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Abstract

We consider the Cauchy problem for the operdd3r— Dya(t,x) Dy in the Gevrey
classes. We show that if the coefficieaft, x) is given by a finite sum of non
negative functions then the Cauchy problem is well posedénviider Gevrey class
for the larger powers. We also give an example showing thebtler of the Gevrey
class obtained here is optimal.

1. Introduction
In this paper we are interested in the Cauchy problem

(CP) {Pu: D2u — Dya(t, x)Dxu =0
u(0, x) = up(x), Dtu(0,x) =uz(x)
on [0,T] x R, where we always assume thet, x) > O.

For a spaceX of functionsv(x) in R, we say that (CP) is well posed X if for
every Up, Uy € X there is a unique solution € C?([0, T]; X).

In this paper we prove that, if the coefficieatis given by a sum of powers of
functions, or even by a suitable series of them, then the I§apcoblem (CP) is well
posed in the wider spac¥ for the larger powers. Actually in this note we take
as y®(R), the Gevrey classes of orderfor somes > 1. Since we are interested in
studying the influence of the principal part of the symbol amdbrder to avoid Levi
conditions, we do not allow terms of order one, but only a zender term to be added
to the principal part.

This Cauchy problem, foa(t, x) = a(t), in the more general case ofspace vari-
ables, has been considered in [2], where they proved incpéatithat, if the coefficient
a(t) e C"([0, T]), then (CP) isy®(R) well posed fors < 9, where

h
1.1 =1+—.
(1.1) S 5

Moreover they proved by suitable counterexamples that thisx s, is optimal. In [7]
these results have been extended to the case of coefficiepending also on space
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variables, but only for Gevrey indes < 2.
In Section 2 we shall consider the caag, x) = a(t) and we prove the following
result:

Theorem 1.1. Assume that @, x) = a(t) and

12 an=Yam, =0, a®cC©T) Yyl <o
j=1 i=1

where n and h are positive integerdhen the Cauchy problefCP) is y©(R) well
posed for

nh
(1.3) 1<S<S*=1+?.

The Gevrey indexs* = 1 + (nh/2) is optimal, as proved by the following:

Theorem 1.2. For every positive integer n and h there exist§tae C"([0, T]),
satisfying a(t) > 0, such that the Cauchy problefCP) with a(t, x) = aj(t) is not
y©(R) well posed for any s> 1+ (nh/2).

We give now an easy consequence of Theorem 1.1, related beprcof writing a
nonnegative functionf as sum, or series, of squares of functioiys with f; of given
regularity.

REMARK. In [1] J.-M. Bony proves that any nonnegative function ofssl€?™
defined in an interval is the sum of two squares of functign®f classC™; moreover,
he proves that it is not possible, in general, to improve tesult and find functions
g; more regular tharC™. We remark now that, thanks to Theorem 1.1, one can give
another proof of the sharpness of this result, which, aljhovery indirect, is a little
more general. In fact, from [2], it is known that, for everytdger m, there exists a
function a(t) € C?™([0, T]) such that the corresponding Cauchy problem (CP) is not
well posed iny®(R) for s > 1+ (2m/2) = 1 +m. Then, taking Theorem 1.1 into
account, for anyl < oco or also forl = +oo and for anyp > m, it is not possible to
write this functiona(t) as lezl ajz(t), with a; € CP and lezl la; ||(1:/pp < +00.

In Sections 3 and 4 we study the caseafff,x) depending also o, but we limit
to considerh = 2:

(1.4) P = D? — Dya(t, x) Dy.
We say thata(t, x) € C%([0, T]; y©(R)) if

|8/ aka(t, x)| < CjAKIS, (t,x) €[0, TI xR, k=0,1,...
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for j =0,1,2 and for some constan®y and A;. Then we have

Theorem 1.3. Assume that

|
a(t,x)= > aj(t,x)", 0<a(t,x) e C*([-5,T+5]; yO(R))
j=1

with a positive integer n and sonte> 0. Then the Cauchy problem for P ig®(R)
well posed if

2n
1§s<1+n:1+7.

2. Case ofa(t, x) = a(t)

We give now the proof of Theorem 1.1; more precisely we provesaergy esti-
mate from which by a standard argument one can obtain the ppsikdness result.

