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1. Introduction

1.1. Let S be a hyperbolic Riemann surface of analytically finitgey that
is, a hyperbolic Riemann surface obtained by removing distinct points from a
closed Riemann surface of gengg with 2go — 2 + ng > 0. Taken distinct points
P1. P2, -, pa Of S, and setS = §\ {p1, p2, ..., pn}. We consider the group of orien-
tation preserving homeomorphismsof S onto itself which satisfy two conditions
(1) w(pj)=p, foreveryj =1, 2...,n, and
(2) w is isotopic to the identity self-map id of
We factor this group by the normal subgroup of homeomorpsisimS onto itself that
are isotopic to the identity as self-maps $if Denote the factor group by

Isot(S, {p1, p2, ---, pu}), Or Isot(S, n).

1.2. The purpose of this paper is to classify the elements of §sai(in the case
of n =2. Forn =1, it is studied by Kra [10]. Our problem and form tbe solution
are suggested by his beautiful theorem (Theorem 2 of Kra)[10]

Every element ] € Isot(S,n) induces canonically an elemei|;) of the
Teichmiiller modular group Mod). Namely, for the Teichmiiller spac& S)( of
S, (wl|s) is an biholomorphic automorphism df S) given by (w|;)([S. f. R]) =
[S, fow™L, R] for all [S, f, R] € T(S). Since the correspondence Isht¢ > fw] —
(w|5) € Mod(8) is injective, we can classify.]] by a classification for the elements of
Mod(sS).

For our classification, we use the following one due to Beisf¢t the elements
of Mod(S). Let dr(s) be the Teichmuller distance dh S) and set

a(x) = inf dr (T, x(7)).
TET(S)
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Then, elements (# id) of Mod(S) are classified as follows:

(1) x is elliptic if a(x) =0, anda ) = dr (70, x(10)) for somery, i.e., x has a fixed
point 7 in T(S).

(2) x is parabolicif a(x) =0, anda §) < dr¢)(7, x(7)) for all 7.

(3) x is hyperbolicif a(x) > 0, anda ) = dr (70, x(70)) for someo.

(4) x is pseudo-hyperboli¢f a(x) > 0, anda ) < dq (7, x(7)) for all 7.

1.3. In order to characterizeu] € Isot(S,n), we will use the pure braidb[]
induced by {]. Let h,,: S x I — § be an isotopy from id tav, wherel is the unit
interval [0, 1]. We set

M=Sx---x8,
N—_——
n times

P = (p1, p2: -- -, pn), and
A={(x1, x2,...,x,) € M | x; = x; for somej, k withj #k}.

Then we have a closed curdg, = (su.1, Sw.2, - - -» Sw.n) IN M\ A defined by
Sw.j () = ho(pj. ).
It is well-known that the map
Isot(S, n) > [w] — [b.] € m(M \ A, p)

is well-defined and isomorphic (see Theorem 4.2 of Birmanf¢8Jcompact case). The
fundamental groupri(M \ A, p) is called thepure braid groupwith n strings of S .
We call an elementy] k 71(M \ A, p) a pure braid with » strings of S, which is
represented by a closed path s5,62,...,5,): I — M\ A with base pointp. The
mapss; :I — S are calledstrings of ». From this point of view, we will characterize
the type of (w|y) € Mod(S) by using the pure braidb[,] induced from [].

1.4. Now we assume throughout that = 2 unless otherwise stateen Tie
have the following main result.

Main Theorem. Let S be a hyperbolic Riemann surface of analytically finite
type with two specified pointg;, p, € S, and setS = S\ {p1, p2}. Let [w] be a non-
trivial element oflsot(S, 2), which induces an elementv|g) of Mod(S) and a pure
braid [b,] with a representativé,, = (s1, 52).

Then the elementw|;) is not elliptic. Moreover (wly) is classified as follows
(1) (w|s) is parabolic if and only if

(la)each strings; ofb,, is either a trivial a parabolic or a simple hyperbolic

closed curve orf, and
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(1b)the stringssi, s are separableor parallel.
(2) (w|s) is hyperbolic if and only if
(2a)the pure braid[b,] is essential
(2b) the stringssi, s are not paralle] and
(2c) for any puncturep ofS, each strings; is not parallel tg .

The definitions such as essential, separable, parallelneahis statement are given
at the beginning of the next section. A part of the above telsat been announced
without proof in the survey article [9].

Note that in our terminology, Kra’'s result (Theorem 2 of KrE0]) is restated as
follows.

Kra's Theorem. Let S be a hyperbolic Riemann surface of analytically finite
type with one specified poirng;, and setS = S\ {p1}. Let [w] be a non-trivial el-
ement oflsot(S, 1), which induces an elemerit|;) of Mod(S) and a pure braid[b,,]
of one stringb,, = s.

Then the elementw|s) is not elliptic. Moreover (w|;) is classified as follows
(1) (w|s) is parabolic if and only if the strings is either a parabolic @& simple
hyperbolic closed curve of, and
(2) (w|s) is hyperbolic if and only if the string is essential.

In order to deal with the case far > 2, we need to extend the notion that strings
are separable or parallel. This will be pursued further ia filnture.

1.5. This paper is organized as follows. In Section 2 we will giveme defi-
nitions for curves and pure braids on a Riemann surface. e explain a relation
between Bers’ classification and Thurston’s one for elemeiftTeichmuller modular
transformations. We recall distortion theorems of quagizonal maps and several re-
sults on hyperbolic geometry of Riemann surfaces. Thests fa@ used in Section 3
and Section 4. In Section 3, for a givew][€ Isot(S, 2) we construct an isotopy from
id to w in S with certain good properties, which is calledcanonical isotopyof [w].
Using the canonical isotopy, we will give a proof of our mairedérem in Section 4.
We illustrate some examples for the theorem in the final secti

2. Preliminaries

2.1. First of all, let us give some definitions for curves on a hypéc Riemann
surfaceR of analytically finite type. A simple closed cur@e  Bnis said to bead-
missibleunless it is deformed continuously into a point or a puncofréR. A non-
trivial element [C ] of the fundamental group & is callpdrabolicif C is deformed
continuously into a puncture a@ hyperbolicif it is not. A hyperbolic element@ ] is
said to besimpleif C is freely homotopic to a power of a simple closed curve Rn



662 Y. IMAYOSHI, M. 1TO AND H. YAMAMOTO

A hyperbolic element ] is calle@ssentialif any closed curveC’ freely homotopic
to C intersects every admissible simple closed curveRon . Wetlsat a non-trivial
closed curveC ornR igarabolic hyperbolic simple hyperbolic essentialif the ele-
ment [C] of the fundamental group a®@ is parabolic, hyperhoieanple hyperbolic,
essential hyperbolic, respectively.

