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Abstract
We find upper bounds for the regularity of a singular projectvariety over
an algebraically closed field of characteristic zero. Intipalar we study the
cases when the variety has finitely many isolated singudariind when it has a
1-dimensional singular locus.

1. Introduction

Let X € P be an integral locally Cohen-Macaulay non-degenerate tyadg di-
mensionn < r — 2, over an algebraically closed figtd of charadterizero. It is
known that the canonical restriction map’(Op-(j)) — H%Ox(j)) is surjective for
large j, and the knowledge of the exact point where it becomegctive is relevant
for understanding the geometry of . More generally it is iesting to bound the
Castelnuovo-Mumford regularity ok , defined by:

reg(X) :=minr € Z | H'(Zx(t —i)) =0 for i > O}
There is the following well-known conjecture on the Castelp-Mumford regularity:
ConJecTure. If X is smooth of degred, thenregX)<d —r +n +1.

This conjecture is true for integral curves (see [7]) and $orooth surfaces (see
[11]). In higher dimension the problem is still open; lot obsk has been done re-
cently, see e.g. [10] and [5] and the bibliography of thespepa See also [4] for in-
teresting variants.

On the contrary, for singular varieties only the case of earlias been dealt with,
in the already quoted [7], where the conjecture is proved.

For higher dimensional singular varieties, the previousriabis easily seen to be
false; hence it is meaningful to look for a bound in terms & #ingularities.

This is the aim of the present paper. Our approach is the oeetallLazarsfeld
[11], as generalized in [10], and with the point of view of .[9]he main idea is to use
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a general projectiorf X — P*! and to find a surjective morphism @?p.+«1-modules
w: F — fi(Ox), where F is a direct sum of line bundles: the she&f has to be
found “as small as possible,” as its shape will provide a lbo(see e.g. [5], Theo-
rem 1.4).

In order to find a suitable painf(, F) we need a good understanding of the fibers
of f, and of their stratification by length or, better, by regitly. For the fibers coming
from the regular locus o we can rely on a result of Mather, gaired in [2]. So
our main problem is to study the fibers corresponding to thgwar points: this will
be the object of this paper.

Before listing our main results let's fix some notation andirdgons.

Derinmion 1.1, If P € X is a singular point we can write emdinX ( )= k+
where 1<k <r —n and we have, sincé is locally Cohen-Macaulay,

m(P)>k+1

(see Remark 2.4).
If k=1, P will be called hypersuperficial
If m(P)=k+1, P is said to beof minimal multiplicity (for details see Section 2).

Derinimion 1.2. If P € X is a singular point, we define thgeneral regularity
o(P) of P as follows.

Let L be a general linear space of dimensiorn — 1 passing thraughd led
W be the largest subscheme bfiX supportedfon . Then we gt () (#)edl,
namely:

p(P) =min{j € Z | H'(Zw..(j)) = O}.
We also putp (Sing ):=mdyp R )P e Sing(}) .

Now we are ready to describe how the paper is organized.

After some preparation, done in Section 2, in Section 3 wduata the length
of the fibers of a general projection &f over the images of Wamrgpoints and we
bound their regularity.

The results we obtain are applied in the next sections.

In Section 4 we study the case whé&nh has a finite number of éblsihgulari-
ties.

Here we introduce the notion of “good projection with redp@cX,eq” (see Defi-
nition 4.1) and we prove:

Theorem 1.3. Assume thaSing(X) is finite and setp := max{n, p (SingX ) .As-
sume further that there is a good projection Bf  with respectXtey, €.9. assume
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dimX < 14. Then

(P=Dp-2)

regX)<d-—r +n +1+ 5

Moreover, using the bounds given in Section 3, we deduce adfamthe reg-
ularity in terms of the multiplicities and the embedding dimsions of the singular
points, as shown in Corollary 4.3. As an immediate consecpiave get:

Corollary 1.4. Let X be as inTheorem 1.3and assume that each singular point
of X is either hypersuperficial or of minimal multiplicityrhen

(n -1 —2)

regX)<d—r +n +1+ 5

The previous bound is exactly the bound for the regularityaocémooth variety
given in [5], Theorem 2.5 (i). This shows that the singuiesitwhich are either hyper-
superficial or of minimal multiplicity are irrelevant witregard to this type of bound.