Proof of Theorem 1.1. Let us consider the operd®om [0, T] x R
(2.1) P =92 — a(t)a?

under the assumptions (1.2). Left,x) be a solution of the equatioRu = 0. For the
Fourier transformu(t, £) of u with respect tox, we define the energy

E. = [3co(t, §)1 + 1§17(@(t) + &) lu(t, §) 17,
with
e=1&177,
o > 0 to be chosen later. From

du(t, &) + 1€ %a(t)v(t, £) = 0

we have

a1,
2.2 & E, ik WA ¥ E.,
22) (€. = (e + 61
which gives

(2.3) E.(t, £) < E.(0,£) eXp(tgl/2|g| +/t |a’(z)] dr)
0

a(r) +e¢



124 F. G@LOMBINI AND T. NISHITANI

by Gronwall inequality. Let us consider now the integral th3); thanks to assump-
tions (1.2), we have:

(2.4)
Tolal()l IR CHON 1|(a”(t))’ T lajllay "t 1
/0 a(t)+eOlti 0 2 d (t)+€ Z/ IaJ|“+e

lag l1a; "t lag |

n—1 n—1
=" Z/ (lay ety 40 = "2 Z/ T+t

From Corollary 2.5 in [3] (see also [9]), we know that

&l
| l/h —1/nh
/71/n < Mjajllg'e ™"
o lajl+e

with M = M¢(h, T). From this fact and from (2.4) we obtain:

5 /T |a’(t)] dt < n2"1M i Ja [XNe—Y/nh
. o a(t) +¢ - = Jiich .

From (2.5) we deduce:

(2.6) E.(t, &) < E.(0,8) exp{Tsl/2|§| +/T ja’(e)] dr}.
0

a(r) +e¢
Taking (2.3) and (2.5) into account, we obtain

(2.7) sup E.(t, £) < E.(0, &) expC{e?|g| + ¢~1/MN},
te[0,T]

The best choice of,
_2nh
" nh+2’
and (2.7) yield finally

(2.8) sup E.(t, €) < E.(0,£) expC|e |7/ 2.
te[0,T]

This allows us to solve the Cauchy problem fBrin Gevrey classes provided that
the Gevrey indexs is related to theC" regularity ofa; and to the exponent by the
assumption (1.3). O

Now we prove by construction of a counterexample that theditiom (1.3) is
sharp. Our construction is inspired in part by the examptept] and in [2].
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Proof of Theorem 1.2. Let us take a real, non-negativep2riodic C*> function
¢ such thatp(z) = 0 for = in a neighborhood of =0 and

21
/ ¢(r)cod rdr = 7.
0

Then, for everyr € R, we define
a(t) = 1+ 4eg(r) sin 2t — 2e¢/ (1) coS T — 4e2¢?(z) cos' 1,
w(r) = cost exp(—sr +2¢ /OT ¢(s)cos s ds),
w(t) = w(r)e,
wheree is fixed in such a way that/2 < «(r) < 3/2, and let us denote
M = [l

So, a(r) and w(z) are 2r-periodic C* functions; furthermorew is the solution of the
Cauchy problem

(2.9) w’(zr) +a(r)w(r) =0, w(0)=1,w'(0)=0.

Let now B(r) be a non increasin@ function such thai(r) =1 fort <0, B(r) =0
for T > 1. We use also four positive monotone sequen{égs {ox}, {vk}, {hk}, where
vk are positive integers, such that

hy — +o00, v — +00, & —> 0, ok —> 0; vk €N,

2.10 >
(2.10) 51<1, 2) k=T <1
k=1

Finally let us define two families of intervallk and Ji, k > 1, by setting

3
Ik = [tk—g—;,tk+g—;:|, J = |:tk+Q—2k,tk+%:|

k—1

Ok Q1
tk=—+2 i ti==).
k=5 jE:lQJ (1 2)

Now we are ready to construct the coefficiaft) for t € [0, 1] as follows

(2.11)

t—t
8ka<47ruk k> for t € Iy

Qk
t—t 1
Sir1 + (8 — 5k+1),3( K _ —) for t € J
Ok 2

0 fort > T,

(2.12) at) =
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and we define
ay(t) =a'’"(t).