2.2. Next we will give some definitions for pure braids [ ] of twoisgys onR .
A pure braid p ] of two strings onR is said to bessentialunless there exists a
subdomainD inR satisfying the following three conditions:
(i) the boundary ofD consists of smooth simple closed curves;
(i) the subgroupi.(mi(D, %)) of m1(R, x) has a hyperbolic element, where D:<— R
is the inclusion map;
(i) s1(1)ND =0 ands5(I)N D =0 for some representative;( s;) of [b].
We say that the strings; and s, of a representativeé =4, s,) of the pure braid
[6] are separableif there exist disjoint non-trivial simple closed curves, ..., C, C
R and distinct component®;, D, of the complement® \ (C; U --- U C) such that
s1(I) € Dy ands5(I) C D, for some representative;( s3) of [b].
It is said thats; is parallel to s, if there exists a continuous map I:x I — R
satisfying the following three conditions:
() F(r1,t2) Zs2(n) foranysn €1, 1, € [0, 1),
(i) F(-,0)=s1(), F(-, 1) =s2(), and
(i) FO,)=F(@1,-).
We see that ifs; is parallel tos, thens; is parallel tos; (see Lemma 8). So we may
say thats; ands, are parallel ifs; is parallel tos,. Note that ifs; is parallel tos, for
some representativas( s2), thens] is parallel tos) for all (s1, s3) € [(s1, s2)]-
A string s; of (s1, s2) is parallel to a puncturep ofR if there exists a continuous
map F :I x I — R U {p} satisfying the following three conditions:
() F(t1,12) € R\ {si(t1)} for all (t1,1,) € I x [0, 1), wherek is 1 or 2 withk # j,
(i) F(-,0)=s;(), F(~1)=p, and
(i) FO,)=F(@1,-).
If s; is parallel to a puncturep , then it turns out thgtis parallel top for all repre-
sentative {1, s5) of [(s1, s2)].

2.3. A finite non-empty set of disjoint simple closed curvgSs, ..., Cy} on R
is said to beadmissibleif no C; can be deformed continuously into either a point, a
puncture ofR , or into &C; with # j. We say that an orientation preserving home-
omorphismw: R — R is reducedby {Cy, ..., C} if {C1,...,Ci} is admissible and
if w(Clu---UCk):Clu---UCk.

A self-map w of R is called reducible if it is not isotopic to the identity map
and is isotopic to a reduced map. A self-map Bf is caliedducible if it is not
reducible. This is a classification for self-maps which is introduced by Thurston
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(cf. Thurston [14]). Theorem 4 of Bers [1] says that an elem@r € Mod(R) of
infinite order is hyperbolic if and only ifv is irreducible.

If w: R — R is reduced by{Cy, ..., Cy}, then we denote byRy,..., R, the
components ofR \ (C1 U --- U Cy), and call themparts of R. Each surfaceR; is of
finite type @;, n;) with %; —2+n; > 0, andw permutes the part®; . Let; be the
smallest positive integer so thgt*/ fixes R; . We say thatv is completely reducedy
{C1, ..., C} if f|g, is irreducible for eachj . Lemma 5 of Bers [1] shows that ev-
ery reducible map is isotopic to a completely reduced map. i§ completely reduced,
then the mapsf“i|g, are called the components mapswf A parabolic or pseudo-
hyperbolic elemenfy € Mod(R) can be always induced by a completely reduced map
w. The component maps of induce elements of Teichmuller modular groups of parts
of R, which is called therestrictions of x. The elementy is parabolic if all the re-
strictions are periodic or trivial, and pseudo-hyperbdiiat least one restriction is hy-
perbolic (see Theorem 7 of Bers [1] and its proof).

2.4. Now let us recall distortion theorems of quasiconformal mapet R be a
Riemann surface with hyperbolic metric of constant Gaussiarvature—1. For arbi-
trary pointsx ,y onR and for any curv€ joining and , there existsn&ue
geodesic curveL homotopic rel,y © . Lét L{ ) be the hyperboligienof
Lc on R. For any number € (0, 1), denote byu(r) the modulus of the Grotzsch's
ring domain{z € C | |z] < 1}\[0, r]. It is known thatu(r) satisfies lim_, u(r) = 0
and lim._o u(r) = co (cf. Chapter 1l, 2.2 and 2.3 of Lehto and Virtanen [11]).

Lemma 1 (Chapter II, 3.1 of Lehto and Virtanen [11])Let R, and R» be hyper-
bolic Riemann surfacesand let f: Ry — R, be a quasiconformal map with maximal
dilatation K(f). Then

1 p(tanhiz,(Lc)/2))
K(f) = w(tanhlz,(L s(c))/2))

< K(f)
for any curveC onR;.

Lemma 2 (cf. Teichmuller [13], Gehring [8]). There exists a strictly increasing
real-valued continuous functiop: [1, o) — [0, co) satisfying the following conditions
(1) p(1)=0andlim,_ . p(t) = .

(2) Let R be a hyperbolic Riemann surface of analytically finiteetyandx a point
of R. Then

dr(x. f(x)) < p(K(f))

for any quasiconformal self-map &  which is isotopic to tHenitity.
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Y,

c(c, 2arcsinh{cosh]§ I /R))

Fig. 1. The collar around.

2.5. Finally we will give several facts on hyperbolic geometry afhyperbolic
Riemann surfacek  of analytically finite type.

For anyr > 0 and any non-trivial closed curv@ , denote &, r) the set of all
points p € R such that there exists a closed geodesic 1agp satisfyindoit@ving
three conditions:

(1) L, containsp ,

(2) L, is freely homotopic toC orR , and

(3) Ir(Lpy) <.

Using hyperbolic trigonometry and the collar theorem (ctisBr [4], 2.3.1 and 4.4.6),
we get the following (see Fig. 1).

Lemma 3. Let L be an admissible simple closed geodesic on a hyperbolic
Riemann surfaceR  of analytically finite typand C a closed curve orR . Assume
that C is freely homotopic to the: -fold iterae™  &f for some pwesiintegerm .

Then for any real number satisfying

mig(L) < r < 2arcsinh( (sinhmlRT(L)> (coth@)) ’

the setC(C, r) is conformally equivalent to an annulus.
For any admissible simple closed geodeSic Rn , the set

C (C, 2 arcsinh(cosh@) )

is said to be thecollar around C . By Lemma 3, ifly € )< Z2arcsinhl, the set
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-~
C(C, 2arcsinh 1)

Fig. 2. The cusp around a puncture Bf
C(C, 2arcsinh 1) is conformally equivalent to an annulus.

By the Shimizu-Leutbecher lemma (cf. II.C.5 of Maskit [1,2)e have the follow-
ing assertion (see Fig. 2).

Lemma 4. Let R be a hyperbolic Riemann surface of analytically finitpefty
and C a non-trivial closed curve o which can be continuoustjodned into a
puncture ofR .

Then for any real numberr with0 < r < 2arcsinh 1,the setC(C, r) is confor-
mally equivalent to a once-punctured disk.

