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1. Introduction

Let be a prime number and let be an algebraically closed field of character-
istic . Let be a finite group and a block of . In [10], M. Linckelmann in-
troduces two notions: thetransfer mapsin Hochschild cohomology of symmetric alge-
bras, and thecohomology ring of the block . Using the transfer map, he shows that
the cohomology ring ∗( γ) of the block is embedded into the Hochschild
cohomology ringHH∗( ) of the block algebra , which gives a block ver-
sion of the well-known embedding from the usual cohomology ring ∗( ) into
the Hochschild cohomology ringHH∗( ) (see [10, Proposition 4.5]). Around the
same time, M. Linckelmann [11] introduces a cohomological variety which is a block
version of Carlson’s module variety [4]. As is well known, for a finitely generated

-module , Carlson’s variety ( ) is defined to be the maximal ideal spectrum
of ∗( )/ ∗( ), where ∗( ) is the annihilator of the action of ∗( ) on
Ext∗ ( ) induced by the cup product. On the other hand, for a boundedcomplex

of -modules, Linckelmann’s variety ( ) is defined to be the maximal ideal
spectrum of ∗( γ)/ ∗

γ
( ), where ∗

γ
( ) is the kernel of the algebra

homomorphism ∗( γ) → Ext∗ ( ) induced from the above embedding
∗( γ) → HH∗( ) (see Section 2 for details).

In this paper we study the variety ( ). The following is the main result,
which gives a characterization of the ideal∗

γ
( ) in terms of the cohomology ring

of a defect group of .

Theorem 1.1. Let be a block of , γ a defect pointed group of and let
∈ γ be a source idempotent of . Let be a bounded complex of -modules.

Then we have that

∗
γ
( ) = ∗( γ) ∩ ∗ ( )

In particular if is a nilpotent block of , then we have that ( ) = ( ).
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In [11], M. Linckelmann shows that for any bounded complex of -modules,
there exists a finite surjective map ( )→ ( ) (see Theorem 2.4 below). From
Theorem 1.1, we can show the following reverse version of this result.

Corollary 1.2. For any bounded complex of -modules, there exists a fi-
nite surjective mapι : ( ) → ( ). Further, the dimensions of ( ) and

( ) coincide.

In [11], Linckelmann also shows that the varieties ( ) are invariant under
splendid stable and derived equivalences in the sense of Linckelmann (for the def-
inition of these notions, see [12]). Applying Theorem 1.1 weconsider the question
whether the varieties ( ) are invariant under the Brauer correspondence betweeen
blocks in with defect group and blocks0 in ( ) with defect group .
As a partial answer, we have the following.

Theorem 1.3. Suppose that is abelian. Let be an indecomposable
-module with vertex and let be the Green correspondent of with respect

to ( ( )). Then we have that ( ) = ( ) 0( ).

Let be a central -subgroup of and set/ = ¯. Then the natural -algebra
homomorphism → ¯ gives a one to one correspondence from all blocks of
onto all blocks¯ of ¯. Applying Theorem 1.1 again, we have the following.

Theorem 1.4. Let be a bounded complex of¯ -̄modules. Regarding as
a complex of -modules through → ¯ ,̄ we can define an affine map
inf∗¯ : ( ) → ¯ (̄ ) induced from the inflationinf ¯ .

Finally, we consider the inverse images of the affine maps above also. See Propo-
sitions 5.2 and 5.3 below.

All modules considered in this paper are assumed to be finitely generated left
modules, unless otherwise stated. We end the introduction with fixing notations. Let

be a subgroup of a finite group . For a group algebra over a commutative
ring , ( ) denotes the regular − -bimodule and, similarly, ( ) de-
notes the regular − -bimodule. For the conjugation given by an element of

, we use the left notation: = −1 and = −1 for ∈ . Further,
: ∗( ) → ∗( ) denotes the conjugation map given by . For complexes

and , | means that is isomorphic to a direct summand of .

