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1. Introduction

To find and to calculate generating sets for invariant rings is a fundamental prob-
lem in invariant theory with a long tradition. With the progress of computers, the sig-
nificance of computational methods in this field has increased. The SAGBI bases are
the sets of generators of a subalgebra of a polynomial ring which have certain com-
putational property. These are the natural “Subalgebra Analogue to Gröbner Bases for
Ideals” introduced at the end of 1980’s by Robbiano and Sweedler [20] and Kapur
and Madlener [8], independently. There are indeed some applications of the SAGBI
bases to invariant theory. The algorithm of Stillman and Tsai [23] gives a method for
computing generating sets for certain invariant rings by using this notion. However,
compared with the theory of Gröbner bases, that of SAGBI bases has made a slow
progress, and many basic problems remaining unsolved. The purpose of this paper is
to investigate the properties of a SAGBI basis for the kernelof a derivation on a poly-
nomial ring.

The kernel of a derivation on a polynomial ring is closely related to an invari-
ant ring. It is an important object in the study of invariant theory and the fourteenth
problem of Hilbert. It is well-known that some kind of derivation corresponds to an
action of one-dimensional additive group, and the kernel and the invariant subring are
the same. Moreover, various counterexamples to the fourteenth problem of Hilbert can
be described as the kernel of a derivation. Nagata’s counterexample [17] and Roberts’
counterexample [22] were described as this by Derksen [2] and by Deveney and Fin-
ston [4], respectively. Nowicki showed that the invariant subring for a linear action of
a connected linear algebraic group on a polynomial ring is obtained as the kernel of
a derivation [18]. Recently, new counterexamples to the fourteenth problem of Hilbert
were constructed by using the kernel of a derivation by several people (cf. [1], [6],
[10], [13]). We believe that a computational methods will give us further progress in
this field.

In this paper, is always a field of characteristic zero exceptSection 6. Let
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[x] = [ 1 . . . ] and [x x−1] = [ 1 . . . −1
1 . . . −1] be the polynomial and

the Laurent polynomial rings in variables over , respectively, and (x) the filed of
fractions of [x]. For each = (1 . . . ) ∈ Z , we denote byx the monomial

1
1 · · · . Let denote the set of total orders� on Z such that � implies
+ � + for any , , ∈ Z , and 0 the set of� ∈ such that the zero vec-

tor is the minimum among (Z≥0) for the order relation�. Here, we denote byZ≥0

the set of nonnegative integers. An element of0 is called amonomial orderon [x].
When an order� is given, we write ≺ if � and 6= for , ∈ Z . We
sometimes denote byx � x instead of � . The lexicographic order� on [x]
with 1 ≺ 2 ≺ · · · ≺ is the monomial order on [x] which is defined by � if
0< for the maximal integer with 6= 0 for , ∈ Z , where − = ( 1 . . . ).

Let � be an element of . For =
∑

∈Z µ x ∈ [x x−1], we define thesup-
port supp( ) of by

(1.1) supp( ) ={ | µ 6= 0}

The convex hull of supp( ) inR is denoted by New( ), and called theNewton poly-
tope of . If 6= 0, then we set �( ) to be the maximal element of supp( ) for
�. The maximum exists, since supp( ) is a nonempty finite subsetof Z . For any ,
∈ [x x−1] \ {0}, it follows that �( ) = �( ) + �( ). We define theinitial term

in�( ) of by

(1.2) in�( ) = µ
�( )x �( )

if 6= 0, while we define in�(0) = 0. Then, it follows that

(1.3) in�( ) = in�( ) in�( )

for any , ∈ [x x−1]. For a -vector subspace of [x], we define theinitial
vector spacein�( ) to be the -vector space generated by{in�( ) | ∈ }. If is
a -subalgebra of [x], then in�( ) is a -algebra. It is called theinitial algebra of .
A subsetS of is said to be aSAGBI basisfor if it is a generating set for over

such that

(1.4) in�( ) = [{in�( ) | ∈ S}]

We say thatS is a universal SAGBI basisfor if it is a SAGBI basis for with
respect to any� ∈ . We remark that, if� is in 0, then the condition (1.4) implies
that S generates over by [20, Proposition 1.16]. Hence, if this is the case, then
S is a SAGBI basis for . In particular, a subsetS is a universal SAGBI basis for

if and only if the subsemigroup{ �( ) | ∈ \ {0}} of Z is generated by
{ �( ) | ∈ S \ {0}} for any � ∈ , since it is equivalent to the condition that (1.4)
holds for any� ∈ .
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By definition, there exist the following implications:

has a finite universal SAGBI basis.

⇓
has a finite SAGBI basis for some� ∈

⇓
is finitely generated over

However, the converse of each implication is not always true. Actually, Robbiano and
Sweedler [20, Example 4.11] showed that{ 1 1 2− 2

2 1
2
2} is a SAGBI basis for

[ 1 1 2 − 2
2 1

2
2] with respect to� ∈ with 1 ≺ 2, but this -algebra does

not have a finite SAGBI basis for� ∈ with 2 ≺ 1. We also give such examples
as the kernel of a derivation in Section 5. We showed in [11, Theorem 2.2] that cer-
tain finitely generated invariant rings do not have finite SAGBI bases for any� ∈ .
This theorem also says that each of these invariant rings hasuncountable cardinality
of distinct initial algebras. Therefore, we may ask the following questions for a finitely
generated -subalgebra of [x].

Question 1. Does have a finite SAGBI basis?

Question 2. How many distinct initial algebras does have?

These questions are generally difficult to answer. In some case, Question 1 is closely
related to the fourteenth problem of Hilbert as we will see inSection 5. In the present
paper, we will give a sufficient condition on derivations fortheir kernels to have finite
universal SAGBI bases, and an upper bound for the number of distinct initial algebras
of them.

For a commutative -algebra , a -linear map :→ is called a -derivation
on if ( ) = ( ) + ( ) for any , ∈ . For a -vector subspace of ,
we denote by

(1.5) ={ ∈ | ( ) = 0}

If is a -subalgebra of , then is a -subalgebra of . We will studythe ker-
nel [x] of a -derivation on [x]. We note that [x] is not necessarily finitely
generated (cf. [1], [2], [6], [10], [13]), and this is a kind of the fourteenth problem of
Hilbert.

We define thesupport supp( ) of by

(1.6) supp( ) =
⋃

=1

supp( −1 ( ))
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The convex hull of supp( ) inR is denoted by New( ), and called theNewton poly-
tope of . For eachδ ∈ supp( ) and 1≤ ≤ , there existsκδ ∈ such that

(1.7) −1 ( ) =
∑

δ∈supp( )

κδ xδ

Then, define a homomorphismλδ : Z → of additive groups by

(1.8) λδ(( 1 . . . )) = 1κδ 1 + · · · + κδ

We define a subset supp◦( ) of supp( ) as follows. Set 0 = supp( ) and

(1.9) +1 = {δ ∈ | δ′ − δ 6∈ kerλδ for someδ′ ∈ }

for each ∈ Z≥0, inductively. Then, define supp◦( ) to be the set ofδ ∈ supp( )
contained in the convex hull of

⋂∞
=0 in R . For a subset ⊂ R , the dimension

dim of is defined as the dimension of theR-vector subspace ofR generated by
{ − | ∈ } if 6= ∅, and−1 if = ∅. Since supp◦( ) cannot be a single point,
the dimension of supp◦( ) is not zero for any . As we see in Section 2, there exist
various -derivations such that supp◦( ) 6= supp( ).

In [12, Theorem 1.3], we showed that [x] is finitely generated over if the
dimension of supp( ) is at most two. We will show a stronger theorem below in Sec-
tion 2.

Theorem 1.1. Assume that is a -derivation on[x]. If the dimension of
supp◦( ) is at most two, then [x] has a finite universal SAGBI basis.

There exist various -derivations such that the dimension ofsupp( ) is greater
than two but that of supp◦( ) is at most two. Hence, Theorem 1.1 can be applied for
far more cases than [12, Theorem 1.3].

A -derivation on [x] is said to betriangular if ( ) is in [ 1 . . . −1]
for each . In this case, we have further the following.

Theorem 1.2. Assume that is a triangular derivation on[x]. If the dimension
of supp◦( ) is at most two, then there exists a universal SAGBI basis for[x] with
at most elements.

We will describe the universal SAGBI basis mentioned in Theorem 1.2 explicitly
in Section 3. In Section 4, we discuss the number of distinct initial algebras of [x] ,
and show the following.

Theorem 1.3. Assume that is a -derivation on[x]. If the dimension of
supp◦( ) is two, then the cardinality of{in�( [x] ) | � ∈ } is at most double
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the number of the vertices of the convex hull ofsupp◦( ) in R . If the dimension of
supp◦( ) is one, then the cardinality of{in�( [x] ) | � ∈ } is at most two.

In Section 5, we show that the kernel of certain locally nilpotent derivation is
finitely generated but has infinitely generated initial algebras. In Section 6, we investi-
gate a method for describing the kernel of a derivation in terms of Newton polytopes.

The author would like to express his gratitude to Professor Masanori Ishida for
his advice and encouragement.

2. A finite universal SAGBI basis

First, we review [12, Lemma 2.1] and its proof. Let be a finitely generated nor-
mal domain over , and the field of fractions of . We assume that is a regular
extension of , i.e., ⊗ ¯ is a field for the algebraic closurē of . In that lemma,
we showed the following. Let be a subfield of containing , and1 . . . be
elements of \ {0}. Then, the -subalgebra

(2.1) =
∑

1 ... ∈Z

(
1

1 · · · ∩
)

of is finitely generated over if is a simple extension of . Actually, we have a
more precise statement as follows.

Lemma 2.1. Assume that = ( 0/ 1) for some 0, 1 ∈ . Then, we may
find a finite subset 0 ⊂ P1

¯ of closed points such that, for any finite subset ⊂
P1

¯ of closed points containing 0, there exist 1 . . . ∈ ⊗ ¯ with the following
property. Assume that is in 1

1 · · · ∩ for some 1 . . . ∈ Z. Then, there exists
∈ [̄ 0 1] \ {0} of the form

=
∏

=1

(α 0 − β 1)

with (α : β ) ∈ P1
¯ \ and ∈ Z≥0 for = 1 . . . such that 0

−
1 / is equal

to a product of powers of1 . . . multiplied by an element of̄\{0} for 0 ≤ ≤ ,
where =

∑
=1 .

Proof. We set¯ = ⊗ ,̄ ¯ = ⊗ ,̄ ¯ = ⊗ ¯ and ¯ = ⊗ .̄ First, assume
that 0/ 1 is transcendental over . Letφ : Spec¯ · · ·→ P1

¯ be the dominant rational
map defined by the inclusion map̄→ ¯. Then, we may consider the homomorphism

φ∗ : Div(P1
¯) → Div(Spec¯)

of the divisor groups ofP1
¯ and Spec̄ . Since the complement of the image ofφ is a
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finite set, kerφ∗ is finitely generated. In the proof of [12, Lemma 2.1], we showed the
following.