For a non-trivial simple closed curv€  which can be contirslpueformed into
a puncturep ofR , the sef(C, 2arcsinhl) is called ausparoundp .

3. Canonical isotopies

3.1. Let [w] be a non-trivial element of Isaf( 2). For any quasiconfolrmmeap
f on S onto another Riemann surface, Teichmiiller's existenak wariqueness theorem
for extremal quasiconformal maps implies that there exéstanique quasiconformal
self-mapw; of f(S) such thatu; is isotopic to fow to f~1 on f(S) and is extremal
on £ (S), i.e.,wy minimizes the dilatation among all quasiconformal selfpsan f ©)
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isotopic to f ow™to f~1 (cf. Gardiner [6], Theorem 2 and Theorem 3, pp. 119-120).

f8) =5 £9)

It is well-known that every quasiconformal map  chis extended to a quasicon-
formal map f on S. Becausev is isotopic to id ons , the automorphismy is iso-
topic to id on 7(S). For simplicity, we denoted, £, £(S)] € T(S) by [f]. Note that
a((wls)) = inf{log K () | [f] € T(5)}.

In order to study the relation betwedti wy) and f ¢.,) = (f 0 sw,1, f ©5u,2), In
the next subsection we will construct an isotapy 7 () x I — F(S) between id and
&7 on f(S) such that
Q) }he pure Qraidf K.)] on £(S) is induced by the homotopy , i.e.f[bf)] =
[(W(F (p). ). A(Fp2), M.

(2) the maph (1): f(S) — f(S) is a quasiconformal map for every , and
(3) the maximal dilatationk, ot -(r) is bounded by a constant depending only on

d = dps([f1. (@l LD):

3.2. LetI >t [f] e T(S) be a geodesic curve connecting [ ] aad|;) ([ f])
with respect to the Teichmiller distance. Denote by the extremal quasiconformal
map of £(S) onto £,(S) isotopic to 7, o 1 on f(S).

S
Al 7
!
F(8) == i(3)

We setv, =w, o f, o f~1|,s, and letg, be the extremal quasiconformal map of
f(S) onto v, (f (5)) isotopic tov, onf §).

[ —— )

fl T'ﬁf Lorcrm

F(8) == v (£(S))
Define a mapH,, : f(S) x I — f(S) by

Hop(z0)=&() (z€ f(S),1 €1
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Then we have the following assertion (cf. Earle and McMullg).

Lemma 5. Let H, s(-,t) (t € I) be a family of quasiconformal self-maps of
F(S) constructed as above. Thet,, ; is an isotopy betweeil and&; on 7(S), and
it is uniquely determined by the isotopy classesfof andup to parameters. More-
over, for eacht € I, the maximal dilatationk; of the quasiconformal m&f, (-, ¢)
satisfies

(3.1) K: < exp(2r ([ 1. (wls) D))
In this paper, we calH,, ; the canonical isotopybetween id ando; on 7(S).

3.3. Let us give a proof of Lemma 5. First we prove that the mdp  is
uniquely determined by the isotopy classesfof ang up to parameters. Lef’ be
an arbitrary quasiconformal map &f onto f (S) isotopic to f, andw’ an arbitrary
self-homeomorphism of  fixing1, p2 such thatw’|y is isotopic tow|;. Then there
exists a geodesic curves t — [f/] € T(S) with respect to the Teichmilller distance
connecting '] = [f] and (w'[s)([f']) = (w|s)([f]) on T(S). We have [f/] = [f]

(tr € I) for a suitable parametrization (see Section 7.4 of Gardamel Lakic [7]).

Fix a numbers € 1. Then there is a conformal map of f,(S) onto f/(S) such
that o is isotopic to f/ o (f,)~* on £.(S). Denote byw’., the extremal quasiconformal
self-map of f §) isotopic to f’ 0w’ "o f'~* on f(8). By Teichmiiller's uniqueness
theorem, we obtain,, = wy. Let w;: F(S) — £/(S) be the extremal quasiconformal
map isotopic tof’ o /' - on J(S). Since

~ ~—1 " _ " ~
wi~ flof ~Gofiof t~Gow on f(S),

5 A~ . . . —~—1 ~ ~_1
we havew; = gow, by Teichmuller's uniqueness theorem. Sgt=w; o fio f" |y,
and Ietg!’ denote the extremal quasiconformal map ff5) onto v;(f(S)) isotopic to
v/ on f(S). Then we obtain

/ =1 &t
g ~w o o flof
—~—1 A A~ » T
~ W Tod oG o fi)o f

—~—1 -~ N p
~w o fiof s~ onf(S)

and Teichmuller's uniqueness theorem yiegAjs= g foranyrel.

By taking fo= f and f1 = f ow™!, we haveH, ;(-,0)=go =id and H, /(-, 1) =
g1=05.

Next we prove inequality (3.1). SinceE> ¢ — [f] € T(S) is the unique geodesic
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curve connecting f ] andw|)([ f1), we have

K(wr) < K(fi o F7%) < explres (L1, wls) D))

for any r € I. Hence the maximal dilatatiok,  df,, ((-, r) satisfies (3.1).

In order to prove thatH,, ;: F(S) x I — f(S) is continuous, we may assume
that f = id by changing of base points of Teichmiller spaces. us recall the fol-
lowing Teichmuller’s theorem: For any hyperbolic Riemasumface R of analytically
finite type, let A»(R); be the set of all holomorphic quadratic differentigissatisfy-
ing |91 = [, l¢(z)|dxdy < 1. For each elemenp of A>(R):, define the Beltrami
differential ;14 on R by

||¢5||1|¢|

for ¢ #0, andug =0 for ¢ = 0. Let f4: R — f»(R) be a quasiconformal map with
Beltrami coefficientu,, which is called the Teichmiller map associated wjthThen
Teichmuller's theorem asserts that the map

Pr: A2(R)1 > ¢ — [fg] € T(R)

is @ homeomorphism (cf. Gardiner [6], Theorem 8, p. 126).

If [w] € Isot(S, 2) is trivial, thenH,, j4(-, ) = id for any ¢t € I. So it is sufficient
to consider the case where][ € Isot(S, 2) is non-trivial. In this case, the quadratic
differential ¢ = ®5~*([w~1]) is not identically zero. For any € I, let f;: S — f,(S)
be the quasiconformal map with Beltrami coefficient

t||¢||1| o
Thenl >t [f] € T(S) is the Teichmiiller geodesic from [id] taol 5 ) ([id]).

In order to prove thatH, 4 iS continuous at fo, tp), we take an arbitrary se-
quence{r;}%; C I converging toro € I, and prove that the sequence of the maps
{H.,ia(, )} 52, converges toH,, ia(-, to) uniformly on every compact subset 6f . The
proof consists of three steps as follows.

