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Introduction

The theory of ind-affine varieties was first introduced by f8hevich, who then
employed it to elucidate the structure of the automorphisoug of the affine space.
(see [3], [4].) More recently we made certain revisions oa theory and applied it
to study the Jacobian Problem on the endomorphisms of theplegnaffine space.
(see [2].)

Since these pieces of work appeared, there has not been nmaghegs made.
This state may be due, in part, to the fact that the basic yhebthese ind-affine or
pro-affine objects as presented by us was atillhocand was rather rudimentary. So,
we have embarked on building a theory of pro-affine algebras ind-affine schemes
anew and from the ground up. The outcome of our effort is thaesds of the present
paper. As we worked on the material we encountered a numbeulaife examples,
as shown in the main text below. It would seem that these eleperhaps suggest
richness and mystery that this theory holds.

We mention a piece of specific result we have of our theory: 3&ieof all mor-
phisms of an affine variety over a field to another may be idientiwith the
K-rational point set of an appropriately constructed infihef scheme overX . This
was proven using the theory of Grobner bases &er , and isceeg to be published
in the near future along with certain related results abedraorphisms of the affine
space.

1. Pro-affine algebras

1.1. Definitions and Notations. Throughout we work over a ground field  of
any characteristic. A commutative topologickl -algeb¥ra said to be apro-affine
algebraif
1. A is completeand separated
2. A base of open neighborhoods of 0 is given by a familycofintably manydeals
C A.

Let {a; : i € N} be a countable base referred to just above. Here, as elsewher
throughout the present papéf,represents the set of alonnegativentegers. We may,
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and shall always, assume that D a; wheneveri < j. The condition 1 then implies
that

(1) (ai={0} and A~ lim jex (A7),
ieN

where, for each € N, A; := A/q; is a discrete K-algebra, with all maps:;: A; —
A;_1 being surjective Conversely, aK -algebra given as the limit otauntable, sur-
jective inverse system ofliscrete K -algebras in the form of (1) is evidently pro-affine
in our sense.

One recognizes then that a pro-affike -algebra as above isdame thing as
a “filtered commutativeKk -algebra which is complete and smpdi in the sense of
Northcott [5, Chap. 9].

Proposition 1.1.1. Let A andB be pro-affine algebras. Thethe productA x B
A
and the complete tensor produdt®x B are both pro-affineK -algebras.

Proof seems hardly necessary.{i; : i € N} and {b; : j € N} are bases of open
neighborhoods of 0 fod an@ , respectively, then one adoptsAfx B the ideals

{ax x by : k € N} as a base of open neighborhoods of 0. As Abl%K B, take the
ideals{ay ® B+ A ® by : k € N} as a base of open neighborhoods ok B, and
then take its completion. U

A pro-affine algebrad is said to balgebraic overK, or K -algebraig if A can
be represented as in (1) whes# A/q; arefinitely generated ovek.

Let A, B be pro-affineK -algebras. Mmorphism of A to B is defined to be a
continuouskK-algebra mapp: A — B. Suppose that an@ are representeddas =
lim._(A/a;), B =lim_(B/b;), respectively. Then, the morphish: A — B gives rise
to a commutative diagram

) | [

Ala; - B/b;

standing valid for each givej € N and for some corresponding &j (9 N for
which ¢(a;) € b;. Here, 7 and wf denote the canonical residue-class maps, and

i

Gji(x +a;) =4 o(x)+b; for all x € A.
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NotaTions.  Let us fix some notations we shall be using throughout thgepa

(@ Let A =Ilim_(A;) be a pro-affine algebra, where we have gut A#A; as be-
fore. The canonical surjective maps— A; and A; — A; for i < j shall be denoted
as follows:

(3) it A— A ,U,,'j:Aj—>A,',

with Ker(m;) = a;, and u;; = 1ds,. We abbreviatgu; —1; as ;.

(b) As a rule, for anysubsetE C A or any elementa € A, we denoter;(E) by
;E and 7;(a) by ;a. (A notable exception isr;(A) = A/a; which we denote byA;
and not by ;A.) When no fear of confusion is present, we often skip tte daffix
and simply writea for;a , so that =-(- «— ;_1a <« ;a «— ---) is expressed as
(+-—a—a—--). Asequencer = (--- «— s;_1 5 «— ---) with s; € A; for all

Jj € N represents an element df and thus A if and only if u;(s;) = s;—1 for all
J» in which case we shall say is coherent

In the notations above, it is then clear that tlesure E of E may be identified
with lim_(;E). Thus, E C A is closedif and only if every coherent sequenee=
(---« e < ---) belongs toE as soon as &l € ;E for i € N.