When the singular locus ok  has higher dimension, the prodecomes much
more difficult.

In Section 5 we study the case whéh  has a 1-dimensional sin¢gpdus and
almost all singularities are hypersuperficial. The mairultels Theorem 5.6.

2. Multiplicity and embedding dimension

We collect here some known facts on the notion of multipliaf a scheme at a
point, and its relations with the embedding dimension.

Derinimion 2.1.  If A is an Artinian ring, we denote by A( ) the length af

Likewise, if Z is a zero-dimensional scheme, we denote by ( 6 kbngth
(or degree) ofZ .

Moreover if P € Z, we denote by., 4 ) the length &f & , namely the length
of the largest subscheme &  supported®n . In other ward¥ (theidength of
the Artinian local ringOz p.

Derinimion 2.2, If A is a Noetherian local ring with maximal ideal one can
define the integee qf for every m-primary idealq; m(A) := e(m) is called themulti-
plicity of A (see e.qg, [12], [6], [9]).

If X is a locally Noetherian scheme amle X , the multiplicity Bf nig(X) :=
m(Ox.p). We simply writem (P ) instead oinp X ) ifX is understood.

Remark 2.3. LetY C P be a closed subscheme and Rte Y be a closed
point. Set dim ¥ ) :=dimQy p). We have:
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(i) if dmp(Y) = 0, thenmp () =Ap ) (this is immediate from the quotettfini-
tion);

(i) Y is locally Cohen-Macaulay aP (i.eOy,p is Cohen-Macaulay) if and only if
m(P) = Ap(Y N L) for any general linear space  of dimensior- dim () pasgsin
through P (this follows, e.g., from [12], Theorems 14.14,1B4and 17.11);

(iii) if Yis locally Cohen-Macaulay atP , then for any generalpeyplaneH through
P we havemp ¥ )=mp ¥ N L) (this is immediate from (ii)).

Let's now recall that the embedding dimension of a Noetlmelial ring A with
maximal idealm and residue field is emdir( ) := dinfm/m?; this is also the car-
dinality of a minimal set of generators af.

If Y is a scheme and® € Y we set emdint ( ) = emdiPa(»). Note that if
Y CP and P €Y is a closed point, then emdint ( ) = difpg(Y ( )), whateY ( ) is
the embedded tangent spacerto Pat

Remark 2.4. The embedding dimension and the multiplicity of a lo€ahen-
Macaulay ringA are related by an inequality due to Abhyankaee (g]), which im-
plies:

m(P) = emdimp (¢ )— dimp ¢ ) +1

if Y is locally Cohen-Macaulay aP (this inequality follows alérom Remark 2.3).
Note that this inequality can fail for non Cohen-Macaulaynpsi take for example

an improper double point of a surface tt, e.g. a singular point obtained by project-

ing generically inP* a smooth surface spannif®f (except the Veronese surface).

Remark 2.5. We will use freely the fact that embedding dimension amati-
plicity are upper semicontinuous functions on the spacelo$ed pointsP of any
schemeY C P.

The first assertion follows from the isomorphisme/(mp)?> = Qy/x ® «(P),
where Qy,x is the (coherent) sheaf ofaKler differentials (see e.g. [8], p.187, Exam-
ple 8.1 (a)). For the second one see e.g. [9], Appendix, @dpt Theorem 5.2.

3. The fiber of a general projection at a singular point

In order to produce our bounds for the regularity of an irdédocally Cohen-
Macaulay non-degenerate singular varigtyC P we have to evaluate the length and
the regularity of the fibers of a general projection over thmages of singular points.
In this section we make some steps in this direction. Appbos will be given in the
next sections.

We denote byG #, N ) the Grassmannian of the linear subspacesnndions
in PV. Recall that dimG (, N ))=§ —¢ X +1).
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Let X C P" be an integral locally Cohen-Macaulay non-degenerate tyaae di-
mensionn < r — 2, and let's denote by its codimension.

Derinimion 3.1, LetP € X . We set
ap =minfAp(LNX)| L linear ¢ — 1)-subspace through}

This makes sense because a general linear subspace of diméns 1 through
P intersectsX in a zero-dimensional scheme.

Obviously «p = 1 if and only if P is non-singular. Moreover sincg Ially
Cohen-Macaulay it follows from Remark 2.3 thap <m P ( ). This inalify will be
improved later.