2. Preliminaries

Let and be algebras over a commutative ring . By an− -bimodule, we
mean a bimodule on which the left and right actions of coincide, in other words,
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an ⊗ -module ( is the -algebra opposite to ). For an -module and a
complex of -modules, we set ∗ = Hom ( ) and ∗ = Hom ( ), their

-uals. Let be a right bounded complex of -modules. We denote by P( ) a
projective resolusion of , that is,P( ) is a right bounded complex of projective
A-modules with a map of chain complexesP( ) → which is an isomorphism
on homology. Consider as an ⊗ -module (i.e., − -bimodule). Further we
also consider as a complex with the degree 0 component and allother compo-
nents being zero. Then we denote byP a projective resolution of the complex .
Let and be right bounded complexes of -modules. Notice that Ext ( ) =

(Hom (P( ) )) by definition. Further, we have the following isomorphisms (see,
e.g., [3, I, Section 2.7] or [8, Chapter 6]):

Ext ( ) = (Hom (P( ) )) ∼= (Hom (P( ) P( ))
∼= Hom ( )(P( ) P( )[ ])

where ( ) is the homotopy category of complexes of -modules andP( )[ ] is the
complex obtained by movingP( ) to the left by places. Suppose that the -algebra

is projective as an -module. Then we can define Hochschild cohomology HH ( )
to be the cohomology (Hom⊗ (P )) = Ext ⊗ ( ). So we have an iso-
morphism

HH ( ) ∼= Hom ( ⊗ )(P P [ ])

Note that if homogeneous components of are projective as -modules and if also
is projective as an -module, then we see from the Künneth theorem thatP ⊗
becomes a projective resolution of . So we have an algebra homomorphism

α : HH∗( ) → Ext∗ ( )

induced by the functor−⊗ . Here, the homomorphismα maps the homotopy class
of a chain mapζ : P →P [ ] to that of ζ ⊗ Id ( is a nonnegative integer).

Suppose that and are symmetric -algebras from now and let be a
bounded complex of − -bimodules which are projective as left -modules and
as right -modules. M. Linckelmann gives a graded -linear map: HH∗( ) →
HH∗( ) which is called thetransfer mapassociated with (see [10, Definition 2.9]).
He then shows the following connection between transfer maps in Hochschild coho-
mology and ordinary cohomology of finite groups: it is known that there exists an em-
bedding of ∗( ) into HH∗( ), that is, an injective graded -algebra homomor-
phism

δ : ∗( ) → ∗( )

induced by the diagonal induction functor Ind×△ (see [10, Proposition 4.5]). Through
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these embeddings, the following diagrams are commutative

∗( )

δ

��

res // ∗( )

δ

��

∗( )

δ

��

tr // ∗( )

δ

��
HH∗( )

( )

// HH∗( ) HH∗( )
( )

// HH∗( )

where res and tr denote the restriction map and the transfer map on ordinary
cohomology of finite groups, respectively. He also gives a notion of -stable elements
as follows.

DEFINITION 2.1 (Linckelmann [10, Definition 3.1]). An element [ζ] ∈ HH∗( ) is
said to be - if there is [τ ] ∈ HH∗( ) such that the following diagram is ho-
motopy commutative for any nonnegative integerP ⊗

ζ ⊗Id

��

≃ // ⊗ P
Id ⊗τ

��P [ ] ⊗
≃

// ⊗ P [ ]

where ζ and τ are the components in degree ofζ and τ , respectively, and where
the horizontal arrows are given by the natural homotopy equivalencesP ⊗ ≃

⊗ P lifting the natural isomorphism ⊗ ∼= ⊗ . We denote byHH∗ ( )
the set of -stable elements inHH∗( ).