There exists a finite subset ⊂ P1
¯ of closed points as follows:

(i) kerφ∗ is contained in the subgroup of Div(P1
¯) generated by , where we

regard as a set of prime divisors.
(ii) Let be the generic point of a prime divisor which appearsin ( ) ∈
Div(Spec¯) for some 1≤ ≤ . Then,φ( ) is in , unless it is the generic
point of P1.̄

If is a finite subset ofP1
¯ of closed points as above, then there exist a

finite number of elements1 . . . ∈ ¯ with the following property. Assume
that is an element of̄ 1

1 · · · ∩ ¯ \ {0} for some ( ) ∈ Z such that
the supports of zeros and poles of the rational function/( 1

1 · · · ) on P1
¯

are contained in . Then, is equal to a product of powers of1 . . .

multiplied by an element of̄ \ {0}.
Let 0 be a finite subset ofP1

¯ of closed points satisfying (i) and (ii) which con-
tains the supports of zeros and poles of0/ 1. We show that 0 satisfies the desired
property. Assume that is a finite subset ofP1

¯ of closed points containing 0. Then,
also satisfies (i) and (ii). Hence, there exist a finite numberof elements 1 . . . ∈

¯ as above. Assume that is in 1
1 · · · ∩ \ {0}. Put ′ = /( 1

1 · · · ), and
set ( ′) =

∑
∈P1

¯
and =

∑
∈ . For each closed point ∈ P1,̄ we assign

(α β ) ∈ 2̄\{0} so that
∏

∈P1
¯
(α 0−β 1)−

′

is in ¯\{0} for every ∈ ¯\{0}
with ( ) =

∑
∈P1

¯

′ , and identify with the ratio (α : β ). Then,

=
∏

∈P1
¯\

(α 0 − β 1)

is in [̄ 0 1] \ {0}, since ′ is in 0(P1
¯ OP1

¯
(− )). Set =

∑
∈P1

¯\ , and

take any 0≤ ≤ . Then, the supports of zeros and poles of0
−

1
′/ are con-

tained in . Hence, those of0
−

1 / are also in . Moreover, 0
−

1 / is in
¯ 1

1 · · · ∩ ¯. Actually,

0(P1
¯ OP1

¯
(− )) 1

1 · · · ⊂ ¯ 1
1 · · · ∩ ¯

and 0
−

1
′/ is in 0(P1

¯ OP1
¯
(− )). Thus, 0

−
1 / is equal to a product of

powers of 1 . . . multiplied by an element of̄ \ {0} by assumption. Therefore,
the assertion is true if 0/ 1 is transcendental over .

Now, assume that 0/ 1 is algebraic over . Then, = , since is a regular
extension of . In this case, the proof of [12, Lemma 2.1] says that there exist a finite
number of elements1 . . . ∈ ¯ such that every element of̄ 1

1 · · · ∩ ¯ is equal
to a product of powers of 1 . . . multiplied by an element of̄ \ {0}. Hence, the
assertion holds for 0 = ∅ and = 1.
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Now, let be an additive group, =
⊕

γ∈ γ a -graded finitely generated
normal -subalgebra of [x], and a -derivation defined on an extension of . Here,
we say that a -algebra is -graded if =

⊕
γ∈ γ for some -vector spaces

γ ⊂ such that γ µ ⊂ γ+µ for every γ, µ ∈ . An element ∈ is said to
be -homogeneousif is in γ for someγ ∈ . Since is a domain, the set =⋃

γ∈ γ \ {0} of nonzero -homogeneous elements is multiplicatively closed. We set

= −1 to be the localization of by . Then, the -grading =
⊕

γ∈ γ is
defined by setting

(2.2) γ =

{ ∣∣∣ ( ) ∈ µ+γ × ( µ \ {0}) for someµ ∈
}

for eachγ ∈ . Note that 0 is a field containing . For a -domain , we denote by
trans deg the transcendence degree of over .

Theorem 2.2. Assume that =
⊕

γ∈ γ and in�( ) =
⊕

γ∈ in�( γ ) for
any � ∈ . If trans deg 0 ≤ 1, then has a finite universal SAGBI basis.

Proof. For each ∈ and � ∈ , there exists a -homogeneous element
′ ∈ such that �( ) = �( ′) by assumption. We will show the existence of

a finite number of elements1 . . . ∈ such that, for any -homogeneous el-
ement ∈ \ {0} and � ∈ , there exist 1 . . . ∈ Z≥0 such that �( ) =

1 �( 1) + · · · + �( ). Then, the remark after the definition of universal SAGBI
bases in Section 1 implies that{ 1 . . . } is a universal SAGBI basis for .

The assumption trans deg0 ≤ 1 implies that the field 0 is a simple exten-
sion of . Actually, if trans deg 0 = 1, then 0 is a rational function field of one
variable over by Lüroth’s theorem, while0 = otherwise. Let 0, 1 ∈ \ {0}
be -homogeneous elements with0 = ( 0/ 1). Then, we may find a finite subset

1 ⊂ P1
¯ of closed points such that, for any finite subset⊂ P1

¯ of closed points con-
taining 1, the Newton polytopes ofα 0−β 1 are the same for any (α β) ∈ 2̄ \ {0}
with (α : β) 6∈ . If this is the case, then it follows that

(2.3) �(α 0 − β 1) = �( )

for all (α : β) ∈ P1
¯ \ for some ∈ {0 1} for each� ∈ .

Similarly to the argument after [12, Lemma 2.1], we may find -homogeneous
elements 1 . . . ∈ \ {0} such that, for eachγ ∈ , there exist 1 . . . ∈ Z
such that γ = 0

1
1 · · · ∩ . Since =

⊕
γ∈ γ , we get

=
∑

1 ... ∈Z

(
0

1
1 · · · ∩

)

By Lemma 2.1, there exist a finite subset⊂ P1
¯ of closed points containing 1, and
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a finite number of elements′
1 . . . ′ ∈ ⊗ ¯ which satisfy the following property.

Let ∈ \ {0} be a -homogeneous element. Then, there exists∈ [̄ 0 1] \ {0}
of the form =

∏
=1(α 0 − β 1) with (α : β ) ∈ P1

¯ \ and ∈ Z≥0 for =

1 . . . such that 0
−

1 / is equal to a product of powers of′1 . . . ′ multiplied
by an element of̄ \ {0} for 0 ≤ ≤ , where =

∑
=1 . Note that there exist a

finite number of elements1 . . . ∈ such that, for each 1≤ ≤ and� ∈ ,
we have �( ′) = �( ) for some 1≤ ≤ . We show that 1 . . . are what we
are looking for. Take any� ∈ . Then, it follows that

�( ) = �
( ∏

=1

(α 0 − β 1)
)

= �
( )

+
∑

=1

�(α 0 − β 1)

= �
( )

+
∑

=1

�( )

= �
( )

for some ∈ {0 1} by (2.3). Choose ′
1 . . . ′ ∈ Z≥0 such that / is equal to

( ′
1)

′
1 · · · ( ′)

′

multiplied by an element in̄ \ {0}. Then, �( ) =
∑

=1
′ �( ′).

By the choice of 1 . . . , we have
∑

=1
′ �( ′) =

∑
=1 �( ) for some

1 . . . ∈ Z≥0. Thus, �( ) =
∑

=1 �( ). Therefore, the proof is completed.

Let be a -derivation on [x]. For eachδ ∈ supp( ), we define

(2.4) δ = xδ

(
κδ 1 1

∂

∂ 1
+ · · · + κδ

∂

∂

)

Then, it follows that

(2.5) δ(x ) = λδ( )x +δ

for any ∈ Z . For a subset of supp( ), we define =
∑

δ∈ δ. Of course,

supp( ) = .

Proposition 2.3. Assume that is a -derivation on[x], δ ∈ supp( )and � ∈
. If δ′ � δ for any δ′ ∈ supp( ), then �( ) is in kerλδ for each ∈ [x] \ {0}.

In particular, each vertex of the Newton polytope of∈ [x] \ {0} is in kerλδ for
some vertexδ of New( ).
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Proof. It suffices to show the former part. Actually, each vertex of New( ) is
equal to �( ) for some� ∈ , and the maximum of supp( ) for� is a vertex of
New( ). Suppose that�( ) is not in kerλδ. Then, δ(in�( )) 6= 0 by (2.5). Since

( ) = 0, the term δ(in�( )) is eliminated in the expression

( ) = δ(in�( )) + δ( − in�( )) + supp( )\{δ}( )

Since supp( ( )) is contained in supp( ) + supp( ), there existδ′ ∈ supp( ) and
′ ∈ supp( ) such thatδ′ + ′ = δ + �( ) and δ′ 6= δ or ′ 6= �( ). Sinceδ′ � δ and
′ � �( ), this is a contradiction. Thus,�( ) is in kerλδ.

We define to be the submodule ofZ generated byδ−δ′ for δ δ′ ∈ supp( ),
and set =Z / . Then, the -grading [x] =

⊕
γ∈ [x]γ is defined by setting

[x]γ to be the -vector space generated byx with ∈ (Z≥0) whose image in
is equal toγ for eachγ ∈ . Note that we have

(2.6) [x] =
⊕

γ∈
[x]γ and in�( [x] ) =

⊕

γ∈
in�( [x]γ ) (� ∈ )

To show Theorem 1.1, we need the following lemma.

Lemma 2.4. Assume that is a -derivation on[x]. We set

S = { ∈ (Z≥0) | ∈ kerλδ for all δ ∈ supp( )\ supp◦( )}

Then, it follows that [x] = [{x | ∈ S}]
◦

, where ◦ = supp◦( ).

Proof. We use induction on the number of elements of supp( ). Put =
supp( ) and ◦ = supp◦( ). If 6= ◦, then there exists a vertexδ of New( ) such
that δ ∈ \ ◦ and +{−δ} ⊂ kerλδ. Then, it suffices to show that

(2.7) [x] = [{x | ∈ (Z≥0) ∩ kerλδ}] \{δ}

by the following reason. Note that the right hand side of (2.7) is equal to

[{x | ∈ (Z≥0) ∩ kerλδ}] ∩ [x] \{δ}

Since supp◦( \{δ}) = supp◦( ), we get [x] \{δ} = [{x | ∈ S ′}]
◦

by induction
assumption, where

S ′ = { ∈ (Z≥0) | ∈ kerλδ′ for all δ′ ∈ \
(
{δ} ∪ ◦)}

On the other hand, we have

[{x | ∈ (Z≥0) ∩ kerλδ}] ∩ [{x | ∈ S ′}]
◦

= [{x | ∈ S}]
◦
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Therefore, (2.7) implies [x] = [{x | ∈ S}]
◦

.
First, we show that every ∈ [x] is contained in the right hand side of (2.7).

Without loss of generality, we may assume that is -homogeneous. Sinceδ is a
vertex of the convex hull of inR , there exists� ∈ such thatδ is the maxi-
mum among for�. Then, �( ) is in kerλδ by Proposition 2.3. Since +{−δ} ⊂
kerλδ, we have ⊂ kerλδ. Moreover, supp( ) +{− �( )} ⊂ , since is

-homogeneous. Thus, supp( )⊂ kerλδ, so is in [{x | ∈ (Z≥0) ∩ kerλδ}].
Furthermore, \{δ}( ) = 0. Actually, we have

(2.8) \{δ}( ) = \{δ}( ) + δ( ) = ( )

since δ( ) = 0 by (2.5). Thus, is in the right hand side of (2.7). Conversely, if
is in the right hand side of (2.7), then the equality (2.8) holds. Hence, is in [x] .
Therefore, we get (2.7), and the proof is completed.