It is easy to see that; € C*([0, T[). To estimate|lai|lch on J and only, we use
Faa di Bruno’s formula (see [5]), witk (x) = x¥" anda(t) given in (2.12). We obtain:

h h A
(Foa)® =Y (FPoa) 3 hi[] @
i=1 R ((HER

pth,j)  i=1

where we denote™(y) = (d/dy)™¢(y) and where

h h

(2.13) P, ) =G )i M =0, D di =, Y in = h]-
i=1 i=1

Then onJx we have, taking (2.10) and (2.13) into account,

h h
lazlicray < Caln b, 1BlIen) D 8 S TT6wec )™

(2.14) =1 p(hj) i=1
s h
< Co(n, h, 1Blicn) pic “(5k+1)l/n<a_k> '

k+1

On the other hand, ot one easily obtains

h
VK
(2.15) lagllcnay < Ca(n, h, ||0l||ch)5|i/n(a) :

Now we define a solutiou € C*>([0, T[; ¥5(T)) for anys > 5 of Pu =0, P as
in (2.1), and we takelp = u(0, x), u; = 8,u(0, x) as Cauchy data. Her€ denotes the
one dimensional toru3 = R/27Z. Let us set

(2.16) u(t, x) = > v(t)e".
k=1

We have

(2.17) vy (t) + hZa(t)ve(t) = 0

hence, if we impose(t) = 1, v, (t) = 0, we have, thanks to (2.9),

(2.18) v(t) = w<4nvkt ;

t
k). tely,
K
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provided that

2
(2.19) h2 = <4ﬂw<) 51
Qk
In particular
(2.20) vk<tk - %> = e e U{((tk - %> =0,
2 2
(2.21) Uk <tk + %) = e,y <tk + Q_2k> =0.

Now we define the energy:
Ex(t) = I (017 + hga)lu ()1

Taking (2.17) and (2.20) into account, we obtain then,tfer ty — ox/2,

Ex(t) < Ex (tk — Q—2k> exp[/otkgk/z |Z((tt))| dt]

(2.22)

471vk)2 =)
= exp| —4mwevg + dt + dt|.
(52 el arene L [ S5 o0 2 [5G
But

Ol G~ grmy,,

oat)

ol ., _ 1y 1
3 a) dt—log<8j+1> Iog(3j>

so, finally, fort < tx — ok/2, taking (2.22) into account, we obtain

k-1
(2.23) E(t) < C exp|:—4m;vk +8TM Y wj + |og<81> +2 |og(ﬂ>}.
k

=t Ok
Now we choose

ok = (k+ko)

in such a way that
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and

— k
Vk = 1

with o a large integer to be chosen later, and finally
Y —hn

(2.24) 8 = (—k> kL.
Pk

It is easy to see that, thanks to these choices, the right maschbers of (2.14)
and (2.15) go to 0 ak goes to o and soa; € C"([0,1]). On the other hand, one has

(2.25) Iog<i> < (hn+1) |og(ﬂ>.
8k Pk

Now we chooseu an integer so large that

k-1

(2.26) 4reve > 8rM Y vy +(hn+3) |og(i> + £V
= Ok
j=1

From (2.23), (2.24), (2.25) and (2.26), we obtain
Vi (hn+2)/2s
Ex(t) exp(h®) < C exp[—svk + Clk1/25<—> ]
Ok

and this expression goes to 0 fer— oo, for anys > 1 +nh/2.
So, foru defined by (2.16)u(0, x) and u(0,x) are iny®(T) for any s > .
On the other hand, from (2.21) it follows immediately thgt, -) is not bounded
in D'(T) ast —» T, for anys > . L]

3. General case

We first study the cask= 1 and we shall make a remark for the general case at
the end of the last section. Instead Bfin (1.4) we may study

P = D2 — u?Dya(t, x)" Dy

with a small parameter & u < 1. Indeed this is achieved by a different scaling of
the coordinates and x. Actually we consider

(3.1) P = D? — (uD)a(t, X)*(uD)

which differs from P by a zeroth order term which is irrelevant to our result, veher

D'[:

1
Sop (D)= (1 +p*DYY

9
ot’
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To prove the well posedness of the Cauchy problem we deriva gmiori estimate
for P.

To derive an a priori estimate it is convenient to use a smetiflass of pseudo-
differential operators motivated by [8] which is suited tetoperatorP. To define the
class we introduce the metric

3.2 g.(dx, d€) = (a(t, x) + (u€)°) " dx + (£),,2 dg?

wherez = (x,&), 0 < § < 2 and (&), = u~Y(u&). Note that(u&)s € S((ué)S, dx? +
(€),2dg?) and (ug)%(&);' = u'(ug)s for t = 0. Here we recall tha(t,x) > 0
verifies

|8/ aka(t, x)| < CjAKIS,  (t,x) € [0, T] x R

for j =0,1,2 andk =0,1,.... We use Weyl-Hérmander calculus of pseudodifferential
operators (see [6]). We denote by the Weyl quantization of(x, &) but sometimes
the suffix w is omitted if there is no confusion.