Proposition 1.1.2. The group of unitd/(A) of a pro-affine algebrad is closed.

Proof. Letu =(-- «— u;—1 < u; < ---) € U(A). For eachi there is a unique
v € A; with u; -v; =1,,. Then,v = (- < v;_1 < v; «< ---) is clearly coherent and
satisfiesu - v =1 so thatu € U(A). O

ExampLe 1.1-A (cf. [2, (1.1), p. 482]). For eaclh ¢ N, let Kl =
K[X1,...,X,] if n > 0, and KO := K. Define u,: K" — K1 py setting
(X)) =X; foral 1<i<n-1, andp,(X,) := 0. Denote

K= lim (k)

and call itthe pro-affine polynomial algebréover K). This algebra may be character-
ized as the set of those formal power-seriesXon. .., X, ... which become poly-
nomials when reducethodulo all but finitely many; ’s.

1.2. The ideals in a pro-affine algebra.
Proposition 1.2.1. Let h be a closed ideal iMA =lim._(A;). Then

A/b = lim(A;)/ lim(:h) = lim(A;/:b).
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[This implies thatA/h is a pro-affine algebra for any closed ideg]
Proof. Sincep is closed,h ~ lim._(;h) and all maps;h — ;_1h are surjective.
So, in the diagram

0 i A; Ai/ih —— 0
| | |
0 i—1b A1 Ai1/icth —— O

all vertical maps are surjective. One now applies the funiito. to this diagram,
remembering the Mittag-Leffler condition which holds here. O

ExampLE 1.2-B. In the same notations as in Ex. 1.1-A, define an idgat K
by J, :=(X;X; | 1 <i < j <n), so geometrically the locus of, is the union of all
coordinate axes in the affine -spa&é over K. LetB, =K /J, = K[x1, ..., x,].
Consider the exact sequence

0—J, — K" _—B,—0

and take the lim. of this sequence on ait € N. Since, for alln ,u,: K" — K[—1
causes asurjection of J, to J, i, there results a surjectivd -makl>~l — B =
lim._ B,, and its kernel/ :=lim_J, gives an example of alosed idealin K[>, [In
the subsequenB  will be viewed as the coordinate alg€l(id) of the closed sub-
schemeY of all coordinate axes in the ind-affine space.]

ExavpLE 1.2-C. In Example 1.2-B replace eadh By := (X1--- X,), whose
locus in A" is then the union of all coordinate hyperplanesAifi Since the surjections
s KM — K11 all causezero maps ofJ! into J!_,, the Mittag-Leffler condtion is
trivially satisfied, andJ’ := lim_, J, = {0} (which is a closed ideal ink[>I). It
follows that K[>l ~ lim_ (K" /J!). [So, the union of all coordinate hyperplanes in
A", asn — oo, is isomorphic to the whole ind-affine spaée®.]

Proposition 1.2.2. For any maximal ideam C A, the following conditions are
equivalent to one another
(i) mis closed
(i) For somei, m(m)=;m & A;;
(iii) For somei, a; C m;
(iv) For somei, m = 7; }(some maximal ideal im;);
(v) mis open.

Proof. ()= (i) : If ;m = A, forall i, then (1« -+ — 1« -.-)Em=m, SO
thatm = A.
(i) = (iii) : Let ;m C A; for a particulari . Then;m must be a maximal ideal in
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A;, andwi_l(;m) “m+aq;=m, S0q; Cm.
The implications (iii)=- (iv) = (v) = (i) are obvious. O

The same argument as used in=§)(ii) above shows the following:

Corollary 1.2.3. Every closed proper ideal in a pro-affine algebvd is con-
tained in a closed maximal ideal.

Proposition 1.2.4. For any prime idealp < A, the following conditions are
equivalent to one another
1. pis open
2. For somei, p =7, *(;p);
3. For some; and a prime ideal; C A;, p =7;'(q;).

The proof of this obvious proposition is omitted.

Note that, in view of the two preceding propositions, thgen prime(resp.open
maxima) ideals of a pro-affine algebra are precisely the inverseg@aaf theprime
(resp.maxima) ideals of theA; 's for anyi € N.

Proposition 1.2.5. Let a be a finitely generated proper ideal in a pro-affine al-
gebra A . Thenthere exists an open maximal ideal such thata C a C m.

We first prove the following key lemma due to N. Mohan Kumar:

Lemma 1.2.6 (N. Mohan Kumar). Let a = (x1,...,x,) be a finitely-generated
ideal, and leta be its closure. For any € A, if z € @ thenz? € a.