Then, using the notion of -stable elements, the transfer mapis characterized
as follows [10, Lemma 3.4 and Theorem 3.6]. Let0 : ( ) → ( ) be the linear
map obtained by the degree zero component of , composing withthe natural iso-
morphisms ( )∼= HH0( ) and ( ) ∼= HH0( ). Set 0 (1 ) = π . Similarly, set
0
∗ (1 ) = π ∗ for the transfer map ∗ : HH∗( ) → HH∗( ). If [ ζ] ∈ HH ( ) is
-stable and [τ ] ∈ HH ( ) is the element corresponding to [ζ] in Definition 2.1, then

it holds that (i) ([τ ]) = π [ζ], (ii) [ τ ] is the ∗-stable element and ∗ ([ζ]) = π ∗ [τ ].
From the above, ifπ is invertible, then we see that

= (π )−1 : HH∗
∗ ( ) → HH∗ ( )

is a surjective graded -algebra homomorphism. Further, if both π and π ∗ are in-
vertible, then it holds that ∗◦ ([τ ]) = [τ ] for [τ ] ∈ HH∗( ) and that ◦ ∗ ([ζ]) =
[ζ] for [ζ] ∈ HH∗( ).

For example, let = ( ). Then we have from [10, Proposition 4.8]that
Im(δ ) ⊆ HH∗

( ) ( ). Further, we see from [10, Example 2.6 and Definition 3.1]
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that π ( ) = 1 . Thus we see that ( ) : HH∗
( ) ( ) → HH∗

( )( ) is a sur-
jective graded -algebra homomorphism in the above commutative diagram for res
and ( ).

Using Puig’s pointed group theory, M. Linckelmann defined cohomology rings
of blocks. We recall here some definitions and results on Puig’s pointed group the-
ory [15]. Let be an algebraically closed field of prime characteristic . For a

-subgroup of , let Br : ( ) → ( ) be the Brauer homomorphism
of , which is a surjective algera homomorphism. A of on is a
(( ) )×-conjugacy classγ of primitive idempotents in ( ) and if Br (γ) 6= 0,
γ is called a local point of on . A of is a primitive idempotent
in the center ( ). Adefect group of the block is a maximal -subgroup of
G such that Br ( )6= 0. For a defect group of , there is a primitive idempotent
∈ ( ) such that Br ( )6= 0. So the pointγ that contains is a local point of
on contained in the block . The idempotent is called asource idempotentof

the block and the pair ( γ), which we denote by γ , is called adefect pointed
group of the block . Since Br ( ) is a primitive idempotent in ( ), there is a
unique block of ( ) such that Br ( ) = Br ( ). The pair ( ) is themax-
imal -Brauer pair which corresponds to γ . In general, aBrauer pair of is a pair
( ) where is a -subgroup of and is a block of ( ). For a Brauer pair
( ) and a maximal -Brauer pair ( ) corresponding toγ , if is a subgroup
of and satisfies Br (γ) = Br (γ), then ( )≤ ( ). It is known that for
any subgroup of , there is a unique block such that ( )≤ ( ). For
more details, see [16, Section 40].

DEFINITION 2.2 (Linckelmann [10, Definition 5.1]). Let be a finite group,a
block of and γ a defect pointed group of . Thecohomology ring of the block

of associated with γ is the subring ∗( γ) of ∗( ) which consists
of all [ζ] ∈ ∗( ) satisfying res−1 ◦ −1([ζ]) = res ([ζ]) for any subgroup
in and for any ∈ with ( ) = ( ) ≤ ( ).

If γ
′

is another defect pointed group of , then there exists∈ such that

γ
′

= γ (see [16, Proposition 40.13]), and we see that the conjugation map in-
duces an isomorphism ∗( γ) ∼= ∗( γ

′

).
With the notation of Definition 2.2, let ∈ γ. Consider as a −

-bimodule and as a − -bimodule. By [10, Theorem 5.6],π and
π are invertible in ( ) and ( ), respectively. Thus = (π )−1 :
HH∗ ( ) → HH∗ ( ) is a graded -algebra isomorphism (notice that ( )∗ ∼=

as − -bimodules). Furthermore from [10, Corollary 3.8 and Proposi-
tion 5.4], we have an injective graded -algebra homomorphism δ : ∗( γ) →
HH∗ ( ), where δ is the restriction of the diagonal embedding∗( ) →
HH∗( ) stated before. Therefore, we obtain an injective graded -algebra homomor-
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phism

