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Unitary representations of locally compact groups

—— Reproduction of Gelfand-Raikov's theorem ——

By Hisaaki YosHIZAWA

1. INnTrRODUCTION. It is reported in Mathematical Reviews that I.
Gelfand and D. Raikov proved, in 1943, that every locally compact group
G admits sufficiently many irreducible continuous unitary representa-
tions on Hilbert spaces (that is, for any element g of G different from
its identity element, there exists a representation of G which maps ¢ to
an operator different from the identity one) [3])). For the present author
it is yet impossible to read their paper, but he had fortunately the
opportunity to read the papers [6,7] by I. E. Segal and was suggested
the original direct proof by Gelfand and Raikov. The purpose of the
present paper is to reproduce this direct proof.

Later the paper on the same subject by R. Godement [4] became
available to the present author. The contents of the present paper are,
in essential, involved in this paper.

2. SUMMARY. After some preliminary remarks in 3, we shall, in
4, establish the correspondence between meagurable positive definite
functions on G and so-called simple continuous unitary representations
of G on Hilbert spaces. There we shall make use of the group algebra
as (2], (6] and (7] do®). Every continuous unitary representation of G is
obtained by the method used in 4, if, analogously to the finite dimen-
sional case, we regard two representations as equivalent when they are
mutually transformed by a unitary operator. In 5, we shall consider
the correspondence hetween irreducible representations and so-called
extreme positive definite functions and prove Gelfand-Raikov’s theorem

1) Number in LITERATURE at the end of this paper.
2) We shall also utilize, as (7) does, some results in (1), which is reviewed in Math.
Reviews but, to the present author, is yet unavailable.
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on the existerice of irreducible representations.

3. PRELIMINARIES. Throughout this paper, we shall consider an
arbitrary but fixed locally compact group and denote it by G.

(1°} One of our principal subjects is unitary representation {U(g),
H; %) of Gona Hilbert space (4: generalized Euclidean space) H, which
is continuous in the strong topology. {U({g), H{ is said to be simple”)
if there exists an element ¢ of H such that {U(g)¢{|g < G} spans H , and
to be irreducible if there is no non-trivial projection which commutes
with every U (g). ‘

(2°) Let us denote by m(-) a fixed left-invariant Haar measure
on G. The group algebra A over G shall be the ring arising from
L") in defining in it the multiplication by convolution :

x-y(g)-—:sx(h)y(h“‘g)dh, for x, y of A.

For every z of A, x* is defined as follows: z*(9)=2x (g p{g) %,
where p(g) is the density of a right-invariant Haar measure: m (B™') =
[,p(g)m(dg). Then * satisfies the following conditions: (w*y*=—x>
fo*am=lzla?), (@ +y)F =% + y*, Loy =Kok, (oy)* = y* 2*.%)

(3°) Let {V,} be a system of (conditionally) compact neighbour-
hoods of e %), put d,(g) = cr.(g)/m(V,), where ¢,{-) denotes the cha-
racteristic function of B. We shall call {e,|e, = d* dd} the approxi-
mate identity of A. It is easy to see that |e,|,=1, e, *—=e¢, and
that, for every x of A, both {e.x} and {xe,} converge to x with «.

(4°) Let us call a compleﬁc-valued bounded linear functional F (.)
on A positive, if F {(x*x)>0 for any « of A.

(5°) A complex-valued function f(¢) on G is called positive definite

3) We shall denote by {U(g), H} the representation which maps g to unitary operator
U(g) on H.

4) It is called normal in (7).

5) We shall denote by L(G) the Banach space of all complex-valued m-integrable func-
tions on G.

6) 2 denotes the conjugate complex number of 2.

) |-|# denotes the norm in Banach space E.

8) For these notions, see [6].

9) ¢ denotes the identity element of G .
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(we shall, abbreviate this as “p.d.”), if it is measurable, essentially
bounded and satisfies the inequality :

[at @ (9) gy dg = |1 9) & () = (9) dhdg - O

for every » of L(G). When f(g) is moreover continuous, this inequa-
lity is equivalent with

}?“‘} £ & 9920

for complex &, (1 <k<n)."Y Every p.d. function satisfies (g~ ==
x {g) for almost all g .
If we put

Fia) == (9) 1 (9)dg
for  of A, then F, is positive on A and satisfies F,(x*) == F,@&);
conversely, every positive functional on A is obtained by this manner
from some p.d. function.
(6°) The important examples of p.d. functions are, among others,
the following two: If x(g) is bounded and vanishes outside a compact
set in G, then

[ @ (ghy @ By an

is a continuous p.d. function in g. Another example is given by
TuroreM 1. If {U(g), H} is a continuous unilary representalion

of Gand peH, then (UQ)p, ¢)a') is a continuous p.d. function in ¢ .