Derinimion 3.2, LetT € G @ — 2r) be a linear space not meeting , let
fr: X — P"1 be the projection with centef and l¢t € X . We say thfat is
a good projection atP if A(f; '(fr(P))) = ap. This is equivalent to the following
two conditions:

(@ rp(XN(T, P))=ap;
(b) the fiber of fr atfr P ) is supported oR

Lemma 3.3. If Pe X and T € G(h—2,r) is genera] then fr is a good projec-
tion at P.

Proof. We show that conditions (a) and (b) of Definition 3.2dho

Let W be the family of the linear spaces of dimensior- 1 pasdimgugh P .
It is easy to see tha is isomorphic to/G{ ,r2- 1), whence it idinotble and
dmwW =@ —h +1) — 1).

Set nowa =ap and consider the set

W={LeW|rxp(LNX)>al
By semicontinuity we have tha is a proper closed subscheme Wf , whence
dimW <dimW =@ —h +1)(x — 1)

since W is irreducible.
Set now

V={T eGh—-2r)|TNX =0}
and

Z={AeV|rp((A,P)NX)>a}={A eV |(A, P)ec W}
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The map defined byw — (A, P) is a morphish — W  whose fibers are iso-
morphic to non-empty open subschemesGoh —( ,h 2 1). It follows:

dimZz = dimW +dim(G( — 2 h — 1))
< —h+Dh—1)+h—1
= dim(G (i — 2.r)).

This shows that a generdl € V' does not belongZto , whence comdiip of
Definition 3.2 holds.

To prove condition (b) it is sufficient to show that a genetad W eetsX only
at P, and then proceed as in the previous case. For this corthigléncidence relation

W={(Q,L)e X\{P))x W|Q¢€L}
and let
pri: W— X\ {P} and pp: W —> W

be the projections.

It is easy to see that the fibers of; pare isomorphic to the Grassmanni@hi —
3,r — 2), whence

dmW=n+{F —-h+1)@— 2)

Sincen =r — h it follows that din¥W < dimW, whence dimgr,(W)) < dimW. The
conclusion follows easily. 1

Lemma 3.4. Let Z C P’ be a zero-dimensional scheme witheg = {P}. Let
m = A(Z) and k ;= emdimp (£ )and assumé > 1.

Let H C P" be a general hyperplane through. Then
(@ AHNZ)= (Yk)k— Ln +1);
(b) HY(Zunz(j)) =0 for j = [((k — 1)(m — k) + 1)/k].

Proof. (a) Ifk =1 it is easy to see thatH(NZ ) =1, whence the clairan¢¢
we assumeé > 2. In order to prove (a) we need first some prepardia 0<i <k
set

ar—; :=min{A(L N Z) | L linear subspace of codimension through

Let Xi,..., X, be a system of affine coordinates with orighh , whente =
Ozp = k[Xl, ey Xr](Xl....,X,)/IZ = k[xl, ey xr](xl,...,x,)- Letm = ()Cl, ey x,.)A be the

maximal ideal ofA . LetH; be the hyperplaré = 0. We can choose tloedmnates
general enough so that H{N Z) = A(H, N Z) = a1 and A (Z N Hy N Hy) = a;_», that
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a1 = 1(A/(x1)) = 1(A/(x2))
and
ar—2 = AMA/(x1, x2)).

By assumptionm is minimally generated byt elements and by Nakayama's
Lemma and by a general choice of coordinates we may also asshatm =

(xl, ceey xk)A.
Then from the Mayer-Vietoris sequence

0— A/(x1)N(x2) = A/(x1) ® A/(x2) = A/(x1,x2) = 0
we get
1) 2011 < a_p+m.

Now we can prove (a) by induction on . K =2, thep_, =1 and the conclu-
sion follows from (1).

Assume now thak > 2 and that the statement is truekfer 1.

Let Z, := Z N Hy;. Then emdim £1) = k — 1 andAp ¢€1) = ar_1. Then by the
induction hypothesis we have:

2 (k — Dag—2 < (k — 2)ag—1 + 1.
Multiplying both sides of (1) byk — 1 and using (2) we get

2(]( — l)ak_l < (k — 1)ak_2 + (k — 1)m
< (k—2ag1+1+k—1)n

whence
kag-1 < (k—1)m +1

and (a) follows.