◦ δ : ∗( γ) → HH∗ ( )

Let be a finitely generated -module. In [4], J.F. Carlson introduces a notion
of the variety of as follows. There is a -algebra homomorphism γ : ∗( ) →
Ext∗ ( ) mapping [ζ] ∈ ∗( ) to [ζ] ∪ ∈ Ext∗ ( ), where∪ is a cup
product and is the identity element of Ext∗ ( ). Let ∗( ) be the kernel of
γ . Then ( ), thevariety of , is the maximal ideal spectrum of the quotient

∗( )/ ∗( ). On the other hand,P( )⊗ is a projective resolution of , whereP( ) is a projective resolution of the trivial -module (see e.g. [11, 2.9]). So we
see thatγ is induced by the functor− ⊗ through the isomorphisms ( )∼=
Hom ( )(P( ) P( )[ ]) and Ext ( ) ∼= Hom ( )(P( ) ⊗ P( ) ⊗ [ ]).
Similarly, for any bounded complex of -modules, the functor− ⊗ induces a
-algebra homomorphism

γ : ∗( ) → Ext∗ ( )

We also write ∗( ) for the kernel ofγ , and ( ) for the variety of . As a re-
markable fact in this direction, we have from [11, 2.9] that the above -algebra homo-
morphismγ is equal to the composite of -algebra homomorphisms

∗( )
δ // HH∗( )

α // Ext∗ ( )

For a bounded complex of -modules, M. Linckelmann [11] givesa notion
of the variety of associated with the block .

DEFINITION 2.3 (Linckelmann [11, Definition 4.1]). Let be a finite group,
a block of , γ a defect pointed group of , and a source idempotent inγ.
For any bounded complex of -modules, denote by∗

γ
( ) the kernel in

∗( γ) of the composite of -algebra homomorphisms

∗( γ)
◦δ // HH∗( )

α // Ext∗ ( )

and let ( ) be the maximal ideal spectrum of∗( γ)/ ∗
γ
( ). We also

let be the maximal ideal spectrum of∗( γ).

For another defect pointed groupγ
′

of , there exists ∈ such that
: ∗( γ) ∼= ∗( γ

′

), as stated above. So the isomorphism class of the
variety ( ) does not depend on the choice ofγ .

M. Linckelmann shows the following connection between varieties associated with
blocks and Carlson’s module varieties. By the definition, itis clear that the restric-
tion map res induces an algebra homomorphismρ : ∗( ) → ∗( γ).
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Let ρ∗ : → ( ) be the affine map defined byρ , where ( ) is the maximal
ideal spectrum of ∗( ).

Theorem 2.4 (Linckelmann [11, Corollary 4.4]). For any bounded complex of
-modules, it holds that ∗( ) = ρ−1( ∗

γ
( )). Thus, ρ∗ : ( ) → ( ) is a

finite surjective map and the dimensions of ( ) and ( ) coincide. In particular,
if is the principal block of , then the above map is an isomorphism.

3. Proof of Theorem 1.1 and its applications

In this section we give a proof of Theorem 1.1. Further, applying this theorem we
consider the question whether the varieties ( ) are invariant under the block cor-
respondence in Brauer’s first main theorem (with the assumption that defect groups are
abelian). Theorem 1.1 is based on the following theorem which is the reverse version
of Linckelmann’s theorem [11, Theorem 5.1].

Theorem 3.1. Let , be symmetric algebras over a commutative ring, and
let be a bounded complex of - bimodules whose components are projective as
left and right modules. Ifπ ∗ is invertible in ( ), then for any bounded complex
of -modules there is a commutative diagram of graded -algebra homomorphisms

HH∗ ( ) -

-

Ext∗ ( )

??