STep 1. First we prove thaﬁf,\j converges tof,\0 uniformly on every compact set.
For simplicity, we denotef;, 4, by f;, pu; respectively. Letrs: H — S be a universal
covering For eacly , take a universal covering H — f,(S) and a mapf, H—H
o) thatfj oms = 7o f; and the continuous extension ¢gf to H fixes the points
0, 1, co. We shall use the same symbol for a quasiconformal self-nfapl and its
continuous extension tél. Denote byji; the Beltrami coefficient off;.

Since the sequenc{sp, 2, converges tqug almost everywhere i, the sequence
{f,};?il converges tofo unlformly on every compact subset &f (cf. Gardiner [6],
Lemma 5, p. 21).
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STEP 2. Next we prove that the sequence of the inverse n{a@\js_l};?gl con-

verges tOu’),\o_l uniformly on every compact set. We se} = w;,, for short.

Since the map — [f] € T(S) and the forgetful map off &) onto T (S) are
continuous, the sequendgw;]}5; C T(S) converges toig] € T(S). For anyj , we
sety; = cI>5‘1([w’\j]) € A2(S)1. By Teichmdller's uniqueness theorem,

v
) = llelllm (if ¢; #0)

0 (if v; = 0)

is the Beltrami coefficient ofv;. Sincew; is isotopic tofj on S, we can take a map
w;: H — H so thatwj o g = w; o w; on H andw; = f; on the real axis. Themw;
fixes 0, 1,00. Let v; be the Beltrami coefficient of;. If 1o = 0, then the sequence
of norms {||7;[| } 3, converges to zero. In the case ©f # O, the sequencgr; }72;
converges pointwise tog on H\{z € H | vo(rs(z)) = 0, orms(z) = pek = 1, 2)},
because eaclp; is holomorphic and|yo—1;||1 — 0 asj — oco. Hence, in both cases,
the sequencegr;}22; converges taj almost everywhere iH. It follows that the se-
quence{w; }72; converges towp uniformly on every compact subset éf (cf. Gar-
diner [6], Lemma 5, p. 21).

Let us see the convergence of the seque{n’fg_l %1 If Yo = 0, then the
map wo © is the identity, and the Beltrami coefficient% of the mapsﬁﬁ_l sat-
isfy ||1/~j’-||oo = |I7iloec — 0 asj — oo. In the case ofyyy # 0, we may assume
that ¢); # 0O for eachj . Sincey; is holomorphic, the Beltrami coefficient; of
w; is real analytic onH\{z € H | ¢;(rs(z)) = 0}. Hencew; is real analytic on
H\{z € H | ¥;(7s(z)) = 0}, and the partial derivative8w;, dw; converge uniformly
to dwg, Owp respectively on every compact subsettdf{z € H | vo(ms(z)) = 0}. It
follows that the Beltrami coefficients

ow;(z)
|0w; (2)|

_ 2
0 =50 x (GZE) . =g

of the inverse mapﬁ)j_l converge to the Beltrami coefficient

dwo(z)

2
O =10 x (GO )L c= 5

of wo * pointwise almost everywhere. Thus the sequence of n{afﬁ,s_l};’-il con-
verges towp © uniformly on every compact subset bf in both cases.

STEP 3. Last we verify thatg; = H,, i4(-, #;) converges togo = H., ia(-, o) uni-
formly on every compact subset &f

Each g; is a quasiconformal self-map isotopic to id of , agdly is a
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Teichmuller map satisfying
(85151 =[w; "o fils] € T(3).

By the results of Step 1 and Step 2, the ma’@s‘l o fj S — § converges to
the mapi;a_l o fo uniformly on every compact subset 6f . It follows that the se-
quence{[g;[s]}5; C T(S) converges to g|;]. Hence, by an argument similar to that
in Step 2, we see that the sequer{gg}?<; converges togo uniformly on every com-
pact subset of . O

3.4. Next we see a property of the canonical isotopy. Define a fomct
Ao [0, o0) x (0, o0) — R by

Xo(d, ) =2 arctanh(”—l (%)) ’

where p(r) is the modulus of Grotzsch's ring domair € C | |z] < 1}\[0, r]. The
function Ao is a continuous function which is strictly increasing witbspect to the
first and the second parameters. The functlgnalso satisfies

(3.2) Mo(do, lo) > Ip and 1””01)\0(610, =0

for anydo > 0, Ip > 0. In view of Lemma 5 and a distortion theorem of quasiconfor-
mal maps, we get the following.

Lemma 6. Let [w] be an arbitrary element ofsot(S, 2), and [ f] an arbitrary
point of T(S). Denote byH., s the canonical isotopy betweed andw; on 7(S). Take
a curve L connecting two point, a» on f(S). For eacht € I, let L, be a unique
geodesic curve in the homotopy classHj ((L, t) rel H, (a1,t) and H,, ¢(a2, t).

Then for anyt, ' € 1,

L) (Li) < Aoldres)([A1, (wls)(TAD) Ls) (L))

Proof. Set

do = drs)([f]. (wls) ([ A1),
w = Hw,f(-, t) o {Hw,f(-, l‘/)}_l.

Lemma 1 and (3.1) of Lemma 5 together yield

u(r')
u(r)

< K(w) < exp(4do),
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wherer = tanhl(L,)/2) andr’ = tanh(;(L,/)/2). Hence we havé; g (L,) <
Ao(do, Ly (sy(L1))- H

4. Proof of Main Theorem

4.1. A proof of main theorem will be given in a series of proposigoas fol-
lows.

Proposition 1. For any non-trivial elemenfw] € Isot(S, 2), the elementw|;) €
Mod(S) is not elliptic.

Proof. Since the correspondence I8ot( =2Jw] — (w|;) € Mod(8) is injective,
it is sufficient to show that the group IsSt( 2) is a torsioaefrgroup.

Let [w] be an element of Isaf; 2). Assume that there exists a numper 1
such that @|;)" is isotopic to the identity orf. Since Wls\{py})"™ is isotopic to the
identity on S\ {p1} and the group Isof, {p1}) is isomorphic to the torsion-free group
m1(S, p1), it follows that w|s, ¢,y is isotopic to the identity or§ \ {p1} (cf. Proposi-
tion 1 of Kra [10]). Because Isaf{\{p1}, { p2}) is isomorphic to the torsion-free group
m1(S\ {p1}, p2), the elementd] € Isot(S \ {p1}, {p2}) is trivial, and the mapv|; is
isotopic to the identity or§. Hence Isot§, 2) is torsion-free. U

Remark. From a referee we learned a simple proof of Proposition Xwlf) is
elliptic, it has a fixed point fo] in T(S). Set Sy = fo(S) and So = fo(S). Then the
map fo o w|s o fo *: So — So is isotopic to some conformal self-map: Sy — So.
Since the mapfoo wo fo : So — So is isotopic to the identity, we havé = id and
conclude that|; is isotopic to the identity orS,. This contradicts to the assumption
of Proposition 1.