Proof. The proof goes by induction on the number of genesatorFirst, take

anyx € A and letz € (x) =lim_(4; - ;x). Write
z=(apx «—a1x — - «—ajx —---),a; € A; forall jeN,
where the coherence condition

(4) pi(aix) —ai—1x = pia; - ix) —ai—1-i-1x = (ui(a;) —ai—1) - i—1x =0
is satisfied. Theny " (a2x «— a2x « --- — a?x — ---) is coherent, as one sees
from (4) that
pilal - ix) —af 1+ x = (@) —af 1), ,x
= (wi(ai) + ai—1)(pi(ai) — ai-1),_,x =0.

Son € A. It follows that z2 = xn € (x) C A.
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Turning now to the next induction step, we et (x1, ..., x,). SetA’ dgf'A/@,
and consider its idealx}, ..., x,), wherexs, ..., x, denote the canonical images of
X2, ..., X, respectively, inA’. Let z := z-mod(x1) € (x5, ..., x}). By induction hy-
pothesis,z’2 " € (x}, ..., x.). This implies that one can write? ' = z; +z,, where

71 € {x1) andzz € (x2, ..., Xp).

But we saw just above that € (x1) gives zZ € (x1). Therefore,
22 = (1 +22)? =25+ 22120+ 25 € (x1) + (X2, ..., Xn),

and we findz?" € (x1, x2, ..., x,), as desired. O

Proof of Proposition 1.2.5. now follows immediately fromistiemma. Indeed,
if a finitely-generated ideat is such thaf = A, then 1c @, which implies 1=% ca
for somen . So, ifa is proper, thena is proper; and one now applies Cor. 1.2.3.

U

Remark. Proposition 1.2.5 fails to hold for idealsot finitely generated, as will
be shown in§3 below (see Ex. 3-G). Also note that a finitely generatedlidead not
be closed. In fact, even a principal ideal can be non-cloasdthe following example
shows:

ExampLe 1.2-D (N. Mohan Kumar). Letk™ := K[X, Y] be a polynomial ring
in X andY , and for each € N let A; := K1 /(XY*1) = K[x, y], with x, y standing
for the canonical images of Y , respectively,Aa . Let our pffine algebrad be
lim._ A;. Consider

(= —x(Q+y)—x(L+y+y?) —x(L+y +y*+y%) —...).

Clearly, ¢ € (x). However,( ¢ (x). To see this, assumee (x), and write ( = xn for
somen € A. Then,n has to equal

L+ypi(y) —1+y +y2p2(y) —1+y +y2+y3p3(y) —-),

where p1(y), p2(y), p3(y), ... are polynomials iny only. Now let, for each € N,
fit Ai — A;/(x) ~ K[y] be the canonical mod- map. Then,

fo=lim fizlim A = A — K[y]

should mapn to a polynomial inK p ] of a certain degree, say of degete . Since

FO) = fasaQ 4y +- 4y 4y 2po(y)) = Ly +- -+ yTh+ y™2pya(y) € K[H] is
of degree at least + 1, there results a contradiction.
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1.3. The radicals and Nullstellensatz. The radical R(A) and the nilradical
N(A) of a pro-affine algebrad are defined as follows:

(5) N(A) =V and R(A)=(m,
Ym

vp

where thep’s and them’s range overall open primeand all open maximalideals,
respectively.
Given an ideala C A, theradical of a is defined as

©6) N@ = () »

VpDa

with p again ranging overll open primeideals containings.
As done in [2], for a pro-affine algebra = limA; we define two kinds of its
reductions relative to the radicals:

(7) Ared dgf.

A/N(A) and  Arep " lim((Ai)ren) = M ((Ai)red,

where @; kep := A;/N(A;) = (Ai)red is the usual residue-class rirgodulo the nil-
radical of A; . A is said to beeducedor strongly reducedrespectively, ifA =Aeq

or A = Arep- One may define likewise two more radicals using the Jacoladn
icals R(A)'s and R(A;)’s, and these were actually what we dealt with in [2, (1.2),
(1.3), pp. 483-484]. Just the same, the following counterpf[2, Prop. (1.2),loc.
cit.] stands valid, and we state it without proof:

Theorem 1.3.1. For the canonical map: A =lim._(A;) — Agrep, We have
() Ker(p) = N(A);
(b) The sequenc® — N(A) — A — Agrep IS exact withim(p) dense inArep;
() N(A) = {f € A:limy_o fV =0} = topologically nilpotent elements of

Remarks. 1. We note that, even in the special context of the theorem egbov
the exactness of the sequence in (b) at the right-most efl ifaigeneral, orp is
not surjective as a rule. Counter-examples are offered tti®e3 below (see Exam-
ples 3-E and 3-F). This point bears critically on the Jaaodtaoblem (cf. [2, (5.3),
(5.4), pp. 497-498])).