Ext∗ ( ∗ ⊗ ∗ ⊗ )HH∗
∗ ( )

α

α ∗⊗

∗ β ∗

where the horizontal maps are induced by the functors−⊗ and −⊗ ( ∗ ⊗ ),
respectively, and where the right vertical map is induced by the functor∗ ⊗ − .

Theorem 3.1 implies the next proposition. With the notationin Section 2, let
= regarded as a − -bimodule, and so ∗ = ( )∗ ∼=

as − -bimodules. Further, for a bounded complex of -modules, let
γ : ∗( ) → Ext∗ ( ) be the -algebra homomorphism induced by the func-
tor −⊗ , where = ⊗ is considered as a complex of -modules.

Proposition 3.2. Let be a bounded complex of -modules. The following
diagram of graded -algebra homomorphisms is commutative.
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∗( γ) -

-

Ext∗ ( )

? ?
Ext∗ ( )H∗( )

α ◦ ◦δ

γ

ι ◦res

where the right vertical map is the composite of the restriction homomorphism and
the projection fromExt∗ ( ) onto Ext∗ ( ), and the left vertical map is the
inclusion map.

Proof. From [10, Theorem 5.6],π is invertible in ( ). So by Theorem 3.1,
we have thatα ◦ = β ◦α . Now, sinceπ is also invertible, and
are mutually inverse -algebra isomorphisms from [10, Theorem 3.6]. Thus it follows
that α = β ◦ α ◦ . That is, we have the following commutative diagram of
graded -algebra homomorphisms:

HH∗ ( ) -

-

Ext∗ ( )

6

?
Ext∗ ( )HH∗ ( )

α

α

β

From this diagram, we can form the commutative diagram

∗( γ)

ι

��

δ // HH∗ ( )
α ◦ // Ext∗ ( )

β

��
∗( )

δ
// HH∗ ( )

α
// Ext∗ ( )

Now, it is clear that the functor ⊗ − gives the algebra homomorphism◦res
and soβ = ◦ res . Moreover, from [11, 2.9], the compositeα ◦ δ is equal
to the algebra homomorphismγ given by the functor− ⊗ . So the proposition
follows.

The following lemma is a block variety version of [3, II, Proposition 5.7.5] on
Carlson’s varieties ( ).

Lemma 3.3. Let 1 and 2 be bounded complexes of -modules. Then we
have that ∗

γ
( 1 ⊕ 2) = ∗

γ
( 1) ∩ ∗

γ
( 2), and hence we have that

( 1 ⊕ 2) = ( 1) ∪ ( 2).
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Proof. Notice thatP ⊗ ( 1 ⊕ 2) ∼= (P ⊗ 1) ⊕ (P ⊗ 2).
Under this isomorphism, we have the decompositionζ⊗Id 1⊕ 2 = (ζ⊗Id 1)⊕(ζ⊗Id 2)
for a chain mapζ : P →P [ ]. Thus for the projection

µ : Ext∗ ( 1 ⊕ 2 1 ⊕ 2) −→ Ext∗ ( ) ( = 1 2)

it follows that µ ◦ α 1⊕ 2 = α ( = 1 2), respectively. Then these commutations
show that ∗

γ
( 1⊕ 2) ⊆ ∗

γ
( 1)∩ ∗

γ
( 2). Moreover, if ζ⊗ Id ( = 1 2)

is homotopic to 0, respectively, thenζ⊗ Id 1⊕ 2 is also homotopic to 0. So the lemma
follows.

The following lemma is well-known. We include here a proof for completeness.

Lemma 3.4. Let be a bounded complex of -modules, γ a defect pointed
group of and let ∈ γ. Then is isomorphic to a direct summand of ⊗ .