Proof of Theorem 1.1. We set = [{x | ∈ S}]. Then, is a finitely
generated normal -subalgebra of [x], since S is a finitely generated normal sub-
semigroup of (Z≥0) . Here, we say that a subsemigroupS of Z is normal if S =
(
∑

∈S Z ) ∩ (
∑

∈S R≥0 ), whereR≥0 is the set of nonnegative real numbers.
We set to be the image of the submodule

M = { ∈ Z | ∈ kerλδ for all δ ∈ supp( )\ supp◦( )}

of Z in ◦ . Then, x is in
⊕

γ∈ [x]γ if and only if is in M + ◦ for
∈ (Z≥0) . Since ◦ ⊂ M and S = M ∩ (Z≥0) , it is equivalent to ∈ S.

Thus, =
⊕

γ∈ [x]γ . In particular, we have
◦

=
⊕

γ∈ [x]
◦

γ and in�(
◦

) =
⊕

γ∈ in�( [x]
◦

γ ) for any � ∈ by (2.6).
Let us denote by =

⊕
γ∈ γ the localization of by

⋃
γ∈ [x]γ \{0}, and by

( ◦ ) the subfield of (x) generated by{x | ∈ ◦} over . Then, 0 ⊂ ( ◦ ).
Since the dimension of supp◦( ) is at most two, the rank of ◦ is at most two. This
implies that trans deg ( ◦ ) ≤ 2. First, assume that trans deg (◦ )

◦

= 2. Take
δ ∈ supp◦( ), and define a -derivation ′ on (x) by ′( ) = x−δ ◦( ) for each .
Then, it induces a -derivation on ( ◦ ). Moreover, ( ◦ )

′

= ( ◦ )
◦

. Since
( ◦ ) is a separable algebraic extension of (◦ )

◦

, it implies that ′ is zero on
( ◦ ) (cf. [14, Chapter X, Proposition 7]), so ( ◦ ) = ( ◦ )

◦

. Hence, by [12,
Lemma 3.2] and its proof, we have [x]

◦

= [{x | ∈ S0}] for some finitely gen-
erated subsemigroupS0 of (Z≥0) . Then,

◦

= ∩ [x]
◦

= [{x | ∈ S ∩ S0}].
By Gordan’s lemma [19, Proposition 1.1.(ii)], the semigroup S ∩ S0 is finitely gener-
ated. Hence,

◦

is generated by a finite set of monomials over . This set is clearly
a universal SAGBI basis for

◦

. Since [x] =
◦

by Lemma 2.4, the assertion of
Theorem 1.1 is true in this case. If trans deg (◦ )

◦ ≤ 1, then trans deg
◦

0 ≤ 1.
Hence,

◦

= [x] has a finite universal SAGBI basis by Theorem 2.2. We have thus
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proved Theorem 1.1.

As mentioned in Section 1, there exist various -derivationson [x] such that
the dimension of supp( ) is greater than two but that of supp◦( ) is at most two. Let
us consider the -derivation

(2.9) = 2
2
∂

∂ 1
+ ( 2

1 3 4 + 2 2
2

2
4)

∂

∂ 2
+ ( 1

4
2 4 + 5 2 3

2
4)

∂

∂ 3
+ 2

3
4
∂

∂ 4

on [x] for ≥ 4. Since

−1
1 ( 1) = −1

1
2
2

−1
2 ( 2) = 2

1
−1
2 3 4 + 2 2

2
4

−1
3 ( 3) = 1

4
2

−1
3 4 + 5 2

2
4

−1
4 ( 4) = 2

2
4

and −1 ( ) = 0 for ≥ 5, we have supp( ) ={δ1 δ2 δ3 δ4}, where

δ1 = (−1 2 0 0 0 . . . 0) δ2 = (2 −1 1 1 0 . . . 0) δ3 = (1 4 −1 1 0 . . . 0)

δ4 = (0 1 0 2 0 . . . 0)

We see easily that the dimension of supp( ) is three. Furthermore,

λδ (( 1 . . . )) = ( = 1 2 3) λδ4(( 1 . . . )) = 2 2 + 5 3 + 4

for ( 1 . . . ) ∈ Z . We show that supp◦( ) = {δ1 δ2 δ3}. Sinceλδ4(δ − δ4) = 0 for
any , we haveδ4 6∈ 1. On the other hand,λδ (δ − δ ) 6= 0 for any , ∈ {1 2 3}
with 6= . Hence, ={δ1 δ2 δ3} for ≥ 1 and so

⋂∞
=0 = {δ1 δ2 δ3}. More-

over, the intersection of supp( ) and the convex hull of{δ1 δ2 δ3} in R is equal to
{δ1 δ2 δ3}. Therefore, supp◦( ) = {δ1 δ2 δ3}, whose dimension is two. Thus, [x]
has a finite universal SAGBI basis by Theorem 1.1.

The following is an example of which is not zero but supp◦( ) = ∅. Let be
a -derivation on [x] defined by

(2.10) ( ) =
(

+ +1
+1 + +2

+2 + · · · +
)

for = 1 . . . . We setδ = e for each , wheree1 . . . e are the coordinate unite
vectors ofZ . Then, supp( ) ={δ | = 1 . . . }. Hence, the dimension of supp( )
is − 1. Furthermore,

λδ (( 1 . . . )) = 1 + 2

2
+ 3

3
+ · · · +

for = 1 . . . . We show that ={δ1 . . . δ − } by induction on . If = 0, then
the assersion is clear. Assume that> 0. Then, −1 = {δ1 . . . δ − +1} by induction
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assumption. Sinceλδ − +1(δ − δ − +1) = 0 for = 1 . . . − + 1, the vectorδ − +1

is not contained in . On the other hand,λδ (δ − +1 − δ ) = −1 for = 1 . . . − .
Hence, we get ={δ1 . . . δ − }. Therefore,

⋂∞
=0 = ∅, and hence supp◦( ) = ∅.

A -derivation on a -algebra is said to belocally nilpotent if, for each ∈
, there exists ∈ Z≥0 such that ( ) = 0. We see easily that a triangular derivation

is a locally nilpotent derivation on [x]. We note that a locally nilpotent derivation
on defines an actionσ : → [ ] of the one-dimensional additive group scheme

= Spec [ ] by

(2.11) σ( ) =
∞∑

=0
!

( )

for each ∈ . Since is locally nilpotent,σ( ) =
∑

=0 ( )/ ! for some
> 0. The invariant subring of for this action of is equal to

(cf. [16]).
The vertices of the Newton polytope of a locally nilpotent derivation have the fol-

lowing property.

Lemma 2.5. Assume that is a nonzero locally nilpotent derivation on[x].
Then, exactly one component of each vertex ofNew( ) is equal to−1.

Proof. Let δ be a vertex of New( ) and suppose that it is in (Z≥0) . We set
to be an element of (Z≥0) \ kerλδ if λδ(δ) = 0, while = δ if λδ(δ) 6= 0. Then, it
follows thatλδ( + δ) 6= 0 for any ∈ Z≥0. By a repeated use of (2.5), we get

(x ) =
∑

δ1∈supp( )

· · ·
∑

δ ∈supp( )


∏

=1

λδ

(
+

−1∑

=1

δ
)

 x +δ1+···+δ

for each . Sinceδ is a vertex of New( ), we haveδ1+ · · ·+δ = δ if and only if δ1 =
· · · = δ = δ for δ1 . . . δ ∈ supp( ). Hence, the coefficient ofx + δ in (x ) is equal
to
∏ −1

=0 λδ( + δ). By the choice of , it is not zero. This contradicts that (x ) = 0
for sufficiently large . Thus,δ 6∈ (Z≥0) . It implies that exactly one component ofδ
is equal to−1.

By this lemma, Proposition 2.3 is considered as a generalization of [7, Theo-
rem 3.2] which states that each vertex of New( ) for∈ [x] \ {0} lies on a co-
ordinate hyperplane if is a nonzero locally nilpotent derivation on [x]. Actually, if
the -th component ofδ is −1 for some , then the -th component of every element
of kerλδ is zero.

The dimension of supp◦( ) is one of the measure which shows the “complexity”
of [x] . If it is −1, then [x] is a semigroup ring of a finitely generated normal
subsemigroup of (Z≥0) . For a locally nilpotent derivation, we have the following.
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Proposition 2.6. Assume that is a nonzero locally nilpotent derivation on
[x]. Then, supp◦( ) 6= supp( ) if and only if supp◦( ) = ∅. If this is the case, then

we have = (∂/∂ ) for some1 ≤ ≤ and ∈ [ 1 . . . −1 +1 . . . ] \{0}.

Proof. Since 6= 0, it is clear that supp◦( ) 6= supp( ) if supp◦( ) = ∅. As-
sume that supp◦( ) 6= supp( ). Then, supp( ) +{−δ} ⊂ kerλδ for some vertexδ of
New( ). By Lemma 2.5, the -th component ofδ is −1 for some . Then,κδ 6= 0
and κδ = 0 for 6= . Since supp( ) +{−δ} ⊂ kerλδ, the -th component of every
element of supp( ) is−1. Thus, = (∂/∂ ) for some ∈ [x] which does not
involve . Moreover,λδ1(δ2 − δ3) = 0 for any δ1, δ2, δ3 ∈ supp( ). This implies that
supp◦( ) = ∅.

We note that, if the dimension of supp◦( ) is greater than two, then [x] does
not always have finite SAGBI basis. Actually, there exists a -derivation on [x]
with the dimension of supp◦( ) greater than two whose kernel is not finitely gener-
ated. Consider the -derivation

(2.12) =xη1
∂

∂ 4
+ xη2

∂

∂ 5
+ xη3

∂

∂ 6
+ xη4

∂

∂ 7
+ 8

∂

∂ 8

on [x] for ≥ 8, whereη1, η2, η3, η4 ∈ (Z≥0) whose last − 3 components
are zero. We setδ = η − e +3 for = 1, 2, 3, 4 andδ5 = 0. Then, supp( ) =
{δ1 . . . δ5} and λδ (( 1 . . . )) = +3 for = 1 . . . 5. We may easily verify that
supp◦( ) = {δ1 . . . δ4}. We set ◦ = − 8(∂/∂ 8) andS = (Z≥0) ∩ kerλδ5. Then,
by Lemma 2.4, we have

(2.13) [x] = [{x | ∈ S}]
◦

= [ 1 . . . 7 9 . . . ]
◦

Furthermore, [13, Theorem 1.4] says that there exist a largenumber of four-tuples
(η1 η2 η3 η4) of vectors such that the right hand side of (2.13) is not finitely gen-
erated.

3. A triangular derivation with two-dimensional support

Maubach [15] and Khoury [9] studied in respective papers thekernels of some
triangular derivations on [x]. They showed the finite generation of them by giving
generating sets explicitly. In this section, we consider the kernel [x] of a triangular
derivation on [x] with the dimension of supp◦( ) at most two. We will determine
a universal SAGBI basis for it explicitly. This implies the results of both Maubach and
Khoury as special cases.

