open set U € B such that
a € UCG, and a cardinal number will be called the character of M relative to
R, if it is the minimum of cardinal numbers of open basis of M relative to R.

10) We denote the structure with the uniformity made up of all normal
coverings by aR.
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the subset of F, For each a € A there exists an a’ € A such that o/ >«
and S(p(a), N,,) C S(p(«), B). Then for each a € A, there exists a b, € R
such that b,e S(p(a),1,”) and b,4+=p(a) since A C R'. Now for each
a€A, let f, ba a continuous function such that f,(p(a,))=1, f.(b.)=0,
f.(x)=0 for every z ¢ S(p(a), 1., |f. ()| <1 for every x € R. Moreover
let f=31f., then f is a bounded continuous function of R, since for

each a€ R, S(a, V) can meet at most one S(p(a), B), where a € A. But
f is not uniformly continuous with respect to gR, since for each o€ 4,
[f(p(a))—1f(b,)|=1, S(p(a),U,)€D,, and {a’} is cofinal in A. This con-
tradicts our hypothesis. Hence the condition 2) of Lemma 4 with
n=m is satisfied. Finally, it is evident by the condition 2) that the
character of R’ relative to R is <m, for |A|< m. Thus Lemma 5
is proved.

Lemma 6. The following conditions on a space R are equivalent:

1) Dp(R) has the maximum, '

2) Dn(R) contains the maximum of D(R), i.e., aR € Dn(R).

Proof. We prove only that 1) implies 2). Assume 1). Let gR be
the maximum of D(R), {U,|A} the basis for the uniformity, U an
arbitrary normal covering and finally let {1,} be a normal sequence
such that 1 >>1,. Then it is obvious that {U,/\U,|lac 4 & n=1, 2, ...}
is a basis for some structure ¢’'R and that the g’R is an m-structure.
Since g'R > gR g'R=gR. Then evidently 1 >1,€ {1,|A}, which
implies that gR=aR. ‘

Theorem 3. Under the assumption of the generalized continuum
hypothesis'®, if m is regular', then the following conditions on «a
fully normal space R are equivalent :

1) Dw(R) has the maximum,

2) Dy(R) contains the maximum of D(R),

3) there ewists gR € Dy(R) such that every (bounded) continuous
real-valued functions are wuniformly continuous with respect to gR and
to the usual metric of the space of real numbers,

4) the set R' of all cluster points of R has the character relative
to R <m, and for each subset F of R' whose cardinal number is >m,
F' is not void.

Proof. In view of the above lemmas, 1) implies 2), 3) implies 4)
and 4) implies 1) and it is evident that 2) implies 3).

11) In this case, if n<m, then m"=m and hence if a set A has the potency"
m, then the set of all subsets of A with potency <m has the potency m.
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Corollary ', The following conditions on a metrizable space R are
equivalent :

1) Dy(R) has the maximum,

2) Dyo(R) contains the maximum of D(R),

3) there exists a metric of B such that every (bounded) continuous
real-valued functions are uniformly continuous with respect to the metric
and to the usual metric of the space of real numbers,

4) the set R' of all cluster points of R is bicompact. -

Corollary. The following conditions on a fully normal space R are
equivalent :

1) Dy(R) has the maximum,

2) Dcw(R) has the moximum.

Proof. This is evident by the fact that for a fully normal space
R, D(R)-=0 and that if gR ¢ D,(R) and if ¢'R >gR, then g’R € D(R).

Corollary. The following conditions on a metrizable space R are
equivalent :

1) D,(R) has the maximum,

2) D.yo(R) has the maximum.

§5. In this paragraph we are concerned with the space whose
Diy(R) has the maximum, where Dim(R)=D,(R) "\ Du(R).

Theorem 4. The following conditions on o space R are equivalent :

1) Diy(R) has the maximum,

2) there is a basis for an open sets B={U,|A} such that i) |[A|<m
and i) if F and C are two closed sets and completely separated **, then
there exist two finite open subcollections U and B of B such that

\j U>F¢md \j V)C and that \j N \J v=0.
Ve
Proof It 1s obv1ous that max1mum of Dty(R) is the afR', so

that 1) implies that afR € Dy(R). Let {U,|A} be the basis for the
uniformity of afR, where |A|< m, then B={U|Ucl, & U, € {U,|A}}
is a basis for open sets of B. If F and C are both closed and com-
pletely separated, then {R—F,R—C} is a finite covering, hence there

12) J. Nagata, On the uniform topology of bicompactifications, Journal of
the Institute of Polytechnics, Osaka City University (1950).

13) We say that A and B are completely separated when there exists a
continuous function f such that f(x)=0 (x€ A), f(x)=1 (x€B) and 0=f(x)=
1 for all x€R.

14) We denote the structure with the basis for the uniformity made up of
all normal finite coverings by afR.
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exists a finite covering U1, € {11,]4} such that {R—F, R—C} A>A11,,,, then
S(F,u)N\SIC,U)=0, U={U|Uell, & U N\ F-+0} CB and B={V|Ve
U, & VNF+0} C®B. Since 11 and B are finite, thus we can see that
1) implies 2).