Proof. Since Tr ( ) = ∈[ / ]
−1 is invertible in ( ) (see [10, Theo-

rem 5.6]), we haveβ = (Tr ( ))−1 ∈ ( ). Now, consider the chain map : →
⊗ consisting of -homomorphisms : → ⊗ defined by

7−→
∑

∈[ / ]

⊗ β −1 for ∈

where is the degree component of . On the other hand, there exists a chain
map : ⊗ → consisting of natural homomorphisms : ⊗ →
induced by the action of on . Then, since Tr (β) = Tr ( )β = , we have

◦ ( ) = for ∈ . So the lemma follows.

Proof of Theorem 1.1. From [11, Theorem 5.1], there exists a commutative di-
agram

HH∗ ( )

��

α // Ext∗ ( )

β

��
HH∗ ( )

α ⊗

// Ext∗ ( ⊗ ⊗ )

Now, from Lemma 3.4, we have the canonical projectionµ : Ext∗ ( ⊗
⊗ ) −→ Ext∗ ( ). Then from Lemma 3.3 it follows thatµ ◦α ⊗ =
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α . Thus the above diagram induces the following commutative diagram:

∗( )
δ // HH∗ ( )

α // Ext∗ ( )

µ◦β

��
∗( γ)

ι

OO

δ
// HH∗ ( )

α ◦
// Ext∗ ( )

We note thatα ◦δ = γ . Hence, we have that ∗( γ)∩ ∗( ) ⊆ ∗
γ
( ).

Conversely, by Proposition 3.2 we have that∗
γ
( ) ⊆ ∗( γ) ∩ ∗ ( ).

Hence we have ∗
γ
( ) = ∗( γ) ∩ ∗ ( ). In particular, if is a nilpo-

tent block of , then ∗( γ) = ∗( ) (see [11, 3.6]) and so we have that
∗

γ
( ) = ∗( ) and ( ) = ( ). This completes the proof.

We came to know during the circulation of this paper without the last section
that essentially the same fact as Theorem 1.1 was shown in M. Linckelmann [13] and
Corollary 3.5 below also was obtained in it.

As is well known, the nilradical
√

0 of ∗( ) is the intersection of all max-
imal ideals of ∗( ) (see [14]). Recall that ∗( )/

√
0 is a finitely generated

commutative -algebra and ∗( ) is finitely generated as a module over∗( )
(via the restriction map) (see [3, II] and [5]). Thus∗( ) is also finitely generated
(that is, Noetherian) as a module over∗( γ) and so, by [3, II, Section 5.4]
and [14, Section 9, Lemma 2], we have a finite surjective affinemap ι : →
induced by the inclusion mapι : ∗( γ) → ∗( ), where is the maximal
ideal spectrum of ∗( ) and is the maximal ideal spectrum of∗( γ).
Then, Proposition 3.2 shows that for any bounded complex of -modules, we
can define the finite affine map

ι : ( ) −→ ( )

Proof of Corollary 1.2. By Theorem 1.1, it is clear thatι is a surjective map.
Further, Theorem 1.1 shows also that the Krull dimensions of∗( )/ ∗( ) and

∗( γ)/ ∗
γ
( ) coincide. So the dimensions of ( ) and ( ) coin-

cide.

With the notation of Theorem 1.1, let0 be a bounded complex of -modules
such that 0 | and | ⊗ 0. Then, from the proof of Theorem 1.1 we have
also

∗
γ
( ) = ∗( γ) ∩ ∗ ( 0)

Henceι : ( 0) → ( ) is also a finite surjective map.
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Corollary 3.5. Let be an indecomposable -module with vertex . Sup-
pose that the dimension of a source of is not a multiple of . Then we have that

( ) = .

Proof. We see from Lemma 3.4 that | ⊗ . Thus there exists an
indecomposable -module 0 such that 0 | and | ⊗ 0, so that

0 is a source of . By the assumption, we see that
√

∗ ( 0) =
√

0 in ∗( )

from [3, II, Corollary 5.8.5]. Further, by the above it follows that
√

∗
γ
( ) =

∗( γ)∩
√

∗( 0). Thus we have that
√

∗
γ
( ) =

√
0 in ∗( γ), that

is, ( ) = .