Let be a nonzero triangular derivation on [x]. We set to be the number
of indices ∈ {1 . . . } such that ( )6= 0. Since a triangular derivation is locally
nilpotent, supp◦( ) 6= supp( ) implies = 1 by Proposition 2.6. In this case,{ |
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6= } is a universal SAGBI basis for [x] for some . In case of = 2, we
will determine a universal SAGBI basis for [x] with − 1 elements explicitly in
Corollary 3.5 below, as a consequence of a fact on the kernel of a locally nilpotent
derivation. Our main result of this section is for the case where ≥ 3.

Lemma 3.1. Assume that ≥ 3, and is a nonzero triangular derivation on
[x]. If the dimension ofsupp( ) is at most two, then is at most three. If is

three, then, by a change of indices of the variables, we may write as

= κ0xδ0
∂

∂ −2
+ κ1xδ1 1−1

−2
∂

∂ −1

+ xδ2 2−1
−2 −1

∑

=0

κ2 (xδ1−δ0 1
−2

−1
−1)

∂

∂

(3.1)

where δ0, δ1, δ2 ∈ (Z≥0) whose last three components are zero, 1, 2, ∈ Z with

1, 2 ≥ 1 and ≥ 0, and κ0, κ1, κ2 ∈ for = 1 . . . with κ0, κ1, κ2 0 6= 0.

Proof. First, we claim that we may change indices of the variables so that
( ) = 0 for ≤ − and ( ) 6= 0 for > − . We use induction on

the number of indices ∈ {1 . . . } such that < and ( ) 6= 0, where is
the maximal index with ( ) = 0. Let be the maximal index such that < and

( ) 6= 0. Then, remains triangular if we exchange and . Hence, by induction
assumption, we may change indices as claimed.

Suppose that is greater than three. Then, we may assume that (− ) 6= 0 for
0 ≤ ≤ 3. Take ∈ supp( −1

− ( − )) for each . Since is triangular, we have




2 − 3

1 − 3

0 − 3


 =



. . . −1 0 0

−1 0
−1




Hence, 2 − 3, 1 − 3 and 0 − 3 are linearly independent overR. This contradicts
that the dimension of supp( ) is at most two. Thus, is at most three.

Assume that is three. Then, we may assume that (− ) 6= 0 for 0≤ ≤ 2.
We show that is written as in (3.1). Take any∈ supp( −1

− ( − )) for each .
Then, it suffices to show that supp(−1

− ( − )) = { } for = 1, 2, and that 0− ′
0 ∈

Z( 1 − 2) for every ′
0 ∈ supp( −1 ( )). First, suppose that there exists2 6= ′

2 ∈
supp( −1

−2 ( −2)). Then, since is triangular, we have




′
2 − 2

1 − 2

0 − 2


 =



· · · 0 0
· · · −1 0

−1




Hence, ′
2 − 2, 1 − 2 and 0 − 2 are linearly independent. This contradicts that the
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dimension of supp( ) is at most two. Hence, supp(−1
−2 ( −2)) = { 2}. In a similar

way, we see that supp(−1
−1 ( −1)) = { 1}. Since 1 − 2 and 0 − 2 are linearly

independent, supp( ) is contained in theR-vector subspace ofR generated by them.
Hence, each ′

0 ∈ supp( −1 ( )) satisfies 0 − ′
0 = α( 1 − 2) + β( 0 − 2) for some

α, β ∈ R. Note that the -th components of0 − ′
0 and 1 − 2 are both zero, while

that of 0 − 2 is −1. Hence,β = 0. Since the (− 1)-st component of 1 − 2 is −1,
that of 0− ′

0 is equal to−α. Thus,α is an integer. This completes the proof.

Let [x][y] = [x][ 0 1 . . . ] and [x x−1][y] = [x x−1][ 0 1 . . . ] de-
note the polynomial rings in + 1 variables over [x] and [x x−1], respectively.
We express monomials in [x x−1][y] as x y for ( ) ∈ Z × Z +1. For each
∈ [x x−1][y] \ {0}, we sete( ) to be the unique element ofZ such that

(a) xe( ) ∈ [x][y].
(b) x ∈ [x][y] implies that − e( ) ∈ (Z≥0) for every ∈ Z .
Then, defineρ( ) = xe( ) .

In the situation of Lemma 3.1, we replace by + 3 and+1, +2, +3 by 0,

1, 2, respectively. Then, the -derivation (3.1) is described asthe -derivation

(3.2) =κ0xδ0
∂

∂ 0
+ κ1xδ1 1−1

0
∂

∂ 1
+ xδ2 2−1

0 1

∑

=0

κ2 (xδ1−δ0 1
0

−1
1 )

∂

∂ 2

on [x][y] for = 2, whereδ0, δ1, δ2 ∈ (Z≥0) , 1, 2, ∈ Z with 1, 2 ≥ 1 and
≥ 0, andκ0, κ1, κ2 ∈ for = 1 . . . with κ0, κ1, κ2 0 6= 0. We note that

extends uniquely to a locally nilpotent derivation on [x x−1][y].
We setǫ = δ − δ for , . Then, define two elements of [x x−1][y] by

(3.3) ˜ = 1 −
κ1

κ0 1
xǫ1 0 1

0

and

(3.4) ˜ = 2 −
∑

=0


∑

=0

φ( )


 x ǫ1 0+ǫ2 0 1+ 2

0
−

1

where

(3.5) φ( ) =
(−κ1) − κ2

κ − +1
0 ( − + 1)

−∏

=1

− − + 1
( + ) 1 + 2

for , . Then, it follows that (̃ ) = ( ˜ ) = 0. It is easily checked that (˜ ) = 0.
We verify the equality (̃ ) = 0 only.
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We set

( ) =

(
(−κ1) − κ2 ( − + 1)

κ −
0 ( − + 1)

− −1∏

=1

− − + 1
( + ) 1 + 2

)
x ǫ1 0+δ2 1+ 2−1

0
−

1

for , . Then, it follows that (2) =
∑

=0 ( ),

(φ( )x ǫ1 0+ǫ2 0 1+ 2
0

−
1 ) = ( ) − ( + 1 )

for 0 ≤ ≤ ≤ , and ( + 1 ) = 0 for 0≤ ≤ . Hence, we have

( ˜ ) =
∑

=0

( ) −
∑

=0

∑

=0

( ( ) − ( + 1 ))

=
∑

=0

(
( ) −

∑

=

( ( ) − ( + 1 ))

)

=
∑

=0

( + 1 ) = 0

We setξ =
∑

=0φ( ), ′ = /gcd( 1 2) for = 1, 2 and

(3.6) η = ′
1ǫ2 0 − ′

2ǫ1 0 and = ′
1 + ′

2

If ξ 6= 0, then set

(3.7) ˜ = xη ˜ − (−1) + ′
1

κ1

(κ0 1) ξ
′
1

˜ ′
1

We define =ρ( ˜ ) and =ρ( ˜ ). If ξ 6= 0, then define =ρ( ˜ ), else set = 0.
In the notation above, we have the following.

Theorem 3.2. Assume that = 2, and is a -derivation on [x][y] as
in (3 2). Then, { 1 . . . } is a universal SAGBI basis for[x][y] . In par-
ticular, [x][y] is generated by at most + 3 elements over .

Before proving Theorem 3.2, we recall a fact on the kernel of alocally nilpotent
derivation. Let be a -algebra, and a locally nilpotent derivation on . An ele-
ment ∈ is said to be aslice of if ( ) = 1. Assume that has a slice . Then,
for each ∈ , we define

(3.8) ( ) =
∞∑

=0

(− )
!

( )
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Since is locally nilpotent, ( ) is in . By definition, it follows that ( ) = 0
and ( ) = for any ∈ . The following fact is well-known (see [5, Corol-
lary 1.3.23] for instance).

Lemma 3.3. The map ∋ 7→ ( ) ∈ is a homomorphism of -algebras.
Its image ( ) is equal to . In particular, if generates over , then { ( ) |
∈ } generates over .

The following is a consequence of Lemma 3.3.

Corollary 3.4. Assume that is a locally nilpotent derivation on[x] with
( 1) ∈ \ {0}. We set = 1/ ( 1). Then, { ( 2) . . . ( )} is a SAGBI ba-

sis for [x] with respect to� ∈ satisfying = in�( ( )) for = 2 . . . .

REMARK. Assume that is triangular and (1) 6= 0. Then, ( 1) is in \ {0}.
Moreover, the lexicographic order� on [x] with 1 ≺ · · · ≺ satisfies that =
in�( ( )) for = 2 . . . , where = 1/ ( 1).

Proof. By Lemma 3.3,{ ( 2) . . . ( )} generates [x] over , since
( 1) = 0. So, it suffices to show that in�( [x] ) = [ 2 . . . ].

First, we prove that

(3.9) trans deg in�( ) ≤ trans deg

for any -subalgebra of [x]. Take 1 . . . ∈ so that their initial terms form a
transcendence basis of in�( ) over . Suppose that there exists a nontrivial algebraic
relation

(3.10)
∑

( 1 ... )∈(Z≥0)

α 1 ...
1

1 · · · = 0 (α 1 ... ∈ )

Choose (1 . . . ) ∈ (Z≥0) with α 1 ... 6= 0 such that �( 1
1 · · · ) is the maximum

among �(
′
1

1 · · ·
′

) for ( ′
1 . . . ′) ∈ (Z≥0) with α ′

1 ... ′ 6= 0. Then, there exists

( 1 . . . ) 6= ( 1 . . . ) ∈ (Z≥0) such that �( 1
1 · · · ) = �( 1

1 · · · ). Actually,
if such ( 1 . . . ) did not exist, then the initial term of the left hand side of (3.10)
would beα 1 ... in�( 1

1 · · · ) 6= 0. This is a contradiction. However, the existence
of such ( 1 . . . ) implies the algebraic dependence of in�( 1) . . . in�( ) over .
This contradicts the choice of1 . . . . Thus, we get (3.9).

Since 6= 0 and is of characteristic zero, the transcendence degree of [x] is
less than (cf. [14, Chapter X, Proposition 7]). Hence, that of in�( [x] ) is less than

by (3.9). On the other hand, in�( [x] ) ⊃ [ 2 . . . ] by the choice of�. Hence,
no element in in�( [x] ) involves 1. Therefore, in�( [x] ) = [ 2 . . . ].
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Assume that is a triangular derivation on [x] with = 2. Then, ( ),
( ) 6= 0 for some 1≤ < ≤ and ( ) = 0 for any 6= , . We set
= / ( ). Then, extends uniquely to a locally nilpotent derivation on [x][ ].

Write ( ) = / ′, where , ′ ∈ [x] with gcd( ′) = 1.

Corollary 3.5. Assume that is a triangular derivation on[x]. If there exist
1 ≤ < ≤ such that ( ), ( ) 6= 0 and ( ) = 0 for any 6= , , then

(3.11) { 1 . . . −1 +1 . . . −1 +1 . . . }

is a universal SAGBI basis for[x] .