4.2. Next we state the following topological assertions.

Lemma 7. Let [w] be an element ofsot(S, 2), and [b,] (b, = (s1, s2)) the pure
braid induced byw. If s; is parallel to s, then for anyr > 0 there exists a self-
homeomorphismw of witlw(p2) = p2 such that the elemerjb,,..,.,,-1] Of the pure
braid group of S with base pointw(pi1), p2) has a representativés;, s) satisfying
ds(s1(t), s2(t)) < r for all ¢t € 1.

Proof. Sinces; is parallel tos,, there exists a continuous map I:x 1 — §
such that
() F(t1,t2) #s2(tn) foranyn €1, 1, € [0, 1),
(i) F(-,0)=s1(), F(. 1) =s2(), and
(i) FO,-)=F(@1,").
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Take a numberg € I so that

ds(F(t1, t2), s2(t1)) <r forn €I, t2 € [xo, 1].

Set
p1 = F(O, xo),
s1(t) = F(¢, xo),
§" = S\ {p1, p2}.

Then there exists a homeomorphissh: S — S isotopic to the identity ofS and there
exists an isotopyi, : § x I — § such that
(1) hw (-, 0)=id andh, (-, 1) =w'(-), and
(2) hu(py.t) =s1(t) and by (p2.t) = s2(¢) for all ¢t € 1.
The element [{], s2)] € m(M \ A, (p1. p2)) is the pure braid induced fromu] €
Isot(S, {p}. p2}).

On the other hand, we can construct a homeomorphisn$ —: S isotopic to the
identity on S and the isotopyt,, $ x I — S such that
(1) h,(,0)=id andh,, ¢, 1) =w(), and
(2) hy(p1,t) = F(O, xot) and hy, (p2, 1) = po for all r € 1.
The mapw satisfies pf) = pj. Setw” = wow o w1, We shall show thats(, s2)
is a representative of the pure braid induced fram{][ Isot(S, {p1, p2}). Define an
isotopy A, § x I — S from id to w” by

h(w~(p), 1 31) (os:<§pes)
_ 1 1 2
hon(p,t) = ho(w=(p), 3t — 1) é <t < é, pPeES
1 2
hy(wow™ (p), 3t — 2) égtgl,pES .

We setsy'(t) = ho(py. t) for all # € I. Then [(7, s2)] € m(M\ A, (p]. p2)) is the pure
braid induced fromdJ”] € Isot(S, { p;. p2}). The closed pathl > ¢ — (s1(¢), s2(t)) €

M\ A is homotopic rel p], p») to the closed pathl > ¢ — (s7(¢), s2(t)) € M \ A on

M \ A by the homotopy

(F(0, xo(1 — 3t)), 52()) (o <t< %)
<1

Ix1>(tu)— (F (;:7;1/33,)60(1— ”)) ,Sz(f)> (% <t
(Fxoa —2)5) (1

)
).

(SIS

t

IA
IA
=

u
3
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This yields [6}. 52)] = [(s{. s2)]. O

Lemma 8. Let [w] be an element ofsot(S, 2), and [b,] (b, = (s1, s2)) be the
pure braid induced fromw.
(1) s1 is parallel to s if and only if there exists a simple closed curge  $rsuch
that (1a) C is the boundary curve of a topological open diBk  Sof with p, € D,
and (1b) w(C) is freely homotopic taC  or$.
(2) s; is parallel to a puncturep ofS if and only if there exists a simplosed curve
C on S such that(2a) C is the boundary curve of a topological open disk  $Ht
{pj, p} with p;, p € D, and (2b) w(C) is freely homotopic taC ors.

Proof. We will give a proof of statement (1). We may assume the map
wly: § — S is a Teichmilller map. Then, by the same construction as prgtép 3
of Lemma 5, we find an isotop¥,,: S x I — § from id to w such that
(1) hw(pj,-)=s;() for j =1, 2, and
(2) the maph, (-, 1)|s: § — S\ {s1(t). s2(r)} is a Teichmiller map for every € I.
Note that sinceh, (-, #)|y is a Teichmiller map for every € I, the same argument as
one in the proof of Lemma 5 yields that the m&p< I > (p, 1) — (ho(-, 1)) X(p) € S
is also continuous.

Assume that there exists a simple closed cufve Sosatisfying (1a) and (1b).
Take a simple curver on D such thatn(0) = p1 and «(1) = p2, and setF, (1, t2) =
ho,(oftz), 11) for any 11, 1, € 1. Then F,(t1,0) = h,(p1, t1) = s1(t1) and F (11, 1) =
he(p2, 1) = s2(t2) for any ; € 1. Since« is simple, we obtainF,,(t1, t2) # sa(t1) for
anyn € I andr, € [0, 1).

Becausew(C) is freely homotopic toC onS, there exists a homeomorphism
w: S — S isotopic to the identity ofS and there exists an isotopy S x I — S
such that
(1) hw(,0)=id, hy(, 1) =w(),

(2) hy(p1,t) = p1, hy(p2,t) = p2 for all ¢t € I, and

(3) w(C)=cC.

This follows from Baer-Zieschang theorem (A.3 of Buser [4Ye setF, {1,12) =
hy(w(a(tz)), ) for any t1, tr € 1.

Since the curvesy and F,, (1) = w o w(«) are simple and are contained in the
disk D, we can easily construct a continuous nfap. I x I — S such that
(l) Fa(o’ ) = Fw(l’ ')! Fa(l’ ) = a(')-

(2) F.(t1,0)=p1, Fo(t1,1)=p, for all 4, € I, and
(3) Fu(ta, 1) Z po foranyt €1, 1, €0, 1).
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Finally we define a continuous map I:x I — S by

1
Fiu(3t1, 12) (O Sn<zRE 1)

1 2
F(ty, 1) = Fy(3rn — 1, 1) (§ <n< 3 12€ 1)

2
Fo(8n—2,17) (5 <n<lpe I) .

Setsi(t) = F(¢t,0) andsj(t) = F(z, 1). Then §1, s3) € [(s1, s2)], and s1 is parallel tos}
by F. Thus, we conclude that is parallel tos,.

Conversely, assume thaf is parallel tos,. Setro = min{rinj(S, s2(¢)) | ¢t € I},
where rinj(S, p) is the injectivity radius ofS atp € S. Then, by Lemma 7, we may
assume thatly s{(¢), s2(t)) < ro/3 for all t € I. Let C, C S denote the circle of radius
ro/2 centered at»(t). ThenC =Cy = C; is a simple closed curve of satisfying (1a),
andw(C) is freely homotopic toC ors by the homotopyl > t — wo(h (-, 1)) XC)).
We have proved statement (1).