As is well known, 0 = Br ( ) is a block of ( ) with the defect group and
is called the Brauer correspondent of . Letγ0 be a defect pointed group of0, and
let 0 ∈ γ0. Since Br ( )( 0) is primitive in ( ), there is a primitive idempotent
∈ ( ) such that = 0 = 0 and Br ( ) = Br ( )( 0). Then belongs to the block
. Indeed, Br ( ) = Br ( ) Br ( ) = Br ( )( 0) Br ( )( 0) = Br ( )( 0) 6= 0. Let γ

be the (( ) )×-conjugacy class of . Then we obtain a defect pointed groupγ of
. Let ( ) be the maximal -Brauer pair corresponding toγ . Note that ( )

is also the maximal 0-Brauer pair corresponding to γ0 .

Corollary 3.6. With the above notation, let 0 be the Brauer correspondent of
and let be a bounded complex of -modules. Suppose that is abelian.

Then we have ∗
( ) 0 γ0

( 0 ) ⊆ ∗
γ
( ), and hence we have that ( ) ⊆

( ) 0( 0 ).

Proof. Theorem 1.1 shows that∗
γ
( ) = ∗( γ) ∩ ∗( ) and

∗
( ) 0 γ0

( 0 ) = ∗( ( ) 0 γ0) ∩ ∗ ( 0 ). As in [10, 5.2.3], if is

abelian, then we have that ∗( γ) = ∗( ) ( )/ ( ) and similarly
∗( ( ) 0 γ0) = ∗( ) ( )/ ( ). So ∗( γ) = ∗( ( ) 0 γ0).

Moreover, from [3, II, Proposition 5.7.5] it follows that∗ ( 0 ) ⊆ ∗ ( ) since

0 = ⊕ ( 0 − ) . Thus we have that ∗
( ) 0 γ0

( 0 ) ⊆ ∗
γ
( ) and so

( ) ⊆ ( ) 0( 0 ).

For Carlson’s module varieties, the following is known. Letbe an abelian Sy-
low -subgroup of , so that ( ) controls the -fusion in . Let be aninde-
composable -module with vertex and let be the Green correspondent of
with respect to ( ( )). Then it follows that ( )∼= ( )( ) (see [2, The-
orem 2.26.9] and [3, I, Proposition 3.8.4]). Therefore, in this case, we see from The-
orem 2.4 that if is the principal block of , then ( )∼= ( ) 0( ) for any
indecomposable -module with vertex and the Green correspondent of .
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Extending this fact to any block of , we obtain Theorem 1.3 as follows from
Lemma 3.7 below. Note that is not necessarily abelian in Lemma 3.7.

With the above notation, let = ( ) be the inertial group of in ( ),
that is, ={ ∈ ( ); = }. Notice that = ( ) = ( γ) (see [16,
Proposition 40.13]), and is also a block of . Using the Clifford theory of blocks,
we have the following.

Lemma 3.7. Let be an indecomposable -module with vertex . Let be
the Green correspondent of with respect to( ( )). Let ∈ γ and 0 ∈ γ0.
(i) We can choose a source0 of such that 0 | and | ⊗ 0, and a
source 0 of such that 0 | 0 and | ( ) 0 ⊗ 0.
(ii) Let 0 and 0 be the sources satisfying the conditions of(i). Then there exists an
element ∈ such that 0

∼= 0 as -modules.

Proof. First of all, we note that if and′ lie in γ, then ∼= ′ and ∼=
′ as -modules, and likewise for0 ∈ γ0. Indeed, let ′ = for an element in

(( ) )×. Then, mapping ∈ to ∈ ′ , we have the isomorphism ∼= ′ as
-modules. By applying this argument, we obtain all other isomorphisms. Thus, the

choices of 0 and 0 in (i) depend only on the pointsγ and γ0. As we have shown
in Corollary 3.5, (i) now follows from Lemma 3.4.