Proof. We set [x′] = [{ | 6= }]. Then, [x] ⊃ [x′]. Since ( ) =
( ) = 0, we have

[x] = [x][ ] ∩ [x] = ( [x][ ]) ∩ [x] = [x′]
[
/ ′] ∩ [x]

by Lemma 3.3. Note that′ is in [ 1 . . . −1]. Actually, ( ) is in [ 1 . . . −1]
and / ′ is an irreducible fraction in [x][ / ( )]. Since ( / ′) = 0, this implies
that is in [x] . We show that [x] = [x′][ ]. Clearly, [x] ⊃ [x′][ ]. Suppose
that there exists ∈ [x] \ [x′][ ]. Then, we may write = 0( / ′) + 1( / ′) −1+
· · ·+ , where ∈ [x′][ ] for each . Assume that is the minimum among such ex-
pressions. Then, is positive. Moreover,′ does not divide 0. Actually, if ′ divides

0, then 0 / ′ + 1 is in [x′][ ]. Since = ( 0 / ′ + 1)( / ′) −1+ · · ·+ , this con-
tradicts the minimality of . Thus, ′ = 0 + 1

−1 ′ + · · · + ( ′) is not divisible
by ′. This contradicts that = ′/( ′) is in [x]. Therefore, [x] = [x′][ ].

Now, we show that in�( [x] ) = [x′][in�( )] for any � ∈ . It suffices to verify
that in�( [x] ) ⊂ [x′][in�( )]. Assume that is in [x] . Then, = 0 + 1

−1 +
· · · + for some and ∈ [x′] for each . We set to be the -th component
of �( ) for = , . Then, either or is not zero, since each monomial of
involves or . For = , and with 6= 0, the -th component of�( − )
is ( − ) . Hence, �( − ) 6= �( − ) for any 6= with , 6= 0. This
implies that in�( ) = in�( − ) for some . Since in�( − ) is in [x′][in�( )],
we have in�( ) ∈ [x′][in�( )]. Thus, in�( [x] ) ⊂ [x′][in�( )].

We will show Theorem 3.2 as a consequence of Theorem 3.6 below. Let be a
submodule ofZ × Z +1 of rank two which is not contained in

(3.12) ={( ( 0 1 . . . )) ∈ Z × Z +1 | 0 = 0}

Let : [x][ 1 . . . ] → [x x−1][y] be any homomorphism of [x]-algebras satis-
fying

(3.13) ( )− ∈ [x x−1][y] 0 and supp(−1 ( )) ⊂ ( = 1 . . . )
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Let : [x x−1][y] → [x x−1][y] be the homomorphism which substitutes zero for

0. We consider the -subalgebra

(3.14) = ( [x][ 1 . . . ]) ∩ [x][y]

of [x][y]. Put = ρ( ( )) for = 1 . . . . Take η̄ = (η̄′ η̄′′) ∈ Z × Z +1 such
that ∩ = Zη̄. Set η̄′′1 to be the vector obtained from ¯η′′ by replacing the neg-
ative components by zero and ¯η′′2 = η̄′′1 − η̄′′. Define ˜ (β) = xη̄′

(yη̄′′
1 ) − β (yη̄′′

2 )
and (β) = ρ( ˜ (β)) for eachβ ∈ .̄ Then, there exist a finite number of elements
µ0 µ1 . . . µ ∈ \ {0} such that
(i) New( ˜ (µ )) 6= New( ˜ (µ )) if 6= .
(ii) New( ˜ (µ0)) contains supp(xη̄′

(yη̄′′
1 )) and supp( (yη̄′′

2 )).
(iii) New( ˜ (β)) = New( ˜ (µ0)) for all β ∈ ¯\ {0 µ1 . . . µ }.

In the notation above, we have the following.

Theorem 3.6. The set{ 1 . . . 1 . . . (µ1) . . . (µ )} is a universal
SAGBI basis for .

Proof. Note that ( ( )) = for ∈ ( [x][ 1 . . . ]). We set =
(Z × Z +1)/ , and define a -grading [x x−1][y] =

⊕
γ∈ [x x−1][y]γ similarly

to that explained before Lemma 2.4. We show that =
⊕

γ∈ γ , where γ =
∩ [x x−1][y]γ for γ ∈ . Clearly, contains

⊕
γ∈ γ . To show the reverse inclu-

sion, take any ∈ . Then, it is written as =
∑

γ γ , where γ ∈ [x x−1][y]γ
for eachγ. Since the supports ofγ and γ′ do not intersect ifγ 6= γ′, we have

γ ∈ [x][y] for eachγ. Moreover, it follows that γ = ( ( γ)) for eachγ, since
= ( ( )) =

∑
γ∈ ( ( γ)) and ( ( γ)) ∈ [x x−1][y]γ . Hence, γ is in γ

for eachγ, and so is in
⊕

γ∈ γ . Therefore, =
⊕

γ∈ γ .

Now, take any� ∈ , and define to be the subsemigroup ofZ × Z +1 gener-
ated by (Z≥0) × {0}, �( ) for = 1 . . . and �( (µ )) for = 1 . . . . To
complete the proof, it suffices to show that�( ) is in for any -homogeneous
element ∈ \ {0}. First, we show that �( (µ)) is in for any µ ∈ ¯ \ {0}.
It is true if µ = µ for some = {1 . . . }. For µ ∈ ¯ \ {0 µ1 . . . µ }, we
have New( (µ)) = New( (µ0)) by (iii). Hence, �( (µ)) = �( (µ0)). So, we
will verify that �( (µ0)) is in . By (ii), we get �( ˜ (µ0)) = �( ) for some

∈ {1 2}, where 1 = xη̄′

(yη̄′′
1 ) and 2 = (yη̄′′

2 ). Since (µ0) = xe( ˜ (µ0)) ˜ (µ0)
and =x−e( )ρ( ), we have

�( (µ0)) =
(
e( ˜ (µ0)) − e( ) 0

)
+ �(ρ( ))

The condition (ii) also implies thate( ˜ (β )) − e( ) is in (Z≥0) . Since ρ( ) is a
product of powers of 1 . . . , we have �(ρ( )) ∈ . Thus, �( (µ0)) is in .

Now, let be a -homogeneous element of\ {0}. Then, there exist ∈ Z ,
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1 . . . , ∈ Z≥0 andα ∈ for = 0 . . . with α0, α 6= 0 such that

(3.15) ( ) =x 1
1 · · · y η̄′′

2

∑

=0

α (xη̄′

yη̄′′
1 y−η̄′′

2 )

by the following reason. Since is -homogeneous, every ,∈ supp( ( )) satisfy
− ∈ Zη̄. Hence, ( ) =x y

′ ∑
=0α (xη̄′

yη̄′′
1 −η̄′′

2 ) for some ∈ Z , ′ ∈ Z +1, ∈
Z≥0 andα ∈ for = 0 . . . with α0, α 6= 0. Since ( ) is in [x][ 1 . . . ], the
first component of ′ is zero and ′, ′+ (η̄′′1 − η̄′′2 ) are in (Z≥0) +1. This last condition
implies ′ − η̄′′2 ∈ (Z≥0) +1. Set ∈ Z≥0 such that ′ − η̄′′2 = ( 0 1 . . . ). Then,
we get (3.15). Letβ1 . . . β ∈ ¯ be the solutions of the equation

∑
=0α = 0 in

. Sinceα0, α 6= 0, we haveβ 6= 0 for any . Then, we may write (3.15) as

( ) = α0x 1
1 · · · y η̄′′

2

∏

=1

(xη̄′

yη̄′′
1 −η̄′′

2 − β )

= α0x 1
1 · · ·

∏

=1

(xη̄′

yη̄′′
1 − β yη̄′′

2 )

Since = ( ( )), it follows that

= α0x ( 1) 1 · · · ( )
∏

=1

(xη̄′

(yη̄′′
1 ) − β (yη̄′′

2 ))

= α0x
′


∏

=1



(∏

=1

(β )

)

where ′ = −∑ =1 e( ( )) −∑ =1 e( ˜ (β )). Hence, we have

�( ) = ( ′ 0) +
∑

=1

�( ) +
∑

=1

�( (β ))

Clearly,
∑

=1 �( ) is in . As we showed in the preceding paragraph,�( (β ))
is in for each . We show that (′ 0) is in . Suppose the contrary, that is, the -th
component of ′ is negative for some . Then, (

∏
=1 )(

∏
=1 (β )) is divisible by

, since is in [x][y]. However, does not divideρ( ) for any ∈ [x x−1][y] \
{0} by definition. This is a contradiction. Hence, (′ 0) is in . Therefore, �( ) is
in . This completes the proof.

To prove Theorem 3.2, we need the following two lemmas. Assume that is a
-derivation on [x][y] as in (3.2). Then, = 0/(κ0xδ0) is a slice of . We set
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to be the submodule ofZ ×Z3 generated by
(
ǫ1 0 ( 1 −1 0)

)
and

(
ǫ2 0 ( 2 −1)

)
.

Then, ∩ = Z
(
η (0 − ′

1)
)
.

Lemma 3.7. (i) [x][y] = ( [x][ 1 2]) ∩ [x][y].
(ii) The map [x][ 1 2] ∋ 7→ ( ) ∈ [x][y][ ] is an isomorphism. Its inverse is
[x][y][ ] ∋ 7→ ( ) ∈ [x][ 1 2].

(iii) ( 1) = ˜ and ( 2) = ˜ .
(iv) ( ) − ∈ [x x−1][y] 0 and supp( −1 ( )) ⊂ for = 1, 2.

Proof. (i) By Lemma 3.3, we get [x][y][ ] = ( [ x][y][ ]). Since ( 0) =
( ) = 0, it is equal to ( [x][ 1 2]). Therefore,

[x][y] = [x][y][ ] ∩ [x][y] = ( [x][ 1 2]) ∩ [x][y]

(ii) For ∈ [x][ 1 2], we have ( ) = − ∑∞
=1(− ) −1 ( )/ !. Hence,

( ( )) = . Moreover, ( [x][ 0 1]) = [x][y][ ] by Lemma 3.3.
(iii) Note that ˜ , ˜ are in [x][y][ ] . Since (˜ ) = 1 and (˜ ) = 2, we have

( 1) = ˜ and ( 2) = ˜ by (ii).
(iv) Since ˜ − 1, ˜ − 2 ∈ [x x−1][y] 0 and supp(−1

1
˜ ), supp( −1

2
˜ ) ⊂ , the

assertion follows from (iii).

We set ¯η′′1 = and η̄′′2 = ′
1. Then, define ˜ (β) = xη ( 1)η̄

′′
1 − β ( 2)η̄

′′
2 and

(β) = ρ( ˜ (β)) for eachβ ∈ ¯\ {0}. If ξ 6= 0, then put

(3.16) µ1 = (−1) + ′
1

κ1

(κ0 1) ξ
′
1

and setµ0 to be any element of \ {0 µ1}. If ξ = 0, then setµ0 to be any element
of \ {0}.

Lemma 3.8. Assume thatξ 6= 0. Then, we have
(i) New( ˜ (µ0)) 6= New( ˜ (µ1)).
(ii) New( ˜ (µ0)) containssupp(xη ( 1)η̄

′′
1 ) and supp( ( 2)η̄

′′
2 ).

(iii) New( ˜ (β)) = New( ˜ (µ0)) for all β ∈ ¯\ {0 µ1}.
Assume thatξ = 0. Then, we have
(iv) New( ˜ (µ0)) containssupp(xη ( 1)η̄

′′
1 ) and supp( ( 2)η̄

′′
2 ).

(v) New( ˜ (β)) = New( ˜ (µ0)) for all β ∈ ¯\ {0}.