2. Since N(A) is a closed idealc A, we deduce from Prop. 1.2.1 that, whereas
p: A — lim_(A;/N(A;)) may not be surjective, the map — lim._(A;/;N(A)) is
surjective.

Theorem 1.3.1 and the Jacobson-radical version of it [2)(Ip. 483] coincide
with each other in thek -algebraic case as seen just below:
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Theorem 1.3.2 (Nullstellensatz). If a pro-affine K -algebraA is algebraic over
K, then R(A) = N(A).

Proof. In view of Props. 1.2.2 & 1.2.4, the remarks followitigese two and the
algebraicity, we have

R(A) =[] = H(RA)) =[] 7 'N(A)) = N(A),

ieN ieN

where the traditional NullstellensafR(A;) = N(A;) has been applied. U

2. Ind-affine schemes and ind-affine varieties

2.1. The spectra of pro-affine algebras and their topology. For any pro-affine
algebraA , define itprime spectrumSp(A) and maximal spectrumSpm(A), respec-
tively, as
®) Gp(A) =the set of allopen, primeidealsC A, and

Gpm(A) =the set of allopen, maximalidealsC A.

Then, in view of Prop. 1.2.26pm(A) is the same as the set of allosed max-
imal ideals. Let us now introduce topology aofip(A) and Gpm(A) by extending
Zariski topology: TheclosedsetsC Gp(A) are, by definition, those subsets 6§ (A)
in the form of

V(E) € {p € &p(A) : p D E} for some setE C A.

Likewise, the closed sets Gpm(A) are defined to be precisely thé, E ( )'s where
V,(E) € V(E) N Gpm(A).
The following proposition which should require no proof®wals that the preced-

ing definition of the topologies o®p(A) and onGpm(A) is valid:

Proposition 2.1.1. (i) Leta:= (E), the ideal generated by, and let N(a) be
the radical ofa. Then

V(a) = V(E) = VN (a)).

(i) V(0) = Gp(A), V(1) =0.
(i) Given a family{E; :i € I} of subsets oA, we have

1% (LEJI E,-) = Q V(E;).

(iv) For idealsb and¢, V(b nc)=V(bc) =V (b)U V(c).
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Next we define, for eaclf € A, the basic open seD(f) C &p(A):

def.

D(f) = V() ={pe6pA): fép}

Proposition 2.1.2. Let f, g, fo (o € I) be elements oA . Then
(i) D(f)ND(g)=D(f-g)
(i) Uper D(fo) = V({(fo i 0 € D).
(i) D(f)=0 < feN(A) < f is topologically nilpotent.
(iv) D(f)=6p(A) < f is a unit.
(V) D(g) € D(f) <= g € N({(f)-

Proof. Parts (i), (i), (iii) immediately follow from releant definitions. As for
(iv), if f ¢ any open prime, then by Prop. 1.2(3) must equal the unit idea|l).
Therefore,f must be a unit.

As for part (v),D g )C D(f) & Vp € Gp(A) [f € p = g € p], clearly, and this
last condition is equivalent t&N({g)) € N({f)), or g € N({f)). O

RemARk. Proposition 2.1.2 goes to show that tie f ( )’s for @llc A form a
base of open sets in our topology @p(A), just as in the more traditional theory of
affine schemes. Note, however, that in our theory here the gp&s D (f )'s arenot
guasi-compactn general. This is due to the existence of infinitely-getestaproper
ideals whose closures are the unit idéd). See Ex. 3-G in53 below.

2.2. Localization in pro-affine algebras and structure sheages of ind-affine
schemes. Let S be amultiplicatively closed sein a pro-affine algebrad . It will be
assumed always that & S and 0¢ S = lim_(;S) for such anS . The localization
S~1A can be defined in the standard manner, and ks -algebraattinherits its
uniform topology fromA . We shall adopt the completion $f'A as our definition of
As. Namely,

DeriniTioN.  For A andS as above, the localizatioty af By is defined to
be

As B lim(;s714,).

Clearly, As ~ A5, so one may assume from the beginning that is closed. Foulusef
examples ofS one may mentiorf(dze)f'{ f" | neN } where f is not topologically
nilpotent, and the complememt — p of an open prime ideap. In these instances, we
shall denoteAs), Aa_p, by Ay, A,, respectively.

Proposition 2.2.1. Let f, g € A, U :=D(f),V :=D(g),and let A, A, be as
just above. LetA(U) := Ay and A(V) := A,. Then
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(i) If U=V, then A(U) ~ A(V). (ThusA(U) depends only o/, not on f)

(i) If v C U, then there is a canonical homomorphism of pro-affikie -algsbr
pY 1 A(U) — A(V), which depends only o/ antl (The pY will be called the
restriction homomorphism frory &) .

