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Abstract
We prove that there is no smooth irreducible reduced raltioneve of degreee,
2 < e <11, on general hypersurfaces of degreée PS.

1. Introduction

Throughout this paper we work over an algebraically closettl fk of character-
istic 0.

Let X4 be a general hypersurface ' of degreed. H. Clemens proved in [2]
that if d > 2n—1 andn > 3 then there is no rational curve Ky. In [9, 10], C. Voisin
sharpened Clemens’ lower bound fdrby proving that ifd > 2n — 2 andn > 4 then
Xg contains no rational curve.

On the other hand, il = 2n — 3 andn > 3, it has been classically known that
there always exists a line oKXz, 3 ([7, Theorem V.4.3.]). Note that fon = 3 and
d = 2n — 2 = 4, every surface of degree 4 B contains a rational curve (although
a general such surface contains smoothrational curve). Therefore Voisin’s lower
bound ford andn are sharp in the sense that there is no rational curve on aaene
hypersurfaceXy c P".

The number of lines orXy,_3 is finite ([7, Theorem V.4.3.]). In [9, 10], C. Voisin
extended this classical fact in case> 5: If n > 5 then X5,_3 contains at most finite
number of rational curves of each degree 1. Note that the analogue of this result
for n =4 would solve Clemens’ conjecture on the finiteness of nalicurves of each
degreee > 1 on general quintic threefolds [&*.

Recently G. Pacienza extended Voisin’s result in [8] by prgvthat there is, in
fact, no rational curve of degree > 2 on X,,_3 if n > 6. Therefore the only rational
curves onXy,_3 are lines ifn > 6.

It is natural to raise a question about the case5 in Pacienza’s result: Is there
a rational curve of degree greater than one on general hyieéces of degree 7 if#°?

In this paper we prove
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Theorem 1.1. There is no smooth irreducible reduced rational curve ofrdegg
2 < e <11, on general hypersurfaces of degréen P°.

To do so, we count the dimension of the incidence schéf@e X) | C c X},
whereC is a smooth irreducible reduced rational curve of degread X is a hyper-
surface of degree 7 i?°. We use similar techniques in [6], where the authors treat
rational curves of degree at most 9 on general quintic tbteef

We introduce some notation. For a projective variaty let Hilb®*}(Y) be the
Hilbert scheme parametrizing subschemes with the Hilbelyrnomial et+ 1. We de-
fine a subschem®&(Y) of Hilb®*(Y) to be the open subscheme parametrizing smooth
irreducible reduced rational curves of degeee

Let F = PHO(P5, Ops(7)) be the parameter space of hypersurfaces of degree 7 in
PP ie,F = PN, N =(>7) — 1. We define the incidence scheme

le := {(C, X) € Re(P%) x F | C C X}
and let
Pr: le > Ro(P®) and pg:le—>F

be the projections. Note thdk(X) = p]F‘l(X) for X e F.
We defineRe; (P°) to be the locally closed subset & (P°) parametrizing curves
C with h(P® Zcps(7)) =i whereZcps is the ideal sheaf o€ in P°. Set

lej := Pr'(Re; (P°)).
Finally let G(k, n) be the Grassmannian parametrizikdinear space inP".

2. Proof of Theorem 1.1

Throughout this sectionX is a general hypersurface P® of degree 7 ancdC is
a smooth irreducible reduced rational curve of degzee 1.

Theorem 1.1 is a consequence of the following result.

Proposition 2.1. For e < 11, I is irreducible of dimensiorl — e+ N.

Before proving Proposition 2.1, we prove Theorem 1.1 by gishre above result.

Proof of Theorem 1.1. By Proposition 2.1, if2e < 11, then dimle < dimF =
N. So pr is not surjective. Therefore

Re(X) = pr'(X) = @

for generalX. ]
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To prove Proposition 2.1, we need the following lemma.
Lemma 2.2. Re(P") is smooth irreducible and of dimensior{n + 1)e+n — 3.

Proof. FixC € Rg(P"). The restricted Euler sequence
0— Oc = Oc(1)®™* — Tpn|c - 0
yields HY(C, Zpn|c) = 0. The sequence of tangent and normal sheaves
0— Tc = Tpnlc = Nepn — 0

yields HY(C, Ncp) = 0. Hence, by the functorial property of the Hilbert scheme
Re(P") is smooth atC of dimensionh®(C, Nc ), and
h%(C, Nepn) = x(Tinlc) — x(Tc)
= x(0c(1)®*™) — x(Oc) — x(Tc)
=(n+1)Ee+1)-1-(2+1)
=(n+21l)e+n-3.