4. PosiTive DerINITE FuncTionNs AND UNITARY REPRESENTATION.
As for the further relation of p.d. functions to unitary representations,
it is easy to prove

THEOREM 2. If {Ulg), H} and {U{g), H'} are unitary represen-
tations, and {U@)¢|g =G} and {U'(9)¢'|g e G} span H and H', respec-
tively, and if U@)¢, &, = U'(@)¢', ¢H,' on G, then {Ulg), H}

5 Cf. [8)].
1Y) (., . )x denotes the inner product in H.
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and {U'(g), H'} are unitary equivalent, i.e., there exists a unitary
transformation T from H onto H' such that Ulg)=TUg)T.

In this paragraph, we shall prove that, for every (measurab!e) p.d.
func¢tion, thére exists a simple continuous unitary representation in
such a manner that this correspondence is reciproque to that one stated
in THEOREM 1. 1)

THEOREM 3. For every measurable p.d. function f(g) there exists
a continuous unitary representation {Ulg), H} and an element & of H
such that {U(g)¢|g G} spans H and
) U@ ¢, Ou=1(9) almost everywhere in G .

Proor. We shall divide our proof into four steps:

(1°) Comnstruction of H. Put L,= {x|F,(yx) —0 for all 4 of A};
then L,is a closed left-ideal in A. Hence we can make the factor space

(as a Banach space) A/L;; we shall denote by [#] the class containing .
Define

@ (=], W))r=F;ly*x),

for =z, y of A; it is easy to verify that this definition is possible, and,
by means of Schwarz’ inequality, that (2) is a (positive) inner pro‘duct
in A/L,. At the same time it is proved that

) L= {z|F,(&*2)=o}.

Let H=H, be the completion of A/L; by the norm |[x}]%~= ([],
[#]),. Then H is a Hilbert space, and the mapping from x of A to [x]
of H is continuous.

(20)' Construction of U(g). Define U(g), for every g of G, as
the mapping on A/L, which transforms [«] to [x,], where =z,(h)=
x (g~'h); this definition is possible since every left-ideal in A, and con-
sequently L, in particule{\r, contains z, together with x for all g. Then
U(g) leaves the inner product (2) invariant, since (y,)?{(z,) = y*x.
Hence U{g) can be extended to a unitary mapping on H. That this
extended U{g) is strongly .continuous follows from the continuity of

12) This is easily proved for continuous p.d. functions, but it is necessary in the follo
wing to prove it for all measurable, p.d. functions, and in order to do thai we shall have to
make use of the group algebra over G.
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U(g)[#) in H for every x of A, and this, in turn, follows from the facts
that the mapping [z] is continuous from A into H and that x, is con-
tinuous from G into L'{G).

(3°)  Representation of A . Define S,, for every a of A, as follows:

4 S.p =\ z{9)Ug)pdg "), for ¢ of H.

Then |S,pl, < |xls-|¢pls; hence S, is a uniformly continuous
representation of A by operators on H. From (4) and the unitarity of

(g) it follows that S,*-=S,*; and a simple calculation together with
the fact that {[z]' z¢ A} is dense in H implies that

) S, [y] = [z - y] for y of A.

Now, let {e,} be the approximate identity of 4. Then {[e,]} con-
verges weakly in H '), since ([x], [e.] ). =F,(ex) converges to F,(x)
for every x of A, and since on the other hand {[x]|xe¢ A} is dense
and {[e,]} is bounded in H. Let ¢ be the limit of {[e,]}. Then

(6) (x], Ou=F,(&).
From (5) and (6) follows that
@ S, ¢ = [x],

because, for every y of A,
(W), Sub)= (S w), &)= ([a*y], O)=F @ y)=([y], [2]).
By (6) and (7) it holds that
(8) (Sv- g ) g)/{ = Ff ((L‘) .
(4°)  Proof of (1). From (4), (7) and the definition of the integral,
it is proved that {U(g)&|g < G} spans H : that is, if (U(g)¢, ¢)=0 for

all g, then ¢ must be the zero element.
From (8) it follows that

13)  This integraiion shall be understood as in the sense of Pettis, i.e.,

(| x@ U@ edg 1) =[x @ U@e, wudg,

for every ¥ of H
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on the other hand F,{(x) -—:Sx.’g)f(g) dg. Therefore f(g)=— (U{g)é‘, On
almost everywhere in G, q.e.d.

CoROLLARY. FEwvery measurable p.d. function coincides with a
continuous one almost everywhere in (.

For the later application we shall prove here

LEMMA. For every non-zero x of ‘A, there exists a positive func-
tional F (-) such that F{x*x)=4=0.