Lemma 3.1. Let0 < é§ < 2. Then g is slowly varying and temperate

Proof. Let us writez = (X, &), w = (Y, ). If gu(z— w) < ¢® and hencgé —n| <
c(&), then we see easily

(3.3) “f:ﬁ < (un) < Clué), % < () < C(&),

with C independent of«. With ¢(t, x, £) = v/a(t, x) + (u&) = we have
a(t, x) = a(t, y) + ro(t, w)dsa(t, y) +r,
| < C—Zz(suqafa(t,x)|)¢>(t, w)?, |rl<c
if X —y| < co(t,w). Sincea(t, x) > 0, the right-hand side is bounded by
a(t, y) +cB((t, y) + (un) ).
Noting (3.3) it is easy to see that
(3.4) a(t, x) + (ug) < (L+cB)@(t, y) + (un) ).

Repeating the same arguments we conclude dkiatx) + (1&)~® is g continuous and
this together with (3.3) proves thatis slowly varying.
We next show thayy is o temperate. It is enough to show

0u(T) < Co(T)(L +gz—w), VT
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with someC, N when g, (z— w) > ¢ Note that
B5)  gi(z—w)=m)ie(t w)gu(z— w) = ie(t, w)’ = Fun)*
and
X —yI? < (), %95 (z—w) < g;,(z—w),
€ = nl* < ¢(t, w)?g} (2 — w) < (un)’gf (2~ w).
Note now that
a(t,x) < a(t, y) + B(aft, y) + Ix — y*)
and, by (3.5),/x — y|? < g2(z — w) < C(un)~°g(z — w)**/@=9. One obtains then:
a(t, x) < C@(t, y) + (un) *)(L +gj(z — w) /).
It is easy to see
(1) < Clum) (L +15 —nl)’ < Clun) (L +g, (2 — w)/Z>22 Dy
and hence one has
a(t, x) + (ug)° < C(aft, y) + (un) *)(1 +gj(z — w)"
with someN. The same reasoning shows that
€)% <CmiA+IE—n)? <Cmia+gyz—w)V
with someN’. These prove the assertion. U

Let us recall Theorem 18.5.4 in [6].

Proposition 3.1. Let p € S(m;,g), i = 1,2where m > 0 are o, g temperate
Then we have jppy = (p1 # p2)” where

—1) - 3 e
SRR ZJT?@D&};) pé‘(’i) e S(mmy(&),*(@+ (ug)*) ™2, g)
a+f<k e

with ps) = 8¢ (=i 8,)" p.
Assume thatp; are real then it is clear that

Y @ ®
E P1es) P2
wiimodd 20*B) Bl
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are pure imaginary and

Y @ ®
(3.6) Re(py # p2) — a+ﬂ=z(-:'v:en<k 20+B g Bl P1(s) P2(@)

e S(mmy (&), @+ (u&) ™)™/, g).
It is also clear that ifp € S(m, g) is real then

Y @ ®
# _
3.7) PP a+ﬁ=2ev:en<k 2l p1 0P

e S(m*(€) @+ (u&) ™) ™2, g).
4. Proof of Theorem 1.3
Let B <1/s and set
pf = g rtuD)p grt(ub)’
Eventually we take8 = 1/(1 +n). We see that

= (D¢ —iy(uD)?)?> — (uD)a"(uD)
= A’ — (uD)a"(uD) — (uD)b(uD) + R

where A= D; —iy(uD)? and

b(t, z) = Z C D)j(+ka(t’ x)”ag ALk age”‘(mﬁ ,
1<k+j<N

R e uNS((u&) TN, dx® + (&), % d&?).

Note that to prove Theorem 1.3 it suffices to derive an apestimate forP* because
B < 1/s. We introduce the energy:

(4.1) E(u) = [|Aul|? + Re@"(1D)u, (uD)u) + ||(u D)’ ul|?.
Then we see easily that:

d
3t E = —27 Rl (D)2 Aull® + | (uD)*?u|l* + (a" (D) " u, (uD)u)]

—2Im({(uD)? Au, (1D)Pu) + Re(na"*a’(D)u, (uD)u)
— 2Im[({(xD)b(uD)u, Au) — (Ru, Au) + (P*u, Au)].