Note that morphisms of degree from P! to P" are parametrized by a Zariski
open set of the projective spad(S°k?)"1), where S°%k? is the symmetric product.
We denote this quasi-projective variety M@#*, P"). Let RatMog(Pt, P") be the sub-
set of Mog(P!, P") consisting of all morphisms whose image is a smooth irrialeic
reduced rational curve. Then RatM@@®,P") is an open subset of Mgi®*,P"). Since

More(Pt,P") is irreducible, so is RatMg(P!,P"). There is a surjective morphism from
RatMor (P!, P") to Re(P"). ThereforeRe(P") is irreducible. ]

Proof of Proposition 2.1. Assum@ € Re;(P°). Let
r: HO(P®, Ops(7)) - H(C, Oc(7))

be the restriction map. Thep;ll(C) is the projectivation of the kernel of. From the
standard exact sequence

0 — HOP®, Zc ps(7)) — HO(P®, Ops(7))
— HY%C, Oc(7)) - HY(P®, Zcps(7)) — O,
we get

dim pgt(C) = h°(P®, Zeps(7)) — 1= (N + 1 — (7e+ 1) +i) — 1.
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Therefore
W dim l¢; = dim Re; (P°) + dim pg*(C)
=dimRgj +(N+1—(7e+1)+i) — 1.

Assume thate < 9. By the regularity theorem in [4]C is 8-regular, i.e.,
HY(P, Zcps(7)) = 0. SOReo(P®) = Re(P®), which has dimensiones+ 2, and the fibers
p;l(C) are irreducible of same dimensiol ¢+ 1— (7e+ 1)) — 1. Thereforel is irre-
ducible of dimension + e+ N. The proof is done in case < 9.

Assume thae = 10 or 11. The following Lemma 2.3 implies th&,o(P°) is open
and nonempty, and hend&.o(P°) is irreducible. Soley is irreducible of dimension
1- e+ N since fiberspgl(C) for C € Reo(P%) are irreducible of same dimension
(N+1—(7e+1))—1.

Also from the following Lemma 2.3 and equation (1)

dimlegi <1l—e+N for i>0.

It is also clear, from the waye is defined, that all its components have dimension at
least 1- e+ N because the corresponding incidence in Ragifid; P") x PN is cut out

by 7e + 1 equations, so both this incidence, ahg have codimension at mose# 1
(locally). Therefore the closure dtg is le, and hencele is irreducible of dimension
1— e+ N. Thus Proposition 2.1 is proved if given Lemma 2.3. L]

Lemma 2.3. For e=10, 11,if i > 0 and if R,;(P°) is nonemptythen
codim(Re; (P°), Re(P°)) > i.
Before proving Lemma 2.3, we begin with some general obsiens

REMARK 2.4. Suppose&C € Re(P®).
(1) If e> 3, thenC cannot lie in a 2-plane because its arithmetic genus is 0. More
over, if e > 4, thenC cannot lie in a 2-dimensional quadric cone by [5, V, Ex. 2.9].
(2) If C lies in ak-linear subspaceéd in P° with the ideal sheafc 1y, then

h*(P°, Zc ps(7)) = h'(H, Zc, 1 (7).
We briefly prove this formula. Consider the following exaegisence of twisted ideals
0 — Ty ps(7) = Zcps(7) = Zen(7) — 0,
wherek +1 < s <5 and’H is a hyperplané?>~1 in PS. Note thatZ;ps(7) = Ops(6);

hence we havé! (P51, Z¢ ps-1(7)) = h1(PS, Zc ps(7)) becauseDps(6) has noH! or H2.
Using this formula 5- k times proves the desired formula.
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We recall the following useful facts which will be used whemyng Lemma 2.3.

Lemma 2.5 ([4]). Let C be a nondegenerat@ + 1 — r)-irregular curve in P'
(r = 3) of degree e If e >r + 1, then C is rational smooth with a(e + 2 — r)-secant
line, and one of the following holds
(1) r =3, C is contained in a smooth quadriand h'(P", Zcpr(e—r)) =e— 3, or
(2) r =3, C is not contained in a smooth quadti@and h(P", Zc p- (e — 1)) = 1, or
(3) r >4 and (P", Zcm (e —r)) = 1.

Lemma 2.6 ([3]). Let C be an irreducible smooth curve IP*. Suppose C is
nondegenerateof degree eand of genus glif e > 6 and (e, g) € {(7, 0), (7, 1), (8, 0),
then H(P3, Zc pe(e — 4)) > 0 if and only if C has a(e — 2)-secant line

Lemma 2.7 ([6]). Lete> 4 andr > 3. Fix s with e> s > 3. In R(P") the
subset of curves with a s-secant line has codimension at (eas1)(s—2) —s.