(i) Let U, V be as above and = D(h) for h € A. If U DV O W, we have

Py = dawy. Py 0Py = Py

Proof. (ii) AssumeV C U, or D(g) C D(f). So, by Props. 1.2.2 & 1.2.4 €
NN =N, 7 Y(the radical of(;f) in A;). This means that, for everyc N, there
is ann; such thatg" € (;f) C A;. So, for eachi there is an element € A; such
that

9) (8)" =ui-if.

Now lets € A(U) = Ay = lim_; ((;f)"*A;). Write s as a coherent sequenge =
(e aioa/Goaf)" — ai/G f)" « ). Definepfi(s) to be equal to (- « s/ —
-+-), where

(10) st au gy,

If another pair £/, u}) is chosen to make (9) stand, ag (" ¥ u} -, f, thens/ in (10)
will have to be replaced by/ = a; - u}™ /(;g)""™. But one can check out easily that

4

s{ = s/ inside (g ) *A;. So, pY(s) is well-definedprovided that s’ := (--- « s/_; «

4 4

s/ « ---) given by (10) just above is coherent.
Let us now check the coherence gf Sinces is given coherent, one knows

(11) [G-1f)"ai—1 — G-af)"*pilai)] - -1f)>°™e POe'= 0,

and one need to verify

(12)  [a— 2™ Go1g)™™ — (., 8)™ " pui(as) i (ur)™] - (;—1g)°°™e POWeI= O,

Applying 1; to both sides of (9) and then raising them to the  -th power, abtains
i—18™M = (w1 )™ also, (9) fori =i — 1 gives (_1g)"-*=u;_1-;-1f. Sub-
stituting the right-hand sides of these two equalities fog fippropriate terms inside
the “[ ]" of (12), we find the said contents of [ ] to be

ai a7 )" G )™ — G )™ i) pa ()™
(13) = w7 ()" (a2 Goa )™ — G )™ i)

The expression inside the “[ 1" of (13) equals that of (11) amdnsequently, gets
kiled by some power of_1f. It follows that either side of (13) will be killed by
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some power of_;g because;(1g)"* = u;—1-;—1f. The proof of (ii) will be com-
plete after (iii) and then (i) are established below.

(iiiy That pY = Ida( is clear in view of the preceding reasoning. As for the tran-
sitivity, we have

Vie N3 e N:(g)" =u;-; f and (b} =v; - ;g, with u;, v; € A;.

It follows that, for eachi , ;@ 2" u;-; f holds, which implies that the composition
Py ool mapss = (- ai/(fY" ) € Ag 1o

P 0 P (s) = (- — aqu v ()™M — ).

On the other hand, the relationgi( ) w5 -; f for all i € N corresponding toW C
U indicatespl,(s) = (--+ < a;w}" /(;h)™* « --.). We already saw above that such
coherent sequences are the sametjin . Therefge p¥ = pY,.

(i) If U=V or D(f)= D(g), we have maps¥: A(U) — A(V) andp};: A(V) —
A(U). As we just sawpy; o pY = p¥ = Idawy, and likewise forp¥ o py,. HenceA U )~
A(V). With (i) proven now, the proof of (ii) is complete. U

It follows from Prop. 2.2.1 that the assignmeris D=f () A(U) = Ay and
[V = D(g) — U = D(f)] — pY produce apresheafA of pro-affine K -algebras on
the baseB = {D(f) : f € A} of open sets of the topological spac(A). (see [1,
Chap. 0,§3.2, p. 25ff.] .)

Proposition 2.2.2. Let A be a pro-affine algebraand let A be the presheaf over
the baseB of open sets or&p(A) introduced just above. Ldl/ = D(g) € B be any
basic open setand letU = (J,., Ux be a covering ofU with eaclt/y = D(f)),
fr € Ag. Suppose given for eache A an element,, € A(U,;) such thatpgiu(sA) =
pgiu(su) for any A\, v € A, whereU,, denotesU, NU,. Then there is one and only
ones € A(U) such thatp} (s) =s,. for all x € A.