132 F. GLOMBINI AND T. NISHITANI
We now prove that one can boumntE/dt from above by constant times
(D)~ #/2PFul?.

We first remark

Lemma 4.1. Let28 > 6§ and K € S((a+ (u&)~°)""H(u&)~#, g). Then there are
C1, C such that

CiRe([(a+ (u€)™°)"(u)1"u, u) — Re(K™u, u)
> —Cp?[(uD)~HP2y||%,

Proof. Let us putT = ReK and consider
0= @+ (u8) )2 (ug)P2[1 — C T (a+ (u) )" (ug) 172
so that
(4.2) Re[(a+ (11&)*)"(1&)?]"u, u) — C7* Re(K u, u) = Re([g?]"u, u).

Noting thatT(a + (u&)~)"™(u&)™* e 1,9) by the assumption 2 > § we see that
qeS(a+ (Ms)_a)nﬂw%_)ﬂ/z' g) and then (3.7) gives

q#q=0°+pu*S((a+ (u&) )" Hu&) 2, g).

Hence the right-hand side of (4.2) is bounded from below—b9 2| (xD)~1*/?u|?
which proves the assertion. O

Lemma 4.2. Letén+28 > 2. Then there are & C; such that

Cz Re(a™(uD)*u, (uD)u) > Re([(a+ (u€) )" (u&)”1" (uD)u, (uD)u)
— Coll (D)"2ul?.

Proof. Note that (3.6) shows
Refa" # (ug)’} = a"(ug)’ + R, Re n®(u€)2,q).
From the assumption$ + 28 > 2 it follows that
(4.3) Re(uD) ™" (uD)u, (uD)u) < C|l(uD)¥"?ul?
with someC > 0. This proves that

Cz Re(a"(uD)*™u, (uD)u) = Re([(@" + (&) ™)(u€)”]" (4 D)u, (nD)u)
— Coll (D)*"2ul?.
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We prove now that one can replaffa”+(u&)~")(u&)#]" (uD)u,(uD)u) by constant
times ([(@+ (1&)~°)"(u&)#]" (uD)u, (1D)u). This proves the assertion. Let us set

an+ (ug)™" _1]1/2

- —5\n/2 B/2
q=@+ (u&)™")"(ut) [7@”#5”)”

Take B large so that
@+ () ™™)a+ (ug) )" =Bt = c> 0.

Since @" + (u&) ™) € S((a+ (uE) )", g) and @+ (u&) )" € S(a+ (ug) ") " g)

one has
[@ + (u8) ™)@+ (u§) ") "~ B 7" e (1,9
Then it follows that
g € S((@+ (&)™) (us)?, g)
and it suffices to repeat the proof of Lemma 4.1. ]
We now estimate Ra(~!a (xD)u, (xD)u). Write
"l = (a+ (ug) )"V % (ug)P P #K + R

where K = a™a + (u&)=%)~"-D/2(,£)=F/2 and ReR € u?S((u&)~2,9). Then it is
clear that

2| (a"*a'(uD)u, (uD)u)| < [[(a+ (ue) )" /2a (ug)?/2]" (uD)ul|*

(4.4) w 2 2 2
+ K" (uD)u||* + Cpsfull”.

Noting thatK € S((a+ (u&) )" 2(ug)~#/2,g) and hence

K#K e S((a+ (ug) ") Hug) ", 9),

one can apply Lemma 4.1 to estimgti * (. D)ul|?; take

2 1
[ :8:—

4.5 6= ,
(4.5) n+1 n+1

so that =6 andén+ 28 = 2. Then we have:

CoRe([(a+ (&))" (u&)P]" (uD)u, (LD)u)

(46) w 2 _ ¢r’,2 36/2, 112
= K" {uD)ull? — Co[l{uD)¥/2ul?,
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We estimate the first term on the right-hand side of (4.4).eNbat

(@+ (ug) ) D2 (ug) P2 # @@+ (ug) )0 D/2a (ug) P2
=@+ (u&) ") ug)’ + R R e 12S((u8)" 2, g)

by (3.7). Let us consider
@+ (u&) "))’ — B Ha+ (ug) )" ta?(ug)”
= (a+(u8) () [1- B @+ (ug) ) '] = o’
Lemma 4.3. Let¢ =a’(a+ (u&)~°)~L. Then we have
(@+(u§)")?Di¢ € S(1,9), k=0,1,2.

Proof. It is enough to note that'® € S((a + (u€)~%), g) which follows from
the assumption G< a(t,x) € C2([-5, T +6]; y©O(R)) with somes > 0 and Glaeser
inequality. ]

From Lemma 4.3 and (3.7) it follows that

q#q=09>+R, Re u®S(ut)’2,g)
and then

CsRe([(a+ (&) *)"(ug)?]" (uD)u, (uD)u)

4.7 ”
> B7Y [(a+ (u&) ™)™V (ug) /)" (uD)u| * — Cyu? || (D)2l %
From Lemma 4.2 and (4.4), (4.6), (4.7) we have

|(@"~*a’(uD)u, (uD)u)|
< Cq Re(@" (D) u, (uD)u) + C}| (wD)*"2ul|?.