(b) Clearly h°(Znn2(1)) < r—emdimp HNZ ) =r— k— 1). The conclusion follows
from (a) and the exact sequence-0 H%(Zynz(1)) = H%(Op (1)) = H(Onnz(1)) —
HY(Zynz(1)) — 0 and from the fact thak(Zyn4(})) is strictly decreasing foj > 0
until it vanishes. U

Lemma 3.5. Let P € X be a singular point witemdimp (X ) =n + and m(P) =
m. Then we have

o(P) < [(k—l)(m—k)+1]‘

k
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In particular if P is either hypersuperficial or of minimal niglicity (Defini-
tion 1.1) then p(P) = 1.

Proof. LetM be a general linear space of dimension passimygtrP . Then
dim(L N X) =0 and we denote by  the largest subschemé ofX suppowte®l. b
Then we have, £ )® and emdpnZ( )= .Lé&tC M  be a general linear space of
dimensions — 1 passing through and Bt L[N Z . Itis clear that isegan
in the sense of Definition 1.2.

The conclusion follows easily by Lemma 3.4. O

4. The case of isolated singularities

We give some upper bounds for the regularity of an integrailetya X € P" with
only finitely many isolated singularities. Recall that :#ndKX).

DerinimioN 4.1.  We say that a finite birational projectien X: — P**! is good
with respect toX e if the locally closed sets

S; = {Q € 0 (Xreg) | dego (Q) N Xreg = j}
have the expected dimension, namely
dmS; <min{—-1Ln—j +3
(see [5], def. 1.2).

Remark 4.2. (i) By [2] a general projection is good with respect Xgeq if
dimX < 14.
(i) It is not difficult to see that ifX admits a good projectiomith respect t0Xeg,
then a general projection is a good projection with respecXtg.

Proof of Theorem 1.3. The proof follows exactly the pattefn[% (proofs of
Proposition 2.3 and Corollary 2.4). Here we highlight théerof the singular points.

Let f := fr: X — P"*! be a general projection (from a general linear spice  of
dimensionih — 2).

CLaim. There is a surjective morphism of sheaves
Wy G ® Opra(~3) @ -+ ® Opa(—p) = fu(Ox)
where

G = Opia @ Opres(—1) "1 @ Opra(—2)(7).
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Moreover ketw, is a locally free sheaf.

Proof of Claim. For each? € Sing( ) the fibgi~1(f(P)) is supported onP
and p (F~1(f(P)) < p(Sing(X)) (see Lemma 3.3). It follows also thatdf € f X/
we have f~1(Q) € X Hence (with the notation of Definition 4.1) we hage =
(0 € f(Xweg) | degf Q) = j}.

Now by assumption we have difp < mex,ri—j ¥ 1 and since King is
finite, the existence ofv, follows as in [5], with obvious chasg

Now, since X is locally Cohen-Macaulay we have thatOx] is a coherent
Op+1i-module, with local depthn  at each closed point, and this iespthat kew,
is locally free by a theorem of Auslander-Buchsbaum (seg, €6], Theorem 19.9).
This proves the Claim. Ul

The conclusion follows by the Claim and by [5], Theorem 1.4. Ul

Corollary 4.3. Let the notation and the assumptions be asTheorem 1.3Let
SingX') ={P1, ..., P} and for eachi = 1,...,s putm; :=m(P;), k; := emdinp, X —n
and o; = [((ki — 1)(m; — k;) + 1)/k;]. Let g :=maX{n, oy, ..., 0s}. Then

regiX)<d—r +n +1+W.

Proof. It is an immediate consequence of Theorem 1.3 and ledun ]

5. The case of one-dimensional singular locus

If dim(Sing(X))> 0 andf :X — P"*! is a general projection the fibgi~1(f(P)),
(P € Sing(X)), may not be supported ab . So we need to introducenaimeriant,
which is motivated also by Lemma 5.3.

Derinimion 5.1, Let P € Singk ). We define the non-negative integer to be
the integer such that the general line connectihg  to a pdirnk,g, intersectsX g
in a scheme of lengthyp +1.
If T is an irreducible one-dimensional component of Skg( €t 18(X, T) :=yp,
for a generalP € T .
Moreover, sety"X, T ):=3 X, T ), if the union of all secant lines cortiveg P to
a point of X,y has dimensiom +2, ang X(7T ) :=0 otherwise.