Conversely, assume 2). Let B'=| \"j 'Uatan,-, €B & n=1,2,...} and
t=1

let B"={R—U|Ue®B'}, then it is evident that |[B”|< m. Now we
shall prove that, if {U,V} is a binary normal open covering of R,
then there exists a binary open covering {U’, V'}{ such that U > U/,
VOV and V',U'e€®B”. Because, R—U and R—V are completely
separated '*’, hence there exist two open sets G and O such that R—G,
R—U and R—O0, R—V and G, O are three completely separated pairs.
Hence there exist two open sets G’ and O’ such that R—U C G' G,
R—VC0'C O and that 0', G'¢B'. Let U=R—G" and let V'=R—-0/,
then U/, V'e®B”, U'C U, V'V and G/, V' are completely separated.
Hence {U,V} > {U',V'} and {U’, V'} is a normal open covering. Now
let U={U,,U,,...,U,} be an arbitrary normal open covering, then
there exists a normal open covering B such that uﬁ%. Then
{R—S(R—-U,¥)|i=1,2,...,n} is a closed covering and U, DR—
S(R—U,,®) and that R—U, and R—S(R—U,, B) are completely separa-
ted, hence there exists a normal covering {0, G,} such that O,, G, €B"

and {0, G} < {U, S(R—U,®)}. Hence U>A {U,SR—U,B)} >
» i=1

N\ {0, Gi}. Now, let F'={U,|ac A} be the collection of all binary nor-
t=1

mal coverings whose elements are contained in B”, and for each a €4,
let {u,,|n=1,2,...} be a normal sequence such that 1., ,=1, and such
that every U,, are finite coverings. Let F*={Uuy,n/\ Mg n/\ ...
AU, n|n=1,2,... & ac A} then F* is a basis for the uniformity of
afR and |¥*|<m. Since for any normal finite covering 11 there exists

W, i=1,2, ..., n such that U>> A1, and 1€, there exists Be F*
i=1

such that ¥<U, and it is obvious that |&*|< m.

Corollary. If for a normal space R Din(R) has the maximum, then
R satisfies the following conditions :

1) the character < m,

2) if ACR and of |A|>m,
then A' is not void,

15) It is obvious that a binary open covering {U,V} of R is normal if and
only if R-U and R-V are completely separated. Cf. T. p. 53.
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Proof. Assume that Dyy(R) has the maximum. Then we have
already seen that the character of B is < m. Now let B be an open
basis satisfying the condition 2) of Theorem 4, and let B'=
U \J Uny\J ... \J Us, | n=1,2, ... & Us; €B}. Suppose that there exists
a subset F' of R such that |F|= m and F’=0. Then for every subset
Fy of F, let Fy=F—F; then Fj; and Fy are both closad and Fa[\
Fi=0. Since R is normal, there exist by Theorem 4 open sets O;
and Gy such that O0; > F;, G; D Fy, 0; N\ G;=0 and 0;, G;€®B'. Now
we see easily that {0;} C B’ and |{0;}|>2m since if 5-+& then
0;==0,.. For if a€ F;—F,, then a€0;, a€G,, hence a¢O0,, i.e. 0;=+0..
But 8’| < m, which is a contradiction.

Corollary. For a metrizable space R, B is bicompact if and only
if Dtyo(R) has the maxzimum.

From Corollary and Theorem 3, we have,

Corollary. Under the assumption of the generalised continuum
hypothesis, if m is regular and if for a fully normal space R, Diu(R)
has the maximum, then Dy(R) has the maximum.

§6. In the last paragraph, we shall consider cardinal numbers
of D(R) and its subsystems in the case when R is metrizable.

Theorem 5. If R is not bicompact and metrizable, then Dy(R) has
the potency = 2%.

Proof. Since R is not bicompact, there exists a countable set {a,}
without cluster points, hence for any point ¢ of R, there exists an
open neighbourhood U(e) of a such that U(e) N {a,} contains at most
one point. Thus U={U(a)|a € R} is an open normal covering, hence

there exists an open covering B such that ‘B%u and then there
exists a non totally bounded »,-structure mR whose basis for the
uniformity is {Ul,} and 1,=%B. Now decompose the set A={a,} into
disjoint countable sets A,~={a,|n=1,2,...} and let A,, be {a;|j=n,
n+1,...}. We shall define a R,-structure m(p)R for each sequence
p={p,} of two numbers 0 and 1. Let I(b) be the set of all p, such
that p,=1 and let B,={S(4,,, W) |p. € IP}\J{U|IUNA,=0, Uecll, &
p,€I(p)}. Then {B,} is a basis of some uniformity of some R,-struc-
ture which we shall denote by m(p)R, (cf. the proof of Lemma 1). If
p=i{p,} and q={q,} are different sequences, then m(p)R and m(q)R are
different. For e.g. for an ¢,p~=1 and ¢,=0, then {g,,|i=1,2,...} are
a Cauchy sequence of m(p)R, but not of m(q)R. Hence D,,(R) has the
potency =.2%.