Proof of Lemma 2.3. Assume = 10. If C is not contained in any hyperplane,
thenC is 7-regular and hence 8-regular, i.el}(P° Z¢ ps(7)) = 0. ThereforeRyo(P°) —
Ri0,0(P°) is contained in the closed sét of curves contained in hyperplanes .
Then

codim(@, Rig(P°)) > dim Ryo(P°) — (dim Ryo(P?) + dim G(4, 5))
=(6x10+2)— (5x10+1+5)=6.
In particular,
codim(Ry0,1(P°), Rio(P?)) > 1,

as asserted.

Supposen(P®, Z¢ ps(7)) > 2. ThenC must lie in a hyperplan&, since, if not,C
is 7-regular. IfC is nondegenerate i, thenC is 8-regular, i.e.h*(P°, Zc ps(7)) = 0,
which contradictsh(P%, Z¢ ps(7)) > 2. ThereforeC is contained in a 3-linear spade
in P° and, by Remark 2.4 (2),

h*(H, Zc (7)) = 2.
Then, by Lemma 2.5 (1),
h*(H, Zc,1 (7)) = h'(P°, Zc ps(7)) = 7.

Therefore if Ryp; (P°) is nonempty theri is 0, 1, or 7. So it remains to prove that

codim(Ryg AP°), Rio(P%)) > 7.
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Sinceh(P®,Zc ps(7)) = 7, from Lemma 2.5 (1)C lies in a smooth quadric surface
Q contained inH. SinceC is smooth, rational, and of degree 10,is contained in
the linear systemi9L + M| on Q whereL and M are two generators of PiQ). Then
Q varies inPHO(H, Oy (2)) and H varies inG(3, 5). Therefore,

codim(Ryo,AP°), Rio(P?)) > dim Ryo AP°)
— (dim|9L + M| + dimPHO(H, Oy (2)) + dimG(3, 5))
=62—(19+9+8)=26> 7.

Thus Lemma 2.3 holds foe = 10.

Assume thate = 11. If C is nondegenerate ifP°, then C is 8-regular, i.e.,

h(P°, Zc ps(7)) = 0. HenceRyi(P°) — Ry1o(P°) is contained in the closed sét of
curves in hyperplanes if®.

codim@, Ry1(P%)) > dim Ry1(P%) — (dim Ryy(P*) + dim G(4, 5))
=(6x11+2)—(5x11+1+5)=7.
In particular,

codim(Ry1; (P°), Ria(P%)) > 7>i for i=1,...,6

as asserted.
Assumeh(P®, Zc ps(7)) > 7. C lies in a hyperplaneG, since, if not,C is 8-
regular. By Remark 2.4 (2),

h(G, Zc 6(7)) = h'(P5, Zc ps(7)) = 7.

Suppose tha€ is nondegenerate i6. ThenC is &irregular in G sinceh(G, Zc (7))>7.
However, from Lemma 2.5 (3), we know that

h'(G, Zc (7)) = 1,

which contradicts our assumpti¢t(G,Zc g(7)) > 7. ThusC is contained in a 3-linear

spaceH in P°. There are three possible cases;

(1) C lies in H, andC hasno 9-secant line,

(2) C lies in some smooth quadric surfa@ with ideal Zc q.

(3) C lies in H, but C lies in no smooth quadric surface, ar@ has a 9-secant line.
In case (1), by Lemma 2.6 and Remark 2.4,

h'(H, Ze, (7)) = h*(P®, Zeps(7)) = O,

which contradicts our assumptidi(G, Zc g (7)) > 7.
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In case (2), sinceC is rational, smooth, and of degree 1d,is contained in the
linear system10L + M| on Q whereL and M are two generators of PiQ). Thus

Zc.o(7) = Og(-3, 6).
Then the Kinneth formula yields
h'(Q,Zc.o(7)) =0x 0+2x 7 = 14.
Note that
h'(Q, Zc,o(7)) =h*(H, Zc 1 (7)) = h*(P°, Zc ps(7)) = 14.

Indeed, the second equality is Remark 2.4 (2), and the finstbeaproved similarly.
Therefore

hi(P°, Zc ps(7)) = 14
and it remains to prove that
codim(Ry1,14P°), Ry1(P%)) > 14.

Let G be the subset oRy1(P°) consisting of all curve€ included in the case (2).
These C are contained in the linear systeflOL + M| on Q and Q varies in
PHO(H, Oy (2)) andH varies inG(3,5). Therefore

codim(Ry1,14P°), Ri1(P®)) > dim Ry1(P°)
— (dim[10L + M| + dimPHO(H, 0w (2)) + dimG(3, 5))
= 68— (21+9 +8) = 30> 14.