ExavpLe 5.2. Fix an integery > 2. Le¥ € P'~2 be a smooth non-degenerate
subvariety. Seé@ 2 as a hyperplaned , d” ! andP"~! as a hyperplaneB , df’.
Fix 01 € B\ A and 0, € "\ A.

Let C :=[Q1: Y] be the cone with vertexQ; andY as a basis.
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Let Z be the intersection o€ with a general degree + 1 hypeasarfof A .
Thus degl )=¢ +1)ded( ) an@; = Sing(Z).

Let X be the cone with vertex), and Z as a basis. Thus Sitg( ) is the line
T = (01, Q2).

Fix any P € T \ Q,. For every hyperplandd wittP € H, O, ¢ H, the pair
(X N H, P) is projectively equivalent to the paiZ( Q1).

Thus every line throughP intersectilgN H  at another point,régetsX N H ,
outside P , in exactlyy points.

Therefore the general secant line Xf intersectihg , intéssE iny +1 points,
exactly one of them being i . Henge X(T' )=

Notice that in this example we haye ™ =0.

Lemma 5.3. Let T C Sing(X) be a curve Then for a general projection
fa: X — P"™! the following holds for any P € T, fi*(fa(P)) N Xreg CANNOt cON-
tain any length2 subscheme not collinear witR.

Proof. For each subschen®C X,e4 Of length 2 not collinear withP , letr; =
(P, Z). The planest; form a familyr of dimension< 2 +1. Our claim is equivalent
to say that for a general € G h{ ,2 ) and for any € F we have dimf\nz; )< O.

Let now G be the family consisting of all linear subspaces of dimemgio— 2
such thatA N contains a line of , for somee F.

Now, if L is a line, the family{A € G k — 2r )| L € A} is isomorphic to
G(h—4,r—2), whence ding < 2n+1+2+dimG ¢— 4r— 2)=f—h +2}f— 1} k
dimG(h — 2,r) and the conclusion follows. L]

Lemma 5.4. Let T C Sing(X) be a 1-dimensional irreducible componenton-
sider the familyL’ of secant lineg P, A), with P € T and A € Xyeq, With A((P, A) N
Xreg) > ¥(X, T). Then none of these secants meets the generalG(h — 2, r).

Proof. LetL be the family of secant lines of the forgP, A) , withe T and
A € Xy L is irreducible, of dimensiom + 1 and’ is a proper subfamily ofZ,
whence dimC’ < n. For every lineL the family of centers of projection = meetihg
has dimension 1 +dir¢ hi(— ,3 — 1). Therefore the family of thasee G h —( ,r 2 )
meeting at least one line @’ has dimensiorc n +1+dif@ h(— ,3— 1)=difAr¢
2,r)— 1 and this proves the claim. [

Lemma 5.5. Assumedim(Sing(X)) = 1and let T be al-dimensional irre-
ducible locally closed subscheme 8ing(X ) such that everyP € T is hypersuperfi-
cial and satisfies the equalitiea(P) = m(T) and yp = $(X, T). Then for a general
f = fa and for everyP € T we haveeg(f *(f(P)) < m(T) + (X, T), whence
reg(f~(f(P)) < m(T)+ (X, T) — L
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Proof. Since everyP € T is hypersuperficial it is easy to see tbatelery
P € T the tangent con&p X ) is a hypersurfaceZip X ( ), and hence isnaaith
cally Cohen-Macaulay. This means that the graded rin@ gr) is Cohen-Macaulay.

Set nowW :={J,., Tp & ), which is a locally closed subschemePtf We have
dimW <n+2, since everyP € T is hypersuperficial. Then a gen&rad G n—(,r 2 )
meetsW in finitely many points\; € Tp,(X), ..., A; € Tp(X), wherePy, ..., P €T
are distinct points. MoreoveA NCp X( )& for evel® e T

Fix any A satisfying the above conditions. Fix any with<li </ and pu
P:=P andA =A;. LetL =H;N---N H, be a general linear space of dimension
h containingA andP , wheréf,, ..., H, are hyperplanes. Them ENTp, X( )is a
general plane offp X ) through the lingd, P) , and sinde¢ Cp X ( ) we have that
dm(L NCp(X)) = 1. Forj =1...,n letl; € Oxp be a generator of the ideal of
H; and Ietlj € orQx,p) be the leading form of; . Then( ..., ;) gr(Ox p) is the
homogeneous ideal of N Cp X( ) with respect @& X ( ). Since(yr) is Cohen-
Macaulay of dimensiom + 1 it follows thatj(...,[) is a regular sequence. Then
Ap(L N X)=m(P) (see [3], Ch. VIII,§7, Prop. 7), whence., ({,P)NX ¥m K ).