Proof. Note thatxη ( 1)η̄
′′
1 = xη ˜ and ( 2)η̄

′′
2 = ˜ ′

1 by Lemma 3.7 (iii).
Assume thatξ 6= 0. Then, the sets of the vertices of New(xη ( 1)η̄

′′
1 ) and

New( ( 2)η̄
′′
2 ) are { 1 2} and { 1 2 3}, respectively. Here, we set

1 =
(
η (0 0)

)
1 =
(
0 (0 0 ′

1)
)
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2 =
(
η + ǫ1 0 ( 1 0 0)

)
2 =
( ′

1(ǫ2 0 + ǫ1 0) ( ′
1( 1 + 2) 0 0)

)

3 =
( ′

1ǫ2 0 ( ′
1 2

′
1 0)

)

Note that 2 = 2, since

η + ǫ1 0 = ( ′
1ǫ2 0 − ′

2ǫ1 0) + ( ′
1 + ′

2)ǫ1 0 = ′
1(ǫ2 0 + ǫ1 0)

and 1 = ′
1( 1 + 2). We show that 1, 2, 1 and 3 are in New(̃ (β)) for any

β ∈ ¯ \ {0 µ1}, and 2 is not in New(˜ (µ1)). The assertions (i), (ii) and (iii) fol-
low from this. Take anyβ ∈ ¯ \ {0 µ1}. Then, 1, 1 are in New(̃ (β)), since

1 6∈ supp( ( 2)η̄
′′
2 ) and 1 6∈ supp(xη ( 1)η̄

′′
1 ). The coefficients ofxη+ ǫ1 0 1

0 in
xη ( 1)η̄

′′
1 and ( 2)η̄

′′
2 are (−κ1/(κ0 1)) and (−ξ) ′

1, respectively. Hence, 2 is
in supp(˜ (β′)) if and only if β′ = µ1 for β′ ∈ .̄ So, 2 is in New(˜ (β)). Since

3 = (1− ′
2/ ) 1 + ( ′

2/ ) 2, we get 3 ∈ New( ˜ (β)). Therefore, 1, 2, 1 and 3

are in New(̃ (β)) for any β ∈ ¯\ {0 µ1}. If > 0, then 1, 1 and 3 are not equal
to 2, while 3 = 2 if = 0. In each case, the first component1 of the second
factor of 2 is greater than the first component of the second factor of anyelement
of { 1 1 3} \ { 2}. Hence, 1 is greater than that of any element but2 of the
convex hull of { 1 2 1 3} in R . Since supp(̃ (µ1)) is contained in this convex
set and 2 6∈ supp(˜ (µ1)), we conclude that 2 is not in New(˜ (µ1)). Therefore, the
lemma is true whenξ 6= 0.

Assume thatξ = 0. Then, the coefficient ofxη+ ǫ1 0 1
0 in ( 2)η̄

′′
2 is zero, while

that in xη ( 1)η̄
′′
1 is not zero. Hence,2 is in supp(̃ (β)) for any β ∈ .̄ In a similar

way as above, we see that1, 1 and 3 are also in New(̃ (β)). This implies (iv)
and (v). We have thus proved the lemma.

Let us complete the proof of Theorem 3.2. Assume thatξ 6= 0. Then, by Theo-
rem 3.6, Lemma 3.7 (i), (iv) and Lemma 3.8, the set

(3.17) { 1 . . . ρ( ( 1)) ρ( ( 2)) (µ1)}

is a universal SAGBI basis for [x][y] . Since ( 1) = ˜ and ( 2) = ˜ by
Lemma 3.7 (iii), we haveρ( ( 1)) = andρ( ( 2)) = . Moreover, (µ1) = by
definition. Thus, the theorem is true ifξ 6= 0. Similarly, we see that{ 1 . . . }
is a universal SAGBI basis for [x][y] if ξ = 0. Therefore, the proof of Theorem 3.2
is completed.

Now, Theorem 1.2 is a consequence of the results above. Actually, the theorem
follows from what we mentioned before Lemma 3.1, Corollary 3.5 and Theorem 3.2.
In each case, we described the universal SAGBI basis explicitly.

In [15], Maubach studied the kernel of a triangular derivation on [x] for = 4
such that ( ) is a monomial multiplied by an element of for each. He showed
that [x] is generated by at most four elements by giving them explicitly. As a con-
sequence of our result, we know further a SAGBI basis for [x] .
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Corollary 3.9. Assume that = 4. Let be a triangular derivation on [x] such
that ( ) = κ x for someκ ∈ and ∈ Z4 for each . If κ = 0 for some ,
then [x] has a universal SAGBI basis with at most four elements. Ifκ 6= 0 for all
, then{ ( 2) ( 3) ( 4)} is a SAGBI basis for� ∈ with ≺ 1 for = 2, 3,

4, where = 1/ ( 1). In particular, it is a SAGBI basis for the lexicographic order
on [x] with 1 ≺ · · · ≺ 4.

Proof. The former part follows from Theorem 1.2. Assume that( ) 6= 0 for
any . Then, the condition that1 ≺ for = 2, 3, 4 implies that = in�( ( ))
for = 2, 3, 4. Actually, supp(−1 ( )) is contained in

∑3
=1 R≥0( − 1) for each

. Hence,{ ( 2) ( 3) ( 4)} is a SAGBI basis for� by Corollary 3.4. Since
is triangular, the lexicographic order as above satisfies that = in�( ( )) for each
, as we noted after Corollary 3.4.

Assume that = 2, and consider the -derivation on [x][y] of the form

(3.18) =xδ0
∂

∂ 0
+ xδ1

∂

∂ 1
+ xδ2

∂

∂ 2
(δ0 δ1 δ2 ∈ (Z≥0) )

For each , , we defineǫ+ to be the vector obtained fromǫ = δ − δ by replacing

the negative components by zero, and set =xǫ+ − xǫ+

. Khoury [9, Corol-
lary 2.2] showed that [x][y] is generated by 1 0, 2 0 and 2 1 over [x]. As a
consequence of Theorem 3.2, we have further the following.

Corollary 3.10. Assume that = 2 and is a -derivation on [x][y] as
in (3 18). Then, { 1 . . . 1 0 2 0 2 1} is a universal SAGBI basis for[x][y] .

Proof. Note that (3.18) is a special case of (3.2) whereκ0 = κ1 = κ2 0 = 1, 1 =

2 = 1, and = 0. In this case,̃ = 1−xǫ1 0
0, ˜ = 2−xǫ2 0

0, andη = δ2−δ1 = ǫ2 1.
Since ǫ2 1 + ǫ1 0 = ǫ2 0, we have

˜ = xǫ2 1( 1 − xǫ1 0
0) − ( 2 − xǫ2 0

0) = xǫ2 1
1 − 2

For , , it follows thatρ( −xǫ ) = xǫ+ −xǫ+

. Therefore, the assertion follows
from Theorem 3.2.

4. The number of initial algebras

In this section, we prove Theorem 1.3.
First, assume that the dimension of supp◦( ) is two. Let 1 . . . be the ver-

tices of the convex hull of supp◦( ) in R , and = ◦⊗Z R, where ◦ = supp◦( ).
For each , we setλ = λ , = ∩ (kerλ )⊗Z R and = dimR . By the definition
of supp◦( ), there existsδ ∈ supp◦( ) such thatδ − 6∈ kerλ . Hence, is at most
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one. So, there existsη ∈ R such that =Rη . For each and 0≤ ≤ , we
define to be the set of� ∈ such thatδ � for any δ ∈ supp◦( ), 0 � η

if = 0, and η ≺ 0 otherwise. Then, =
∐

=1

∐
=1 . Recall the -grading on

[x] defined in the proof of Theorem 1.1. We will show that�1( ) = �2( ) for
any -homogeneous element∈ [x] \{0} and�1, �2 ∈ for , . This implies
that in�1( [x] ) = in�2( [x] ) for any �1, �2 ∈ for , , so the number of the
initial algebras of [x] is at most 2 .

By Lemma 2.4 and the definition of -grading, is a ◦ -homogeneous element
of [x]

◦

. Hence, supp( ) is contained in{ � ( )} + for = 1, 2. We set =
supp( )∩ kerλ . Then, � ( ) is in by Proposition 2.3. Moreover,

(4.1) ⊂ ({ � ( )} + ) ∩ kerλ ⊂ { � ( )} + ( = 1 2)

If = 0, then = { � ( )} for each by (4.1). Hence,�1( ) = �2( ). Assume
that = 1. If = 0, then is contained in{ � ( )} + R≥0(−η ) for each by (4.1),
since 0≺ η . This implies that �1( ) = �2( ). Similarly, we get this equality when

= 1. Therefore, the theorem is true if the dimension of supp◦( ) is two.
Now, assume that the dimension of supp◦( ) is one. Then, there existsη ∈ R \

{0} such that =Rη. Let 0 and 1 be the sets of� ∈ such that 0≺ η and
η ≺ 0, respectively. Then, = 0 ⊔ 1. So, it suffices to show that�1( ) = �2( )
for any -homogeneous element ∈ [x] \ {0} and �1, �2 ∈ for = 0, 1.
Similarly to the preceding case, this equality follows fromsupp( )⊂ { � ( )} +
for = 1, 2. We have thus proved Theorem 1.3.

Note that, if the dimension of supp◦( ) is −1, then [x] = in�( [x] ) for any
� ∈ , since [x] is generated by monomials. Thus, together with Theorem 1.3, we
get an upper bound for the number of the initial algebras of [x] in the case where
the dimension of supp◦( ) is at most two.

For any -subalgebra of [x], the cardinality of{in�( ) | � ∈ 0} is finite if
in�( ) is finitely generated for each� ∈ 0 by [11, Lemma 1.7 and Proposition 1.8].
Hence, we can also deduce from Theorem 1.1 that, if the dimension of supp◦( ) is at
most two, then [x] has only finitely many initial algebras for 0.

5. A finitely generated Ga-invariant ring without finite universal SAGBI
bases

We showed in [11, Theorem 2.2] that the invariant subring of apolynomial ring
for certain action of a finite group does not have finitely generated initial algebras for
any � ∈ . However, it seems unknown whether there exists an invariant subring of
a polynomial ring for an action of a connected affine algebraic group which is finitely
generated but has infinitely generated initial algebras. Inthis section, we give an exam-
ple of a locally nilpotent derivation on a polynomial ring which has a finitely gener-
ated kernel with both finitely generated and infinitely generated initial algebras. Since
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the kernel of a locally nilpotent derivation is equal to a -invariant subring, this im-
plies that a finitely generated invariant subring of a polynomial ring for an action of a
connected affine algebraic group can have infinitely generated initial algebras.

Let be a locally nilpotent derivation on [x], and an indeterminate over [x].
We define a -derivatioñ on [x][ ] by ˜ ( ) = ( ) for = 1 . . . and ˜ ( ) =
−1. Then, ˜ is locally nilpotent, and− is a slice of ˜ . Hence, [x][ ] ˜ is generated
by

(5.1) − ( ) =
∞∑

=0
!

( ) ( = 1 . . . )

over by Lemma 3.3. Let�1 be an elimination order on [x][ ] with respect to ,
i.e., a monomial order on [x][ ] such that in�1( ) ∈ [x] implies ∈ [x] for each
∈ [x][ ], and �2 a monomial order on [x][ ] such that in�2( − ( )) = for =

1 . . . . An example of�1 is the lexicographic order on [x][ ] with 1 ≺1 · · · ≺1

≺1 . If the locally nilpotent derivation is triangular, then the lexicographic order
on [x][ ] with ≺2 1 ≺2 · · · ≺2 satisfies in�2( − ( )) = for = 1 . . . , as
mentioned after Corollary 3.4.