Statement (2) is proved similarly. ]

4.3. As an immediate consequence of Lemma 8, we obtain the faipyiropo-
sition.

Proposition 2. For a non-trivial elementw] € Isot(S, 2), the assumption that
(wli) is hyperbolic as an element dlod(S) implies conditiong(2a), (2b)and (2c) of
Main Theorem

Proof. By Proposition 1, the elemerib|;) is not elliptic. If condition (2a) of
Main Theorem does not hold, then there exists an admissibiples closed curveC
on S which does not interseat, ands, for some representativey( so) of [b.]. Since
w(C) is freely homotopic toC onS, the mapw|; is reducible. If condition (2b) or
(2c) of Main Theorem does not hold, then by Lemma 8, the m@pis reducible.
Hence, by Theorem 7 of Bers [1], the elemént) is not hyperbolic. O

4.4. Let [w] be an element of Isa§( 2), andf[ ] an arbitrary point BfS).(De-
note byw, the extremal quasiconformal self-map $£S) (sotopic to fow Lo 1 on
f(S). Let H, ;: f(S) x I — f(S) be the canonical isotopy between id a@g. For
any j =1, 2, we set

sI@) = Hoy(F(p)) ) € J(S), 1€l

Then 6/, s3) € m(M;\ Ay, py) is a pure braid induced fromd}] € Isot(f(S),
{f(p1), f(p2)}), where My = f(S) x f(S), Ay = {(x1,x2) € My | x1 = x2} and
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Pr= (F(p1). F(p2)).
The following lemma is an essential tool for proving the cense of Proposi-
tion 2.

Lemma 9. There exists a strictly decreasing continuous function
A1: [0, o0) — (O, arcsinh 1]

which has the following propertiesLet [w] be an arbitrary non-trivial element of
Iso_t(S, 2) satisfying (2a) and (2c) of Main Theorem,and [ f] an arbitrary element of
T(S). Then

(4.1) l3s)(L) > Aaldo),  do = dry([ ], (wls)([f1)

for any non-trivial closed geodesic loap  of(S) with base pointp € s/ (I) Us (1).

Proof. For anyd > 0, we set
(4.2) A1(d) = sup{l > 0| arcsinh 1> \o(d, Mo(d, I))}.

Then by (3.2), we have\1(dp) < sup{l > 0| arcsinh 1> \o(do, [)} < arcsinh 1. LetL
be an arbitrary non-trivial closed geodesic loop with basipp € s{ (1) UsJ (1) on
f(9).

If [L] € m(f(S), p) is hyperbolic but not simple hyperbolic, then (L) >
4 arcsinh 1> \1(dp) by Lemma 7 of Yamada [15].

In the case wherel] E m1(f(S), p) is parabolic or simple hyperbolic, we will
obtain (4.1) by contradiction. Assume that

(4.3) I3(5)(L) < Aa(do).

It is sufficient to consider the case pfe s/ (I). Take a pointty € I with s/ (11) = p,
and set

Lo= Hw,f(-, t]_)_l(L).

Then Lo is a closed curve orf(S) with base pointf(p1), and is freely homotopic to
L on f(S).

For anyt € I, let L(t) be a closed geodesic loop with base poﬂz) on f(S)
homotopic toH,, (Lo, t) rel the base point. By Lemma 6, we have

(4.4) sy (L(1)) < Ao(do, ly(5y(L)), €1
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Thus, by (4.2), (4.3) and (4.4), we obtain

(4.5) I3 (L)) < 2arcsinhl 1€l
This yields
(4.6) s/(r) e C(L, 2arcsinh 1) F(S), el

If [L] is a simple hyperbolic element of1(f(S), p), then Lemma 3 implies that the
set C(L, 2arcsinh 1) is conformally equivalent to an annulus. On ttleer hand, if
[L] is a parabolic element ofri(7(S), p), then Lemma 4 asserts that the domain
C(L, 2arcsinh1) is conformally equivalent to a punctured dTE:kus,s{(I) is included

in a collar or a cusp off ().

Next, we consider the stringj. For anys € I, let M' be the set of all closed
geodesic loops orf(S) with base points{(t), and M’ an element oM’ which min-
imizes the hyperbolic length offi(S) among all elements aM'. By (4.6) and condi-
tions (2a), (2c) of Main Theorem, there exist a paint I satisfying

4.7) max{l;.5)(L(1)) | 1 € I} > I35 (M").

Indeed, suppose that there is no such.aSet

+
ro = Min {2 arcsinh 110 zmo} ,

wherelo = max{l;(L(1)) | t € I} andmo = min{l;(M") | t € I}. If [L] is a simple
hyperbolic element ofr1(f(S), p), then the selC(L, ro) is conformally equivalent to
an annulus. A boundary compone@t ©fL, ro) is an admissible closed curve on
7(8) satisfying C N (s{ (I) U sJ(I)) = 0. Thus condition (2a) of Main Theorem does
not hold. On the other hand, ifL.[ ] is a parabolic elementref7(S), p), then the set
C(L, ro) is conformally equivalent to a once-punctured disk. ket the boundary
curve of C(L, ro). ThenC N (s/(I) U s4(I)) = 0 andw,(C) is freely homotopic toC
on f(S). It follows from Lemma 8 that the string; of b, is parallel to a puncture
of §, and condition (2c) of Main Theorem does not hold. Hencepoth cases, we
obtain a contradiction to an assumption of Lemma 9.

Set Mo = H,, f(- 1)~} (M™). Then My is a closed curve orf(S) with base point
F(p2). For anyt € I, let M(t) be a closed geodesic loop with base p@ﬁﬂz) homo-
topic to H,, (Mo, t) on F(S) rel the base point. By Lemma 6, we halgs, (M(1)) <
Ao(do, [3(5)(M™)) for any ¢t € I. Thus, (4.3), (4.4) and (4.7) together yield

L35 (M (1)) < Xo(do, max{lys)(L(t) | 1 € I})
< Ao(do, Mo(do, l](s)(L)))
< 2arcsinhl tel.
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This gives
(4.8) s§(r) e C(L,2arcsinh1) 1€ I.

By (4.6) and (4.8), we get the contradiction to condition)(2é Main Theorem.
U

4.5. Now, we state the converse of Proposition 2.

Proposition 3. If a non-trivial elementfw] € Isot(S, 2) satisfies conditiong2a),
(2b) and (2c) of Main Theoremthen (w|;) is hyperbolic as an element dod(S).

Proof. By Proposition 1, it is sufficient to find an elemegte T(S) such that
a({(wls)) = dre) (10, (wls)(70)). This is done as follows.
By definition, there exists a s:equen{:[sfj]}j‘?g1 in T(S) satisfying

a((wlz)) = j[moo dr(Lfil. (wls) D) -
We set
(4.9) do = max{drc)(Lfi], (wls)(MHD) 17 =1 2.}

Let w; = wy, be the extremal quasiconformal self-map ff S) {sotopic tofj ow o

~—1
fi ly@- Then we havek «;) = exply)(Lfil, (wls)([f])))- Denote by H, y, the
canonical isotopy from id ta;.