(4.8)
Finally we estimate the remainder terms. Let us study

((«D)b(uD)u, Au) = ((D)*#/2b{uD)u, («D)*/Au).
We have

Lemma 4.4. Taking u > 0 small we have

Re@"(uD)*u, (uD)u) — ||(uD)*#?b(uD)u?
> —Cp?|(uD)¥/2ul?.
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Proof. Thanks to Lemma 4.2 it is enough to show

Co Re([(@a+ (&))" (&))" (uD)u, (uD)u) — [[(D)*#/?b(uD)ul|?
> —Cp?|(uD)¥/2u?.

Recall that

b(x,£)= > cjDi*arale ) gkert ) = ¢y + ¢y,
1<j+k<N

wherec; = yto; (&) Dya" and ¢, € n2S((ué) 2%, g). Note that
() P2t eo # (uE) = by
with by € u?S((ug)®#/2, g). On the other hand it is clear that

(WE)PI2H ey = yt(ug) P20 (ug)P Dy + uS((ué)* 1, g).

With
T = (u&)72Dyao; (&)’
one has
|(uD) - F/2cy (uDyu| < CIT™(uD)ull + Cpll(uD)?2ul.
Since

TH#HT = (u&)? P(0c@"de (u€)P)? + 1 S((ug)? 2, g)
by (3.7) it is enough to study
@+ (uE) ) (uE) — Clu&)* P (3@ 0 (u€)F)? = (a+ (ug) °)"q?

where

0= (u8)P/2 /1 — C )22 (and ()Y@ + (u) )™

Sincea(t,x) > 0 it is easy to see that, with = (1&)2-28(9,a" 9 (u&)P)2(a+ (u&)=%)™",
we have

(a+ (ug))2DEp € u?S(1,9), k=0,1,2,
and hence from (3.7)
@+ (uE))V2q # @@+ (u€))V2q = (@+ (&) ~°)"9? + (&) 2, g)

which proves the assertion. ]
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Taking © > 0 small andy large, from Lemma 4.4 and (4.8) one get&/dt <
|| (1#D)~#/2P%u||2 and hence

t
E(u;t) < E(u;0)+/ ll{(.D)P/2P*u||? ds.
0

This shows
Y I{uDYPu(t) 2+ ¥ | Au@®)lI> < C{ll(D)?u(0)[1? + | Dyu(0)/|?}

t
+C f | (D) #12e 7s1D’ persikDly(s)|* ds.
0
Replacingu by e 7Dy we have an apriori estimate fd?.

Theorem 4.5. Let © > 0 be small andy > y. Then there exists G- 0 such
that we have

y [ (uD)Pe P y(t) |* +y [P Du(t) |
t
< C{Il(rD)Pu(0)|1? + D)2} + C / | (uD) #2773k’ py(s)|® ds
0
forO<t<T.

It is clear that this estimate still holds if we add a zerotldesrterm toP. Since
P* = P, we see that Theorem 4.5 holds fBrF. Then the standard duality arguments
prove Theorem 1.3.

In order to prove Theorem 1.3 for the general

|
a(t,x)=>_ aj(t,x)"

j=1
we take the energy

|
E(u) = |Aul® + ) Re@(«D)u, (uD)u) + || (D) ul|%.
j=1

Then we have

|

d .

G E=—2 Re[n(uDv‘”zAuu2 +(wD)¥#/2u)? + Y (@] (D) u, (MD)U)}
j=1

—2Im((uD)? Au, (uD)"u) ZRe(n a'a (uD)u, (uD)u)

|
-2 Im|:Z((uD)bj (1D)u, Au) — (Ru, Au) + (P*u, Au)i|.
j=1
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To boundd E/dt from above by constant timegu. D) #/2P*u||? we employ the same
arguments as in Section 4 to estimate each

Re@(uD)**u, (uD)u), Re@a]'a;(uD)u, (uD)u), ((D)b;(D)u, Au)

j=1,2,...,1, applying the calculus ir§(m, g;) with

(1]
(2]

(3]
(4]
(5]

(6]
(7]

(8]
[0

gj = (@) + (u§) ") dx? + (6),.2 d&>.
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