In particular,
codim(Ry1,14P°), Ria(P°)) > 14

as asserted.
In case (3), letS be the subset oRy3(H) consisting of allC satisfying the con-
ditions in case (3). Then, by Lemma 2J,is of codimension at least 5 iRy1(H).
Let G be the subset oRy;(P%) consisting of allC satisfying the conditions in
case (3) for a 3-linear spadd. Note thatH varies inG(3,5). Therefore

codim@, Ry1(P%) > dim Ry1(P%) — (dim Ryy(H) + dim G(3, 5))
+ COdimG, Rll(H))
=68— (44 +8)+5=21.
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Therefore it suffices to prove that
hY(P®, T ps(7)) < 21,
or equivalently, by Remark 2.4 (2), that
h'(H, Zc w (7)) = h'(P°, Zc ps(7)) < 21.

Choose a 2-plan& in H that meetsC in 11 distinct points, no three of which
are collinear. Such ab) exists by [1, Lemma, p.109].

Let k > 5. These 11 points impose independent conditions on therayst curves
of degreek in U by [1, Lemma, p.115]. Therefore, in the long exact sequence

HO(U, Oy (k) = H(C NU, Ocru (K)
— HYU, Zenu,u (K) = HY(U, Oy(K),

the first map is surjective. However, the last term vanistidserefore
H* (U, lchu,u(K) = 0.
Consequently, the exact sequence of sheaves
0— Zcnk—1)— Zcn(k) = Zcruu(k) > 0
yields
) h'(H, Zc,u(4)) = h'(H, Zc w(5)) = h'(H, Zc u(6)) = - - -
Consider the standard exact sequence of sheaves
0— Zc (k) = On(k) = Oc(k) — 0.
Since H(H, Oy (k)) = 0 for k > 0, taking cohomology yields

k+3

® (H, Zen) = (57) = @kcs 1) +RCH, Te )

Proceeding by contradiction, assum®H, Zc 1 (7)) > 21. We will prove that
h°(H, Zc 1 (8)) = 78.
Then, by the equation (3),

h'(H,Zc 1(8)) > 2.
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However, by Lemma 2.5h*(H, Zc 4(8)) must be one. Therefore there is a contra-
diction.
By the equation (2) and equation (3), we get

h°(H, Zcn(4)) > 11, h°(H,Zc n (7)) > 63.

Note thath®(H, Zc 1 (2)) = 0 sinceC cannot lie neither on a smooth quadric sur-
face by the assumption of case (3) nor on a quadric cone by ReP¥. Therefore
every element inHO(H, Zc (3)) is irreducible.

Supposeh®(H, Zc 1 (3)) > 2. Take two independent irreducible cubiEs and F}
in HO(H, Zc 1 (3)). Then degfs N F}) =9, butC C F3N Fj and degC) = 11, which
is impossible. Therefor®®(H, Zc 4(3)) < 1.

Suppose there exists a nonzero cubicin H(H, Zc 1 (3)). Let

a: HOH, Ox(1)) = HO(H, Zc 1 (4))

be the linear map defined by multiplying with;. The image ofx is a subspace of
HO(H, Zc 1 (4)) of dimension 4. Note that

h%(H, Zc. 1 (1)) =h°(H, Zc 1 (2)) = 0.

Therefore there exist irreducible quartics HP(H, Zc  (4)).
Supposeh®(H, Zc 14(3)) = 0. Since

hO(H, Zc 1 (1)) =h°(H, Zc 1 (2)) =h%(H, Zc w(3)) = 0,

every element inrH%(H, Zc 1 (4)) is irreducible.

Therefore, sincen’(H, Zc 1 (3)) < 1, there always exists an irreducible quarfig
in HO(H, Zc 4 (4)).

Let

a: HOH, O4(3)) = HO(H, Zc (7))

be the linear map defined by multiplying with;. The image of« is a subspace of
HO(H, Zc 1 (7)) of dimension 20. LeW be a subspace dfi®(H, Zc 1 (7)) satisfying

HO(H, Zc 1 (7)) = imageg) & W.

Note that dimW = h%(H, Zc 1 (7)) — dim imagef) > 63 — 20 = 43,
Take a nonzerd. € H(H, Oy(1)). Define

X = {F4F: F € H(H, Ou(4))},
Y :={FL: F e W}.
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X andY are subspaces df°(H,Z¢c 4 (8)) of dimension 35 and 43, respectively. More-
over, by the irreducibility ofF4 and by the choice oW, we haveXNY = 0. Therefore

hO(H, Zc.1(8)) = dim X +dimY = 78,
as asserted. O
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