We claim the following:

CLaim. There exists a positive number dpf depending only only such that
for any j and any admissible simple closed geoddsic fpni‘). (

The claim yields Proposition 3 as follows (cf. Theorem 4 ofr8§l] and Theo-
rem 2 of Kra [10]): By the assertion of the claim and Lemma 4 ef$8[1], selecting
if need be a subsequence froff; }72,, we can take a sequengé; }; C Mod(S) so
that 7; = 6;([ f;]) converges to a point., of T(S). Set

Xj =0 o (wlz) 06;7* € Mod(S).
Then by (4.9), we have

dr(s)(Toos X (7)) < drisy(Toos i) + drs) (15 Xi(75))
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= dT('S)(TOO, )
+dr5)(0;([f]). 0 o (ws)(LfiD)
= dT(S)(Too’ ;) + dT(S)([fj (wls) (D)

dT(S)(TOO’ Tj) + d().

IN

Therefore, we may assume by taking a subsequence if negetbsdrthe sequence
x;(7;) converges to a point/, of T(S). This follows from the fact that ) is of fi-
nite dimensional and is complete with respect to the Teidlendistanced . Hence,
the triangle inequality asserts thi;(7-)}52; converges tar,. Selecting if need be a
subsequence, we can find an elemgnof Mod(S) and a numberjp such thaty = x;
for all j > jo, because ModY) acts properly discontinuously ofi S This yields

a({wly)) “m dT(S)([fj (wls)(AHD)
j“j; dr O (Lf3D). 05 o (wls)(LFD)

,“_(20 drsy (i, x(75))

= dT(S) (Toos X(750))-

Since x = x; =0, o (w|5) 0§, " for all j > jo, we havea (w|g)) = dr(s)(70, (W]5)(70))
for 70 = 0,41~ (750). By Proposition 1,(w|;) is hyperbolic.
To complete the proof of Proposition 3, we need to prove tlaéntl Set

A(do) = min{A1(do), \2(do)},

where \; is the function defined in Lemma 9 and(dp) = sup{l > 0 | \i(do)/3 >
Ao(do, 1)} .

For anyj, letL; be an admissible simple closed geodesicfo8) which min-
imizes the hyperbolic length among all admissible simplesetl geodesics off; SY.
We will prove [, (L ;) > A(do).

First we consider the case whete  is also admissible as adctsee onfj(S).
By condition (2a) of Main Theorem, we can take a pgine Ljﬁ(s{f(I)Us{f(I)). De-
note by L a closed geodesic loop with base pgint homotopif jto | pren £(S).
Then Lemma 9 gives

(4.11) A(do) < Mldo) <1, 5)(L) < 15, 5)(Lj) < Ly5)(L)).

Next we consider the case whekg  is not admissible as a clased onfj(S).
In this case, we can take a domath C fj(S) which is bounded byL; and is topo-
logically a disk or a once-punctured disk. Sinte is admissiés a closed curve on
fj(S), the domainD satisfies one of the following conditions.
(2) D is topologically a once-punctured disk abdN {fj(pl), fj(pz)} Z 0.
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a puncture off;(S)

C(L;, 2 arcsinh 1)
Fig. 3. A figure of case (a).

(b) D is topologically a disk including f;(p1). f;(p2)}-
First, let us consider case (a). Without loss of generality,may assume thaf;(p1) €
D. Suppose that

Ly, (Lj) < A(do).

Then we havelz (L)) < I;5(L;) < Mi(do) < arcsinh1. ThusL; s included in a
cuspC(L;, 2arcsinh 1) offj(S). Take a simple closed geodesic lodp @(S) with

base pointfj(pl) such thatL is included i€(L;, 2arcsinh 1) and is freely homotopic
to L; onC(L;, 2arcsinh1) (see Fig. 3). We obtain
l5.5)(L) < 15 5(L ) <lp5)(L;) < Aldo).
This contradicts Lemma 9, and we conclude that
(4.12) L1,5)(Lj) > Aa(do) = A(do).
Next we consider case (b) (see Fig. 4). Assume that
(4.13) Ly, (L ) < A2(do).

Sinced;, )(Fi(po). Fi(p2)) < 175 (L) < Ly(L;), the assumption (4.13) yields

d55)(Fi(p1); Fi(p2)) < No(do).
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Fi(p1)

Fig. 4. A figure of case (b).

Thus, by Lemma 6, we obtain
fi fi 1
(4.14) dj 581 (1), 52" () < Ao(do, A2(do)) < é)\l(do)

for all + € 1. On the other hand, by Lemma 9, we have {mi.n](fj(S),s{f(t)) |t €

I} > M\i(do)/2. Let C, C fj(S) be the circle of radius\i(dp)/2 centered atv{f(t).

By (4.14), the circleC, bounds a disk gf(S) including {s{’ (1), s{/(+)} for eacht e

I. SetC =Co = C1. Thenw;(C) is freely homotopic toC onf; ) by the homotopy

I >5t— wjo Hw,fj(-,t)‘l(c,). HenceC satisfies (1la) and (1b) of Lemma 8. This
contradicts condition (2b) of Main Theorem, and we concltfuk

(4.15) Ly (L) > Na(do) > A(do).

From inequalities (4.11), (4.12) and (4.1_5), we have inéuéd.10) for all j and
all admissible simple closed geodedic ~ ¢nsS).(The claim is now proved. U

4.6. By the following two propositions, we obtain statement (¥)Main The-
orem, which is necessary and sufficient condition for thesBipe of (w|;) to be
parabolic.

Proposition 4. Let [w] be a non-trivial element afot(S, 2) If (w[;) is parabolic
as an element ofMod(S), then conditiong1a) and (1b) of Main Theorem hold.

Proof. For any [ ]e T(S), we denote the canonical isotopy between id and
by H, s, wherew; is the extremal quasiconformal self-map $£8) (isotopic to f o
wlo f_l|f('5). A A

SetD; ={p € f(5) | djs(p, f(p;)) < arcsinh(¥2)}. If D;is not a disk, then by
the collar theorem (4.4.6 of Buser [4]) and hyperbolic trigmetry, it is included in
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a puncture off ()

C (collar)

Fig. 5. Case thaC s a trivial loop of.

a collar with central closed geodesic of length2 arcsinh 1 or in a cusp of (S). On
the other hand, sincév|y) is parabolic, Lemma 2 and Lemma 5 together assert that
there is a point f ] ofT’ §) such thatsjf [ ) D; for j =1, 2. Thus condition (1a) of
Main Theorem holds.