Proor. (1°) When 2 (-) belongs not only to L!'(G) but also to
L¥G), x* () is bounded and continuous on G and z" (e) == 0. Hence
if we put

(@) ={ey (gh)e, (mydn ),

where V is sufficiently small neighbourhood of e, then F, satisfies the
required condition.

(2°) In the general case, let y(-) belong both to L'(G) and to
L¥G) and yx be == 0. Then, from (1°), there exists an F such that
F((yaxy*@yx))=+0, since yx (-)e L*(G). Then, from (3), F (x'z)=+0,
too, q.e.d. l

5. IRREDUCIBLE REPRESENTATION. Let Q be the family of all p. d.
functions, each of whiich is bounded by 1 in absolute value almost every-
where. Let us consider Q as a subset of the conjugate space of A.
Then, by COROLLARY in 4, we can assume that every element f(-) of
Q is continuous and |f(9)| <f(e) <1. Q is bounded, convex and weakly
compact. Hence, according to the theorem by M. Krein and D. Milman
(5] every point of Q is weakly approximated by convex combinations of
extreme ones, where we mean under an extreme point of Q such a point
belonging to Q that is not an inner point of the segment combining
any pair of points of Q. It is easy to see that every extreme f is of
norm one, except the zero element..

We shall establish in THEOREMSs 4 and 5 the correspondence be-

1) Moreover it can bz proved that this convergence is the strong one.
18) ¢y (+) denotes, as in 3 (3°), the characieristic function of 7,
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tween irreducible representations and extreme p.d. functions. %)
TaroreEM 4. If U(g), H} is irreducible, then g(g)=U(9)¢, On
is an extreme p.d. function for every ¢ of norm omne.
Proor. Suppose that

F(@)=rf9) + f:(9),

where both f, and f, belong to Q. It is sufficient to show that 7, = \f
for some X\ .

(1°) Let
(9) P = 4:_1‘ a, U@ &, Y == Zz B UM E,

where «;, B, are complex numbers and ¢, h, ¢ G, 1<k<n, 1<l<m);

and define
(10} [(/)) ‘1’] :_:Z‘akglfl (hl—lgk)~
.ok

IA

Then (o, ] is positive, bilinear and bounded for these @’s and +r's:
[l =3t o, F 95790 = 2 oty fi (9:'90=0.

Therefore, since these @'s are dense in H, there exists a positive-
definite operator P such that

(11) [¢’ “!’] =(p, P‘J")H-
From (10) and (11) follows
(12) N9 =[U@¢, (1=Ug)¢, PE).

(2°) Let @, + be as in (9); then, from (10) and (11),
PU@G) @ > )= U@ p, Py)==[U@)p, V]
=31 @y B fo (B '99:) = Xlat B £, (97" h) ' g)
=(Pp, Ulg)4) = U@) P, ).
Hence PU{(g)=U{g) P.
(3°) Therefore necessarily P== 1. where x>0.
Hence it follows from (12) that f,(9)= X f(g), q.e.d.

TuroreM 5. If ‘U(g), H} is a continuous unitary representation
such that {U(g)¢| g2 G} spans H, and if f(g)=Ug) ¢, {)x is an extreme

16) In proving these theorems we do not refer the results obtained in 4.
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p.d. function in g, then {U(g), H} is irreducible.
’ Proor. If there exists a projection which commutes with every
(g), then
F=U@g¢, Oa=U@@PE, POy +U@@UI —P)E, I —P)Dg").
Since f(g) is extreme and both (U (9)P¢, PO)/(P ¢, P &) and (U(g)XI — P)¢ .
(I — P)t/)({I—P)¢, (I— P)¢) belong to Q, it follows that
and
U@gt, I —-PYO=T-NU@QT, O
for some A. Hence, for ¢ —= 3% a, U(gy) ¢,
=Py, Pp),
and consequently, for arbitrary ¢ of H,
Mo, p)=Pp, Pp);
analogously
1-Np, p=(I—-Po,I—-Pog).

From these two identities it follows that P=0%) or P=1, q.e.d.

Now, refering the results obtained in 3, we can prove

THEOREM. 6. If a is an element of G different from e, then there
exists an irreducible unitary representation {U(g), H} such that Ula)
1. '

ProoF. There exists an # of A such that o, --x. It follows that,
by means of LEmMMa, F,({z, — 2)*(x, — x))==0 for some f of O, and
consequently, for some extreme f. Hence U(e)(x] == [«] on Hr, in the
proof of THEOREM 3, q.e.d.

(Received November 24, 1948)

19) ] denotes the identity operator.
18) O denotes the zero operator.
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