Proof. The proof is based on the well-established fact thatproposition holds
true in case of the affine schemes. (cf. [1, Th. (1.3.7), p.)86]

It is clearly enough to prove the proposition in caBe &g(A) and A(U) = A.
Assume so and writed = lim A;, X; = Specf; ). For eachh € A and eachi € N,
write fx=(--«—ifn—---) and let

(14) Ur; = {m X(P): P cX; and,f\ ¢ P} =7, (D(f>))

where D {f,) is the basic open set iX; = Spéag . We then have two types of open
coverings for each\ and eachi , i. e.:

(15) Ur=JUxi and X; =(J DG

ieN AEA
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[Uniqueness] Lets’, s” € A = A(U) be such thapf (s') = sx, pf (s") = s. for all

k € A. So, one may writes’ = (- «— ;s' «— ---) ands” = (--- « ;s « --.), with
is' € A;, is"” € A; for eachi . Now, sincepf (s') = p§ (s”) for all x, these agree
on U, for all i in the first covering of (15), or ({; (s')) = ,(p¥ (s")). This means
that ;s and ;s agree on each piec® ;f{) of the second covering of (15) for each
k. It follows that;s’ = ;s” on X; for eachi , because of the fact pointed out at the
beginning of the proof. Therefore, we have= s".

[Existence] We are locally givew,, on U, for all x such thats, ands, agree onUxnN
U, whenever the intersection is nonempty. The data will thetude, at each finite
level i, the data of{;(s«) : < € A} locally on each open piec® ;f{) of the covering
Xi =Uxea D@ifr). We can patch up the local data of.)'s on the affine schemg;
SO as to obtairs; € A;. What remains to be checked out is that-(«— s; « si+1 <
--+) is coherently defined. So, I8f := p;+1(si+1), and we will show that; =/. Now,
denote the restriction map of;  tD ;ff) by p; .. We have thugp; .: A; — (Ai)y,..
By construction,p; ..(s;) = i(s,) and pi+1,.(si+1) = i+1(sx). It follows that

(16) Pir(81) = piow(pti+a(si+1)) = pisa(Pie1,m(5i41)) = pia(ia(sx)) = i (5x),

with p!,,: (Ar)isn — (Ay.); standing for the map induced hyi+1: Aiv1 — Al |t
is now shown thatp; .(s;) = pi..(s/) for all K € A. Once again one draws upon the
uniqueness in the affine-scheme case to concludesthas;. = O

We now extend the presheaf to a presheaf over the topological spa&e(A)
by defining, for any open sa/ C Sp(A), A(U) def. lim_ A(V) where the lim_ is
taken over allbasic V’s for which V. = D(g) C U [1, chap. 0-3.2, pp. 25ff]. The
extended presheaf will be denoted My too. The next theorem follows immediately

from Prop. 2.2.2. (cf. [1Joc. cit].)
Theorem 2.2.3. The presheafi is a sheaf.

From here on, the topological spa&p(A) endowed with the sheafl as above
will be referred to as thénd-affine scheme associated withand will be denoted by
Xa. A is then, by definition, thestructure sheaf ofX,. In conformity with standard
practice in scheme theory we shall also write = O(A). Similarly, the topological
spaceSpm(A) together with the sheaf induced on it frovh is called theind-affine
variety associated wittd, and this variety will be denoted by,.

We next address the issue of stalks of the shéaflLet X, be an ind-affine
scheme, withA = lim A;. Let p be a point onX,, and let A := the filter of all
basic open sets containing the pontso A ={D(g.) : p € D(gn)}. Let us write
Aio = (Aj)yg, forall i € N and all g, for which D(g,) € A. We then have the fol-
lowing commutative diagram in which all horizontal arrowepresent surjections and
vertical ones are restrictions occurring wheneyrg,)(2 D(gg), each column thus
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forming a direct system:

a7
- Ai—l,a — Ai,a B SN — |im<_'n An,a
e Ai—l,ﬁ — Ai,ﬁ — e e e |im<_'n An,ﬁ

l l l
l l l

im . o (M An.a)

! ! Lo

im o (im — Amy)

e Iim_,,,y Ai—l,'y — Iim_,,,y Ai,’y — e

In the diagram (17) one should recognize thatlimA, . = Az, = A(D(ga)),
and lim., 5 A, = (An),p. SO, the mapd on the lower right corner of (17) amounts
to lim_, o(A(D(g.)) = lim_ o A, 2, lim— »((An),p), and ® gets induced as fol-
lows: (i) First, for eacha there is a mapA,, — lim_ , A;, for all i with appro-
priate commutativity of arrow paths; (i) as a consequertueret is a mapA,, —
lim_ ;(lim_ x A;) =lim_ ;((A;),,); and finally (iii) the desired map lim , A, —
lim_ ;((A;),p) again because of the appropriate commutativity.

We now come to study the magp . In order to describe its kernel,need to
introduce the notion oélements infinitely nea® in the ring lim., ,(lim— , A, ) and,
before that, a nevad hocnotation: Ifa; € A; , then |; ] denotes the equivalence class
represented by; in the direct limit lim ., A; ., = (A;),,. Likewise, if (-- «— a;_1,, «—
Qg — ) €lim_, A, = A(D,,), then [-- «— a; 1., < a4~ + ---] is to mean
the corresponding equivalence clasdim_, ,(Im_ , A, ) = lim_, o A(D(g.)). Now,
let

(18) U= —Up_10—Uno— -] €lim(imA,,)=Ilim A(D(g.)).