Now by Lemma 5.3f1(1(fA(P)) is the disjoint union of a scheme supported on
P and of a scheme of length, ™ contained iy collinear with P . A similar (and
shorter) argument shows tha{f, *(fa(P))) = 1 for everyP € T\ {Py,..., P} and
the conclusion follows. ]

Theorem 5.6. Let X CP"be an integral locally Cohen-Macaulay non-degenerate
singular variety of dimensiom < r — 2 and assume that it admits a good projection
with respect t0Xeq (e.g. dim(X) < 14). Assume further thatlim(Sing(X)) = 1and
that all singular points except finitely manyare hypersuperficialLet 71,..., 7, b
the 1-dimensional irreducible components 8ing(X ), let m; = m(X, T;) and y; :=
(X, T;), fori=1,...,1. Let p := sufn, p (SingK ))m; +/;— 1 Then

regX)<d—r +n +1+%(P_2).

Proof. LetE be the finite subset of Sing( ) consisting of théofeing points:
isolated points;
points contained irt; N T;,i /5 ;
points P € T; such thain # » m; ;
points P € T; such thayys > y; ;
non-hypersuperficial points.
Then for a general projectiofi £ the regularity of each filfet(f(P)), P
E is < p(Sing(X')) (see Lemma 3.3).

Set now7/ =T; \ E fori = 1...,s. Thenl; satisfies the assumptions of
Lemma 5.5, whence rég*(f(P))) <m(T)+7(X,T)—1

The conclusion follows as in the proof of Theorem 1.3. Ul



872

(1]
(2]

(3]
(4]

(5]
(6]
(7]

(8]
(9]

(10]
(11]

(12]

E. BaLLico, N. CHIARLI AND S. GRECO
References

S.S. Abhyankar:Local rings of high embedding dimensjomer. J. Math. 89 (1967),
1073-1077.

A. Alzati, E. Ballico and G. OttavianiThe theorem of Mather on general projections for sin-
gular varieties Geometriae Dedicat85 (2001), 113-117.

N. Bourbaki: Algebre Commutative, Chaiptres 8 et 9, Masson, 1983.

A. Bertram, L. Ein and R. Lazarsfeld/anishing theoremsa theorem of Severand the equa-
tions defining projective varietiesd. Amer. Math. Soc4, (1991), 587-602.

L. Chiantini, N. Chiarli and S. GrecdBounding Castelnuovo-Mumford regularity for varieties
with good general projections]. Pure Appl. Algebrd 52 (2000), 57-64.

D. Eisenbud, Commutative Algebra with a view toward Agaic Geometry, Springer-Verlag
1994.

L. Gruson, R. Lazarsfeld and C. Peskir@n a theorem of Castenuovo and the equations defin-
ing space curvesinvent. Math.72 (1983), 491-506.

R. Hartshorne, Algebraic Geometry, Springer-Verlag71.

M. Herrmann, S. Ikeda and U. Orbangguimultiplicity and Blowing-ugwith an appendix by
B. Moonen), Springer-Verlag, 1988.

S. Kwak: Castelnuovo regularity for smooth projective varietiesdahension3 and 4, J. Al-
gebraic Geom7 (1998), 195-206.

R. Lazarsfeld:A sharp Castenuovo bound for smooth surfacBske Math. J.55 (1987),
423-428.

H. Matsumura: Commutative ring theory, Cambridge Ursity Press, 1990

Edoardo Ballico

Dipartimento di Matematica
Universita di Trento

I-38050 Povo (TN), Italy
e-mail: ballico@science.unitn.it

Nadia Chiarli

Dipartimento di Matematica
Politecnico di Torino

1-10129 Torino, Italy

e-mail: nadia.chiarli@polito.it

Silvio. Greco

Dipartimento di Matematica
Politecnico di Torino
1-10129 Torino, Italy

e-mail: silvio.greco@polito.it