First we consider the case whef¥, is a disk of £(S) for some j, € {1, 2}. We
may assume thaj, = 1. In this case, the closed cur\xé is trivial in 7(S) and so
w|s\{py} is isotopic to the identity orf \ { p1}. Thus, we can take an isotogy,: S x
I — S such thath/,(-,0) = id, /,(-, 1) = w, and k/,(p1,t) = py for any ¢ € I. Set
si(t) = hi,(p;,t) and b}, = (s1, s5). Then p;] is a pure braid induced fronw. Since
(wlg) is parabolic, Theorem 2 of Kra [10] implies that the closedveuw, is either a
parabolic or a simple hyperbolic element of(S \ {p1}, p2). Hence, we conclude by
Lemma 8 that the strings; and s, are parallel or separable.

Next, we consider the case where there exists a dofan F(S) such that
(1) C; is either a collar with the central closed geodesic of lengt2 arcsinh1 or a
cusp of £(S), and
(2) D;CC;
foreachj =1, 2.

If C1 # Ca, then by the collar theorem, we hade N C, = () and conclude that;
and s, are separable.

In the case ofC; = Cp, we setC = C1 = C,. There exists an orientation pre-
serving self-homeomorphism’; of £(S) such thatw’s is isotopic tow, on £(S) and
is the identity onf §) \ C. Slnce (w]5) € Mod(S) |s parabolic, the restricted map
wf|C\{f(p1) Fpa)) is reducible. Thus there exists an admissible simple clasese C
of C\ {f(p1). f(p2)} such thatw’,(C) is freely homotopic toC o\ { F(p1), F(p2)}-

If Cis a trivial loop onC, then by Lemma 8, the strings and s, are parallel
(see Fig. 5).

If Cis a non-trivial loop onC, thenC \ C consists of two componentd;  with
f(p;) € A; (j = 1, 2), and eachd; is conformally equivalent to an annulus or a
once-punctured disk (see Fig. 6). By Baer-Zieschang tmedre.3 of Buser [4]), we
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a puncture off ()

C (collar) C (cusp)

Frp)

Fig. 6. Case thaC is a non-trivial loop @h

may assume that’(p) = p for any p € C.

Assume thatd; is conformally equivalent to an annulus for eachl, 2. Then,
by Proposition A.13 of Buser [4], eacda}|A—j is isotopic to them; -th power of the
Dehn twist with an isotopy fixing)A; pointwise. Sincew’: F(S) — F(S) is isotopic
to the identity of £(S), we obtainm; = —m,. Consequently, we can construct an iso-
topy .t F(S) x I — f(S) such that
(1) hw/f(-, 0) =id,

(2) ho (., 1) =w', and
3) hw/f(C, t)=C for anyt € I.
Hence we conclude that the stringsand s, are separable.

In the case wherel; is conformally equivalent to a once-puedtalisk for some
Jj =1 or 2, we obtain similarly that the strings ands, are separable. U

4.7. Finally, we prove the converse of Proposition 4.

Proposition 5. If a non-trivial element[w] € Isot(S, 2) satisfies conditiongla)
and (1b) of Main Theorem then (wl|y) is parabolic as an element dfod(S).

Proof. Let p,] be the pure braid induced fromw]. Assume thatb, = (s1, s2)
satisfies conditions (1a) and (1b) of Main Theorem.

If 51 ands, are separable, then we can find a representatiiesy) € [b,] and a
system{Cy, ..., Cy,} of disjoint non-trivial simple closed curves df such thatréh
exist two component®; and D, of S\ (C1 U --- U Cy,) satisfyingsj(I) ¢ D1 and
s5(I) C Dp. We can take a subsgCy, ..., Cy } (k1 < ko) of {C, ..., Cy,} such that
(1) {C1. ..., Cy} is an admissible curve system 6f i.e., eachC; is an admissible
simple closed curve of and noC; is freely homotopic to a curv€’; (j # k) on S,
and
(2) there exist two componen®; and D; of S\ (CjU---UCy) satisfyingsi(I) C D]
and s5(I) C D5.
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We may assume thab|y, . p;) = id. For eachj =1, 2, the domaiP; has a finite
topological type ¢;,n; ) satisfying eitherg2 —2+n; >0 or (g;,n;) =(Q 2). LetDY
be a Riemann surface of analytically finite typg.,(z; ), angd a humm@rphism of
Dj onto D}/. Setw; = w; o w|D; ow; L If (g;,n)) = (0,2), thenwj|D;/\{wj(pj)} is
a sense preserving homeomorphism isotopic to the identityd® \ {w;(p;)}. If the
topological type §;,n; ) ofD’; satisfies 2; —2+n; > 0, then by condition (1a) and
Theorem 2 of Kra [10], the eIemer(tuj|D;/\{wj(,,j)}> € Mod(D} \ {w;(p;)}) is the
identity or parabolic. Hence we conclude that|;) is parabolic.

Next, we consider the case where the strisggnd s, are parallel. Deforming, if
necessary, the closed pabh = (s1, s2) and its base point i/ \ A continuously, we
may assume, by condition (1a) of Main Theorem, that therst®a domairnC of §
such that
(1) C is either a collar, a cusp, or topologically a disk $f , and
(2) s2(1) CC.

There exists a numbery > 0 such that, for each € I, the setC, o) = {p € S |
ds(s2(t), p) = ro} is a circle centered af (1) with C,(ro) C C. SetC = Co(rg) =
Ci(ro). By Lemma 7, we may assume thd§ s1(¢), s2(1)) < ro/2 for all t+ € I, and
then conclude that(C) is freely homotopic toC orS. Hence (w|;) is parabolic as
an element of Mod). O

Now Proposition 1 through 5 together yield our Main Theorem.

5. Examples of Main Theorem

Let us illustrate a few examples of Main Theorem. Set C=x {0, 1, 2}, where
C is the complex plane. TheS is a Riemann surface of type (0 d).[L] be an
element of Isotf, 2) which induces a pure braig,] = [(s1, s2)], wheres; ands; are
strings ofb,,.

First consider a pure braidb[] in (a) of Fig. 7. Then §,] satisfies condi-
tions (2a), (2b) and (2c) of Main Theorem, $0|;) is hyperbolic.

If [b.] is illustrated in (b), then it satisfies conditions (2b) afat). On the other
hand, there exists an admissible simple closed c&tve Son thathC does not
intersect the images ofi ands,. Thus the pure braidb[] is not essential, andw|s)
is not hyperbolic. Actually(w|s) is pseudo-hyperbolic, because condition (1a) is not
satisfied.

Fig. (c) shows an example ob]] satisfying condition (2a), but does not satisfy
condition (2c). Hencdw|s) is not hyperbolic, in fact it is pseudo-hyperbolic, because
condition (1a) is not satisfied.

Fig. (d) illustrates an example ofp]] which satisfies neither condition (2a)
nor (2c). Therefore(w|y) is not hyperbolic. On the other hand, it satisfies condi-
tions (1a) and (1b). Hence it is parabolic.
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() (d)

Fig. 7. The pure braids,, induced fromw.
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