We shall say that isnfinitely nearO if Yu, 36 = B(n, o) > « such thatu, , —
u,, 3 = 0 under the restriction map due to the inclusibn,gs) C D(.g.). The termi-
nology is appropriate because, for such u, {] = [0] for every n, yetu may not be
0.

It is easy to see that the set of all elements Rf =dm(lime, A,0) =
lim_ ,(A(D(g)) that are infinitely near O form an ideal of the rirgy
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Theorem 2.2.4. (a) Let R be as just above. Then, the kernel of the map
®: R — lim— ,,(An),, is the ideal of all elements infinitely near 0 R
(b) The image of® is everywhere denselim _ ,,,(Ax),p-

Proof. (a) If® @) =0 foru as in (18), that means: («— [uy—1.0] < [Un.a] <
)= (- — 0« 0« ---)inside lim_ ,,((An),p), OF ¥n, [Usa] = 0. SO, u is
infinitely near 0. The converse clearly holds also.

(b) Givenn = (- [uita,_.] « [ia] «— ) € IM_u((An),p). Write n =
(-++ « rics < r; «— ---) with eachr; € (4;),,. For an arbitrary highv > 0, let
WN = UN.ay € AN.ay- Clearly, one can completey  to an element

w:(...(-wN_:L(—wN(—wN.,.l(—--')E |imAn’aN
«—,n
such that

[wol = [uo,a0l, [wil =[ura,l, - -  [wy—1] = [un—1.ay ] [wN] = [un.ay]

So, w]:=[ - « wy_1 wy < wy+1 < ---] € R is such thatd @ ]) and) agree
with each other up to thé&v -th place from the left. Sifge  wasdtrarly, this shows
the density of the image ob . O

In view of Th. 2.2.4, we define théocal ring of a pointp on an ind-affine
schemeX,, A = lim_ A,,, to be lim_ ,,(Au),p. It is a pro-affinek -algebra, and a
surjective inverse limit of local rings of the more tradited type.

3. Comments and Examples

(A) The reduction A,eq and thestrong reductionArep (see§l.3-(7) above):

In [2] we raised the question as to whether or ety = Arep for the types of
pro-affine algebrast  of interest to us, and we indicated hasviisue bears upon the
Jacobian Problem (cf. [2, (1.3), p. 484, and (5.4), p. 498}).expected, this question
is easily answered in the negative, as follows:

ExampLe 3-E. For alli € N consider the same algebras as occurred in [2,
Ex. (1.4), p. 484] but with different connecting maps Namely, let

A =K[Ty, - Ti0, T Tl /(T30) = K[Th, ... i1, Th, il
and definey,; : A; — A;_1 by stipulating

wi(T;) =T; for j <i; p(T:) =7, pi(risr) =7 - T1.
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Then, in the exact sequence
(19) 0— (1i+1) — A, — K[T1,..., ;] — O
for all i > 0, the Mittag-Leffler condition fails to hold, so that the seqce
(20) 0— N(A) — A — Agep — 0, where Aggp = K>

obtained by applying lim ; to (19), is expected to be nonexact on the right.
We can actually exhibit where the map — A, fails to be surjective. In fact,
let

fi=Th+---+T, 1+T; forallieN,

and considerf =f; « -+ «— fi_1+ fi < ---) € Agep. Suppose that there existed
someg € A such thatg =43 «— -+ «— g <« ---) — f € Agep. Then, for each
i € N, it must hold thatg;, =f; ++1-h; = fi_1+T; + 141 - h; for a suitableh; €
K[Ti, ..., T;_1, T;]. On the other handy;(g;) = gi—1, or

(21) fica+mi+r - To-hi(Ty, -, Tim1, 7)
=ficatm+n-To-hi(Th, -+, Ti—1,0)

=fic1t i hioa,
which implies that
(22) hi—a=1+Ty-hi(T1,---,T;—1,0) for all i € N.

Using this last equation recursively, one would get

(23) hi(Th) = 1+T1- ho(Th, 0)
=1+Ty(1+Ty - h3(T1, 0, 0)) = 1+Ty + T - ha(T1, 0, 0)
= =147+ + T (11, 0,...,0) = (ad infin).

This lends an arbitrarily higiT;-degree to the polynomial;(71), an absurdity.