Theorem 5.1. Assume that is a locally nilpotent derivation on[x] whose
kernel [x] is not finitely generated over . Then, in�1( [x][ ] ˜ ) is not finitely gen-
erated, while in�2( [x][ ] ˜ ) = [x].

To show Theorem 5.1, we use Vasconcelos’ method [25, Section7.4] of com-
puting a generating set for a -invariant subring of a polynomial ring using SAGBI
bases as follows (see also [23]). Letσ : [x] → [x][ ] be the -action on [x] de-
fined by the locally nilpotent derivation . We set = [σ( 1) . . . σ( )]. Then, we
have [x] = [x] = ∩ [x]. Assume thatS ′ is a SAGBI basis for with respect
to �1. We setS = { ∈ S ′ | in�1( ) ∈ [x]}. Then, since�1 is an elimination order,
S is a SAGBI basis for [x] with respect to�1. In particular,S is a generating set
for [x] .

Now, we prove Theorem 5.1. First, we show that in�1( [x][ ] ˜ ) is not finitely
generated. Sinceσ( ) = − ( ) for each , we have = [x][ ] ˜ . Suppose that
in�1( [x][ ] ˜ ) is finitely generated. Then, has a finite SAGBI basisS ′ for �1.
Hence, the cardinality of the setS of ∈ S ′ such that in�1( ) ∈ [x] is finite.
This contradicts that [x] is not finitely generated, sinceS generates [x] over .
Thus, in�1( [x][ ] ˜ ) is not finitely generated. The equality in�2( [x][ ] ˜ ) = [x] fol-
lows from Corollary 3.4. Therefore, Theorem 5.1 is proved.

Various triangular derivations with infinitely generated kernels have been con-
structed as counterexamples to the fourteenth problem of Hilbert (cf. [1], [6], [10],
[13]). Hence, there actually exists a finitely generated -invariant subring of a poly-
nomial ring which does not have finite universal SAGBI basis by Theorem 5.1.
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6. Construction of the kernel of a derivation

If is a nonzero locally nilpotent derivation on [x], then its kernel is expressed
as

(6.1) [x] = [ ( 1) . . . ( )] ∩ [x]

for some ∈ (x). Actually, for ∈ [x]\ [x] , there exists ≥ 1 such that ( )6= 0
and +1( ) = 0. Since ( ) = 1 for = −1( )/ ( ), we get (6.1) by Lemma 3.3.
However, if is not locally nilpotent, then it is generally hard to describe its kernel.
In this section, we investigate a method for doing this concretely.

Throughout this section, let be a field of an arbitrary characteristic, and� an
element of . Consider the product

∏
∈Z x of one-dimensional -vector spacesx

for ∈ Z . It contains [x x−1] naturally. We define the support of each element of∏
∈Z x as in (1.1), which can be an infinite set. Let〈〈x �〉〉 denote the set of
∈∏ ∈Z x such that supp( ) is reverse well-ordered, i.e., every subset of supp( )

has the maximum for�. For each ∈ 〈〈x �〉〉, we define �( ) and in�( ) as
in the case where is a polynomial. We claim that the -vector space 〈〈x �〉〉 is a
field with multiplication defined by

(6.2)

(
∑

∈Z

µ x

)(
∑

∈Z

ν x

)
=
∑

∈Z

(
∑

+ =

µ ν

)
x

Before proving this, we notice some properties of reverse well-ordered sets.

Lemma 6.1. (i) A subset ofZ is reverse well-ordered if and only if it does not
contain any infinite ascending chain.
(ii) A subset of a reverse well-ordered set is reverse well-ordered. The union of two
reverse well-ordered sets is reverse well-ordered.
(iii) If 1, 2 ⊂ Z are reverse well-ordered, then 1+ 2 is reverse well-ordered. More-
over, the number of( 1 2) ∈ 1 × 2 such that 1 + 2 = is finite for each ∈ Z .
(iv) Assume that is a reverse well-ordered subset ofZ such that ≺ 0 for every
∈ . Then,

⋃∞
=0 is reverse well-ordered. Moreover, the number of ∈ Z≥0 such

that ∈ is finite for each ∈ Z .

Proof. (i) and (ii) are clear. We show (iii) and (iv).
Suppose that 1 + 2 is not reverse well-ordered. Then, there exists an infinite as-

cending chain ( )⊂ 1 + 2 such that = 1 + 2 with ∈ for each , .
Note that ≺ +1 for some ∈ {1 2} for each . Hence, (1 ) or ( 2 ) contains
an infinite ascending chain. This contradicts that1 and 2 are reverse well-ordered.
Thus, 1 + 2 is reverse well-ordered.

Suppose that there exist ∈ Z and an infinite number of (1 2) ∈ 1 × 2

such that 1 + 2 = . Then, we may find an infinite descending chain (1 ) ⊂ 1
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such that 1 + 2 = for some 2 ∈ 2 for each , since 1 is reverse well-ordered.
However, ( 2 ) is an infinite ascending chain of2. This contradicts that 2 is reverse
well-ordered. Therefore, (iii) is proved.

By [21, Theorem 2.5], there exist 1≤ ≤ andω1 . . . ω ∈ R such that �
if and only if ω · < ω · for the last withω · 6= ω · for every , ∈ Z .
Suppose that

⋃∞
=0 is not reverse well-ordered. Then, there exist an integer 1≤ ≤

and an infinite ascending chain ( )∞
=1 ⊂ Z with =

∑
=1 for some ∈ N and

∈ such thatω · = 0 for any < ≤ and 1≤ ≤ for each . Actually,
satisfies this property for any infinite ascending chain of

⋃∞
=0 . Take such and

( ) so that is the minimum among those. Since ≺ 0 andω · = 0 for every
< ≤ , we haveω · ≤ 0 for any , . So, for each , we assume thatω · < 0

for 1 ≤ < and ω · = 0 for ≤ ≤ for some . Since ≺ +1 and
ω · = ω · +1 for every < ≤ , we haveω · ≤ ω · +1 for each . On the
other hand,ω · ≤ − η for each , whereη = min({|ω · | | ∈ Z } \ {0}). Hence,
there exists ∈ N such that ≤ for each . Put ′ =

∑ −1
=1 for each . Then,

( ′) ⊂ ⋃
=0 . By (ii) and (iii),

⋃
=0 is reverse well-ordered. Hence, (′) does

not contain any infinite ascending chain. This implies the existence of a subsequence
( ) of ( ′) with +1 � for every . By replacing ( ) with its subsequence, we
may assume that′+1 � ′ for every . Put ′′ = − ′ for each . Then, (′′) is an
infinite ascending chain ofZ . Moreover, ′′ =

∑
= with ω · = 0 for every

− 1 < ≤ and , . This contradicts the minimality of . Therefore,
⋃∞

=0 is
reverse well-ordered.

Suppose that there exist ∈ Z and ( )∞=1 ⊂ N with < +1 such that =∑
=1 for some ∈ for each . We claim that{ | } is an infinite set.

Suppose the contrary. Then, there existsω ∈ R such thatω · < 0 for any , ,
since ≺ 0. Then,ω · ≤ η′ for each , whereη′ = max{ω · | } < 0. This
is a contradiction, since η′ < ω · for sufficiently large . Thus,{ | } is an
infinite set. By replacing ( ) with its subsequence, we may assume that, for each ,
there exists 1≤ ≤ such that 6= ′ for any ′ < and 1≤ ≤ ′ . Since
is reverse well-ordered, we may assume that ≺ +1 +1 for every by replacing
( ) with its subsequence. Put =− for each . Then, ( ) is an infinite
ascending chain. Since =

∑
6= ∈ ( − 1) , this contradicts that

⋃∞
=0 is

reverse well-ordered. Thus, the number of such that∈ is finite for each ∈ Z .
Therefore, (iv) is proved.

Now, we verify that 〈〈x �〉〉 is a field. By Lemma 6.1 (iii), we see easily that
multiplication (6.2) is well-defined. We show that the inverse element of 6= 0 is
given by

(6.3)
1

=
1

in�( )

∞∑

=0

(
1−

in�( )

)
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Without loss of generality, we may assume that in�( ) = 1. Put = supp(1− ). Then,
is reverse well-ordered, and≺ 0 for every ∈ . By Lemma 6.1 (iv), the number

of such that ∈ is finite for each ∈ Z , and
⋃∞

=0 is reverse well-ordered.
Hence,

∑∞
=0(1− ) is in 〈〈x �〉〉. Note that

(6.4)
∞∑

=0

(1− ) −1 =
∞∑

=

(1− ) +
−1∑

=0

(1− ) −1 =
∞∑

=

(1− ) − (1− )

for any > 0. The support of the right hand side of (6.4) does not containeach
∈ Z for sufficiently large . Hence, (6.4) is zero. Thus,

∑∞
=0(1− ) = 1.

For example, if� is an element of such that � if the last nonzero com-
ponent of − is negative for , ∈ Z , then 〈〈x �〉〉 is equal to the field
(( 1)) · · · (( )) of multi-Laurent series.

Now, let be a -derivation on [x], and δ0 the maximum of supp( ) for�.
Since 〈〈x �〉〉 is transcendental over (x), we may extend to a -derivation on
〈〈x �〉〉 im many ways. We define an extension by

(6.5)

(
∑

∈Z

µ x

)
=
∑

∈Z

µ ( )

Then, similarly to Proposition 2.3,�( ) is in kerλδ0 for any ∈ 〈〈x �〉〉 \ {0}.
Let 〈〈x �〉〉δ0

denote the set of ∈ 〈〈x �〉〉 such that supp( )⊂ kerλδ0 . It is a

subfield of 〈〈x �〉〉. We define a -linear mapφδ0 : 〈〈x �〉〉 → 〈〈x �〉〉δ0
by

(6.6)
∑

∈Z

µ x 7→
∑

∈Z

ν x where ν =

{
µ if λδ( ) = 0
0 otherwise.

Then,φδ0 has the following property.

Proposition 6.2. The -linear map φδ0 is injective. Moreover, in�( ) =
in�(φδ0( )) for each ∈ 〈〈x �〉〉 .

Proof. Suppose that there exists∈ 〈〈x �〉〉 \{0} such thatφδ0( ) = 0. Then,
supp( )∩ kerλδ0 = ∅. This contradicts that�( ) is in kerλδ0 . Hence,φδ0 is injective.
The rest of the assertion follows from the definitions ofφδ0 and in�( ).

We construct the inverse of〈〈x �〉〉 ∋ 7→ φδ0( ) ∈ φδ0( 〈〈x �〉〉 ) con-
cretely. Set = supp( ) and′ = \{δ0}. For eachδ ∈ ′, put ǫδ = δ−δ0, and define
a linear operator δ ∈ End ( [x x−1]) by

(6.7) δ(x ) =
λδ( )

λδ0( + ǫδ)
x +ǫδ
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if λδ0( + ǫδ) 6= 0, and δ(x ) = 0 otherwise for ∈ Z . Set =
∑

δ∈ ′ δ. Then,
defineψδ0 ∈ End ( 〈〈x �〉〉) by

(6.8) ψδ0(x ) =
∞∑

=0

(− ) (x )

for ∈ Z , and ψδ0( ) =
∑

∈Z µ ψδ0(x ) for =
∑

∈Z µ x ∈ 〈〈x �〉〉.
Since supp( (x )) ⊂ ′ + { } for each , we haveψδ0(x ) ∈ 〈〈x �〉〉 by
Lemma 6.1 (iv). Since

⋃∞
=0

′ and supp( ) are reverse well-ordered,ψδ0( ) is in
〈〈x �〉〉 by Lemma 6.1 (iii).