Theorem 6, If R is separable and not bicompact, then both D(R)
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and D,(R) have the potency 22%° and both Dy,(R) and Dty (R) have the
potency 2%. :

Proof. First we shall prove that D(R) had the potency < 22*°,
i.e., that D,R) has the potency < 22*° and tnat D, (R) < 2%. Each
normal sequence of open coverings is associated with a pseudo-metric ¢
and if for two normal sequences of coverings {U,} and {¥,} there
exists U, € {1,} such that for any m, B, is not a refinement of 1,
then the corresponding pseudo-metrics are different !¥. Since a pseudo
-metric is a continuous function on the Cartesian product R xR, the
set of all pseudo-metrics has the potency < 2% and a structure of R
is associated with some set o6f normal coverings respectively, hence
D(R) has the potency < 22" and Dy, (R)< 2%.

Next we shall show that D,(R)>2%"". Let 8(R) be the Cech’s bi-
compactification of R, then B(R)—R has the potency 222” 19 hence
the set of all equivalent classes of Cauchy families of the maximal
structure afR of D,(R) without limit point has the potency > 22"
Now by Lemma 1, for two non equivalent Cauchy families {F,|A}
and {F,|A} of ofR without limit point, we can find a totally bounded
structure fR such that they are equivalent Cauchy families of fR, and
for two different pairs of not equivalent families we obtain two dif-
ferent totally bounded structures respectively, hence D,(R) has the
potency > 228°

Finally, we shall show that Ds,,(R) has the potency =2%. Since
E is not bicompact, there exists a countable set N without cluster
point. Let N be subdivided into countable subsets Ni(i,j=1,2,...)

such that N‘,={a;. |n=1,2,...} and let N’=iN",, then N=§]N'-
n j=1 i=1

Now, let p={p,} be a sequence of positive integers. Corresponding to

p, let the elemeuts of C] N’ be ordered as follows, @y +1,1< @5, 41,2<

C =P+l
@, 42,7 B, +1, 5 Bp, 2, < Op,+3,1... - Let this sequence be N; =N, (p).
Then let {N%} be arranged as follows :

*) Ni N3, N3, N3 NE,., N3, NB, L N,

LIS LA Pr41°

where N is considered as a sequence ordered ‘by the indices.
Then let P, be the i-th term of (*) and let us put P={a,,|j=

16) Cf. T. p. 51.

17) E. Cech, On bicompact space, Ann. of Math 38 (1938). Dedfich
Pospisil, Remark on bicompact space, Ann. of Math. 38 (1938).
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1,2,...}. Moreover for each n, let N be subdivided into a,, (i, 7 < m),

{a, Ji=n+1,n+2...} (i<n) and N—3) P,, and let P, ,={a,, ,, |i=1,2,...],
” =1

P,...=N —-EIPP Then there exst open sets U, (i,7 < =n) and V,,
i=

(i<n+1) such that any two of them are disjoint and U,;>a,;, V,, D P,, .
Let B,={U;|i,j < n}\J {V,|i <n+1}\J {R—N}, then ¥, is an open
covering, hence there exists a normal sequence: LB,—%+ §%5 é
where every ¥¢ are finite. Now, let mR be an arbitrary but fixed
element of D¢y (R), whose uniformity cnotained a normal saquence
{U,]i=1,2, ...} as a basis and let A, =%, A1 A ... \ 8z then {A,} is
a normal sequence and the basis of the uniformity of some totally
bounded ®,-structure. Let us set

A,'={S(P,.., Ui < n+1}\J {U|Ue, & for i < n+1 U\ P, ,=03.

then {9} is a normal sequence and a basis of the uniformity of
some totally bounded ®,-structure, which we denote by m(p)R.

First, we shall show that {2/} is a normal sequence. If a¢
S(Pi, 01, N,.1) for all i < n+2 then there exists Ue A, such that U D
S(a, A, )=S(a, Ax.,), and A,’ >A,, hence there exists V €,’ such that
VOUDS@,Anyy). If aeSP, .1 U,.1) for some i, then a ¢ S(Py, .1
%A,,,) for j==i, since B,,, >Bz:1>A,,, and B,,, cannot contain an
element which intersects with two sets P, .1, Pj, .1 Now S(a, As )=
S(a” S‘)ln+]) \/ S(Piynﬂ’ S‘)Inﬂ) and Pi, n+1 < Pt,n or Pi, n+l < Pn+1,n hence
A 3S(Py, s A) D S, rsy) or A3 S(Pysrs e W) D S(a, Ans)-

Next, it is evident by the same way as in Lemma 1 that m(M)R
agrees with the topology since [/ 3} P,,=0.

_ nyin+1 .
Finally if q={p,}=q={q,}, then m(®)R=m(q)R. In fact if for

some % p;=l=q; and if p, >>gq,, then Nflm(q)isa Cauchy sequence of m(q)R,

but Néiﬂ(q):Néiﬂ \J... \UN;3, \J N;Hl, N,‘,M, vee s Nﬁ,l, Nj,t+l are respec-

tively Cauchy sequences of m(p)R and two of them are not equivalent,

hence Nflm(q) is not a Cauchy sequence of m(p)R, hence m(p)R==m(q)
R.
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