(B) Closed Embedding and Topology of Ind-affine schemes:

Let A, B be pro-affine algebras, and 34, Y := Xz. A morphism of ind-
affine schemesf Y — X defined by a continuou® -map: A — B is said to be
a closed embedding ¢ is open and surjective. When that is so, through appropriate
representationgl =Ilim A;, B =lim_ B; of A and B as inverse limits, one may see
to it that ¢ is induced by surjectiong; — B; for all i € N. One can then say that
the closed embedding — X is the direct limit of the closed embeddings — X;
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for all i. The converse is inexact. Namely, d¢f: A — B comes as the inverse limit
of surjective K -mapsA; — B; for all i, ¢ need not be surjective. In other words, if
f:Y — X is induced by closed embeddindgs — X; (Vi) of finite-dimensional affine

K-schemesX; =Sped( Y, =Sp#g( J), need not be a closed embedding-of
affine schemes. This point is illustrated by the followingueple:

ExavpLE 3-F (Burt Totaro). LetX =A™ = X, S0X =(J7Z; X; with X; = A",
Define a subschemg (3, ¥; of X inductively, as follows: (a)Y; == X; = AL.
(b) Having built Y; 1, define¥; to be the union of;_; and a finite set of lines
through the origin inX; such that every polynomial function &n of degree< i
which vanishes on these lines must be 0 altogetheXpn . [dkst @nough number
of lines onX; through the origin and in general position.]

Now consider the morphisnf ¥ — X arising as the dual of the natural map,
0(X) = lim—; O(X;) — O(Y) := lim_; O(Y;), where the map®(X;) — O(Y;) are
surjections associated with the closed embeddirigs- X; for all i. This f exhibits
some pathological characters, as shall be seen now.

(a) First, letJ; = KerO(X;) — O(Y;)). Then, J; is a homogeneous ideal Kl
whose generators may be taken to be forms of degree This shows that the ex-
act sequences 6» J; — O(X;) — O(Y;) — 0 taken for alli € N do not satisfy
the Mittag-Leffler condition, and the non-surjectivenegsO§X) — O(Y) is strongly
indicated.

(b) Second, letn, , m, be the maximal ideals of the origin (0) oty ¥, in the rings
O(X;), O(Y;), respectively. Then, for every pair of ard with<Or < i, the natural
surjection

Ui O(X) !, — O(¥;)/m]

is also injective because of the make-uppf , so thatis an isomorphism. It fol-
lows that, = lim;_~(1-;) gives an isomorphisn@(X)/mg) ~ O(Y)/mg,’) for all

r > 0. Consequentlymy/m@ ~ my/m® and m{)/m¢™ ~ m®/mi*Y. Since the
point (0) onX satisfies the smoothness condition ®amy/m?) — m®/my* be

an isomorphism for alk > 0 (see [2, p. 488]), so does (0) dh , Br is smooth at
(0).

We can see that this creates a serious problem for the nofimmoothness of
ind-affine varieties, as calling the point (0) a simple pantY goes against our intu-
ition. It appears that the notion of smoothness (or of singaat) should be reworked
(see [2, p. 488], [3, p. 187ff]). We will not, however, go intiois issue in this paper.
Turning to the more immediate question on Totaro’s examplaaad, we find it im-
possible that thek -ma@(X) — O(Y) in (a) just above should be surjective, or that
the morphismY — X should be a closed immersion. For, were this the case, then th
embedding theorem [2, (2.6), p. 488] would imply that is isophic to X as ind-
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affine scheme. It follows that, for evety ¥; is a closed subsehef X; buty — X
is not a closed immersion.

(C) Example of a proper ideal whose closure is the unit ideal:
We follow up on Example 1.2-D and Remark that precedes it.

ExampLE 3-G. Let

wy = (Le—1+x;—1+xy+xp— - —Ll+xy+txp+---+x, )

w2 = (le—1—1+xp— 1+xp+txge— - Ll+xp+---+x, )

w, =(le—1l— - —1—1+4x,«—1+x, +xp41 ")

be a sequence of elements K1>!. So, w, — wy+1 = (0 — 0 — --- — 0 — x, —
Xp — —--)andw, —1 =0« -+ «— 0« x, <« x, +x41 < ---). It follows that

im, oo w, =1 and(ws, ..., wy,,...) = (1). On the other hand(wy, ..., w,,...) &
(1) because no finite linear combination of the ’s can equal 1. 8aonbre specific,
supposel. = 1 for ak[*l-linear combination ofwy, wy, ..., wy (k <1< --- < m),
or (wi, wy, - .., Wy = (1). Then,(wa, ..., wy) = (W1, W1— W2, ..., Wn—1— Wn) = (1).

This implies that ank[*>l-linear combination of

Wm—1 — W :(0<_O<_ ‘_xm—l<_xm—l<_"')
should produce (+ 1+« --- «— 1« --.). Clearly, this is impossible.
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