Theorem 6.3. It follows thatψδ0(φδ0( )) = for each ∈ 〈〈x �〉〉 .

To show Theorem 6.3, we need the following lemma. Take any∈ 〈〈x �〉〉 and
∈ Z \ supp( ). For eachδ ∈ supp( ), we put δ = − ǫδ, and set δ to be the

coefficient ofx δ in ψδ0( ).

Lemma 6.4. In the notation above, it follows that

(6.9) δ0x = −
∑

δ∈ ′

δ δ(x δ )

For ∈ kerλδ0 , the coefficient ofx in ψδ0( ) is equal to that in .

Proof. First, we show the last statement. Letβ and β′ be the coefficients ofx
in and ψδ0( ), respectively. Suppose thatβ 6= β′. Then, is in supp( (x )) for
some > 0 and ∈ supp( ). Hence, there existsδ ∈ ′ such that δ(x −ǫδ ) 6= 0. This
contradicts thatλδ0(( − ǫδ) + ǫδ) = λδ0( ) = 0. Thus,β = β′.

Now, we verify (6.9). We may assume =x for some ∈ Z by the following
reason. By Lemma 6.1 (iii), the number of∈ supp( ) such that δ ∈ supp(ψδ0(x ))
is finite for eachδ ∈ . Actually, δ ∈ supp(ψδ0(x )) implies that + = δ

for some ∈ ⋃∞
=0

′. Hence, we may replace by an element of [x x−1], say
=
∑

=1 x . Let δ be the coefficient ofx δ in ψδ0(x ) for eachδ and . Then,

δ0 x = − ∑
δ∈ ′ δ δ(x δ ) by assumption. By adding each side of this equal-

ity for = 1 . . . , we get (6.9).
Let be the set of sequences (δ ) =1 ⊂ ′ such that ∈ Z≥0 and +

∑
=1 ǫδ = ,

and δ the set of (δ ) =1 ∈ such thatδ = δ for eachδ ∈ ′. Then, it follows that

δ0x =
∑

(δ ) =1∈
(− δ ) ◦ · · · ◦ (− δ1)(x )
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and

δx δ =
∑

(δ ) =1∈ δ

(− δ −1) ◦ · · · ◦ (− δ1)(x )

for eachδ ∈ ′. Hence, we have

δ0x =
∑

(δ ) =1∈
(− δ ) ◦ · · · ◦ (− δ1)(x )

= −
∑

δ∈ ′

δ


 ∑

(δ ) =1∈ δ

(− δ −1) ◦ · · · ◦ (− δ1)(x )




= −
∑

δ∈ ′

δ δ(x δ )

Therefore, the lemma is proved.

Proof of Theorem 6.3. Take any ∈ 〈〈x �〉〉 \{0}, and put =ψδ0(φδ0( ))−
. We show that = 0. Suppose that6= 0. We set = �( ) and, for eachδ ∈ ,

put δ = − ǫδ and let δ and ′
δ be the coefficients ofx δ in and ψδ0(φδ0( )),

respectively. Then, δ0 6= ′
δ0

, since is in supp( ). Moreover,λδ0( ) 6= 0. Actually, if
λδ0( ) = 0, then ′

δ0
is equal to the coefficient ofx in φδ0( ) by Lemma 6.4. How-

ever, it is equal to that in . This contradicts thatδ0 6= ′
δ0

. Hence,λδ0( ) 6= 0.
The coefficient ofx +δ0 in ( ) is

∑
δ∈ δλδ( δ) by (2.5) and (6.5). It is equal

to zero, since ( ) = 0. Hence, we get

(6.10) δ0 = −
∑

δ∈ ′

δ
λδ( δ)
λδ0( )

Since supp(φδ0( )) ⊂ kerλδ0, we have 6∈ supp(φδ0( )). Hence,

(6.11) ′
δ0

x = −
∑

δ∈ ′

′
δ δ(x δ ) = −

∑

δ∈ ′

′
δ

λδ( δ)
λδ0( )

x

by Lemma 6.4. We haveδ 6∈ supp( ) for δ ∈ ′, since ≺ δ and = �( ). So,

δ = ′
δ for δ ∈ ′. Thus, we get δ0 = ′

δ0
by (6.10) and (6.11). This is a contradic-

tion. Therefore,ψδ0(φδ0( )) = .

Lemma 6.5. Assume that is in 〈〈x �〉〉δ0
. If λδ0( + ǫδ) 6= 0 for each ∈

supp(ψδ0( )) \ kerλδ and δ ∈ ′, thenψδ0( ) is in 〈〈x �〉〉 .

Proof. Suppose that (ψδ0( )) 6= 0. We put = �( (ψδ0( ))) and, for each
δ ∈ , set δ = −δ and δ to be the coefficient ofx δ in ψδ0( ). Then, the coefficient
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of x in (ψδ0( )) is equal to =
∑

δ∈ δλδ( δ) 6= 0. First, assume thatλδ0( δ0) 6= 0.
Then, δ0 ∈ Z \supp( ), since supp( )⊂ kerλδ0 by assumption. Note thatδ = δ0−ǫδ
for eachδ ∈ ′. Hence, we get

δ0x δ0 = −
∑

δ∈ ′

δ δ(x δ ) = −
∑

δ∈ ′

δ
λδ( δ)
λδ0( δ0)

x δ0

by Lemma 6.4. This contradicts that 6= 0. Now, assume thatλδ0( δ0) = 0. We show
that δλδ( δ) = 0 for eachδ ∈ ′. Suppose that δλδ( δ) 6= 0 for someδ ∈ ′. Then,

δ is in supp(ψδ0( )) \ kerλδ. However,λδ0( δ + ǫδ) = λδ0( δ0) = 0. This contradicts the
assumption. Hence,δλδ( δ) = 0 for δ ∈ ′, and so = 0. This is a contradiction.
Therefore, (ψδ0( )) = 0.

We set [x]δ0
= [{x | ∈ (Z≥0) ∩ kerλδ0}]. Then, there exist a finite number

of elements 1 . . . ∈ (Z≥0) ∩ kerλδ0 such that [x]δ0
= [x 1 . . . x ]. Actually,

the semigroup (Z≥0) ∩ kerλδ0 is finitely generated by Gordan’s lemma [19, Proposi-
tion 1.1.(ii)]. We set

(6.12) C =
∑

δ∈ ′

R≥0ǫδ and F = C ∩ (kerλδ0) ⊗Z R

Note that supp(φδ0( )) is contained inC + supp( ) for each .
For a convex set ⊂ R , a subset ⊂ is called aface of if there exists

ω ∈ R such that

(6.13) ={ ∈ | ω · ≤ ω · for all ∈ }

Theorem 6.6. Assume thatF is a face ofC, and kerλδ0 ⊂ kerλδ for each δ ∈
′ with λδ0(ǫδ) = 0. Then, φδ0 : 〈〈x �〉〉 → 〈〈x �〉〉δ0

is an isomorphism of fields.
In particular, we have

(6.14) [x] = [ψδ0(x 1) . . . ψδ0(x )] ∩ [x]

Proof. It suffices to show that (ψδ0( )) = 0 andψδ0( 1 2) = ψδ0( 1)ψδ0( 2) for
any , 1, 2 ∈ 〈〈x �〉〉δ0

.
Take any ∈ supp(ψδ0( )) and δ ∈ ′ such thatλδ0( + ǫδ) = 0. We show that

λδ( ) = 0. Then, (ψδ0( )) = 0 follows from Lemma 6.5. Note that =′+ for some
′ ∈ supp( ) and ∈ C. Sinceλδ0(

′) = 0, we haveλδ0( +ǫδ) = λδ0( +ǫδ) = 0. On the
other hand, +ǫδ ∈ C, since ,ǫδ ∈ C. Hence, +ǫδ ∈ F . This implies that ,ǫδ ∈ F ,
sinceF is a face ofC. So, we haveλδ0(ǫδ) = 0. Hence,λδ0( ) = λδ0( + ǫδ) = 0 and,
by assumption, kerλδ0 ⊂ kerλδ. Thus,λδ( ) = 0. Therefore, we get (ψδ0( )) = 0.

Now, put =ψδ0( 1 2) − ψδ0( 1)ψδ0( 2), and suppose that 6= 0. Since is in
〈〈x �〉〉 \ {0}, we have �( ) ∈ kerλδ0 as mentioned before Proposition 6.2. We
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note that is expressed as

(ψδ0( 1 2) − 1 2) − (ψδ0( 1) − 1) 2 − 1(ψδ0( 2) − 2) − (ψδ0( 1) − 1)(ψδ0( 2) − 2)

Hence, �( ) is contained in one of

supp(ψδ0( 1 2) − 1 2) 1 + supp( 2) supp( 1) + 2 1 + 2

where = supp(ψδ0( ) − ) for = 1, 2. By the last statement of Lemma 6.4,
supp(ψδ0( 1 2) − 1 2), 1 and 2 do not contain any element of kerλδ0, since
supp( )⊂ kerλδ0 . The same is true for supp( ) + for = 1, 2. Thus,�( ) is
in 1 + 2. Take ∈ for = 1, 2 such that �( ) = 1 + 2. Each is written as

+ for some ∈ supp( ) and ∈ C \ F . Then, it follows that

0 = λδ0( �( )) = λδ0( 1 + 2 + 1 + 2) = λδ0( 1 + 2)

Hence, 1 + 2 is in F . Since 1, 2 ∈ C andF is a face ofC, we get 1, 2 ∈ F . This
is a contradiction. Therefore, = 0.

We remark on the case where is of characteristic zero and is a nonzero lo-
cally nilpotent derivation on [x]. By Lemma 2.5, the -th component ofδ0 is −1 for
some . Then, kerλδ0 is equal to the set of elements ofZ whose -th components
are zero. Hence,〈〈x �〉〉δ0

is equal to the set of elements of〈〈x �〉〉 which do not
involve . Moreover, we have the following.

Lemma 6.7. Assume that is of characteristic zero and is a nonzero locally
nilpotent derivation on [x]. Then, F is a face ofC. Moreover, λδ0(ǫδ) = 0 implies
that kerλδ = kerλδ0 for eachδ ∈ .

Proof. By Lemma 2.5, the -th component ofδ0 is −1 for some . Then, the -th
component ofǫδ is nonnegative for eachδ ∈ . So, for ∈ C, the -th component of

is zero if and only if−e · ≤ −e · for all ∈ C. Hence,F is a face ofC. If
λδ0(ǫδ) = 0 for δ ∈ , then the -th component ofδ is −1. This implies that kerλδ =
kerλδ0 .

By Lemma 6.7, the assumption in Theorem 6.6 is satisfied if is of characteristic zero
and is a nonzero locally nilpotent derivation on [x].
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