Next we prove (ii). Suppose that∈ γ satisfies = 0 = 0. Now, since is the
Green correspondent of , we have that0

∼= ⊕ ′ and so 0
∼= 0 ⊕ 0

′

where any indecomposable direct summand of′ (and so 0
′) does not have ver-

tex . Here, from | 0 , we see 0 | 0 . Then since 0 has vertex , we see

0 | 0 . Further, we can choose0 ∈ γ0 such that 0 = 0 = 0. Indeed, let ′
0 be a

primitive idempotent in ( ( )) such that ′
0 = ′

0 = ′
0 and Br ( )( ′

0) 6= 0. Let
γ′0 be a point of on ( ) containing′

0. Then from Br ( )( ′
0) = Br ( )( ′

0),

γ′
0

is the defect pointed group of0 corresponding to ( ), because the relation

Br ( )( ′
0) = Br ( )( ′

0) defines a bijection between maximal0-Brauer pairs and
defect pointed groups of0 (see [16, Proposition 40.13]). Thus we see thatγ′0 = γ0.
By this choice of 0 ∈ γ0, we have that 0 | . So it holds that 0 | and
also 0 | . Let = and ( ) = . Using the Clifford theory, we show that
the -module is indecomposable and has vertex . Since0 =

∑
∈ /

and = 0 for 6≡ (mod ), we have that = 0 = ⊗
and so is indecomposable and vertices of contain . On the other hand,
since | 0 ⊗ 0 and 0 = 0, we see that | ⊗ 0 so that

= 0 | 0 ⊗ 0. Here since 0 =
⊕

( )∈[ × / × ] ( ) −1, we
see that (0 ) = . Thus | ( 0 ) ⊗ 0 = ⊗ 0 and so

| ⊗ 0. Therefore we see that has vertex . Further, from0 | ,
we see that 0 is a source of . Now, we also have0 | and so we see that
there is an element∈ such that 0

∼= 0 as -modules.
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Proof of Theorem 1.3. Let 0 and 0 be the sources chosen in Lemma 3.7.
Then, as noted preceding to Corollary 3.5, we see that∗

γ
( ) = ∗( γ) ∩

∗ ( 0) and ( ) 0 γ0
( )∗ = ∗( ( ) 0 γ0) ∩ ∗ ( 0). Now, let ∈ be the

element obtained in Lemma 3.7 and let :∗( ) → ∗( ) be the conjugation
map given by . Then, since = ( ), we see from Definition 2.2 that is
the identity map on ∗( γ). Further it is easy to see that ◦ γ 0 = γ 0 ◦
(for γ 0 and γ 0 see Section 2) and so we have that (∗ ( 0)) = ∗ ( 0) = ∗( 0).
Here, since is abelian, we have that∗( γ) = ∗( ( ) 0 γ0) (see
the proof of Corollary 3.6). Therefore it follows that∗

γ
( ) = ( ∗

γ
( )) =

( ∗( γ)∩ ∗ ( 0)) = ∗( γ) ∩ ∗( 0) = ∗( ( ) 0 γ0) ∩ ∗ ( 0) =

( ) 0 γ0
( ), that is, we have that ( ) = ( ) 0( ).

4. Module varieties and quotient groups

Let be a finite group and let be a central -subgroup of . We denote
/ by ¯ and let : → ¯ be the natural -algebra homomorphism. As is

well known, gives a one to one correspondence from all blocksof onto all
blocks of ¯. In this section we consider relations of the varieties under this corre-
spondence. For a subgroup of , its image in̄ is denoted by ¯. In general,
the mark ¯ will be attached to the quantities associated with¯ and ¯. Let be
a -subgroup of . Consider -algebra homomorphisms : ( )→ ( ¯) ¯ and
composite ( ) : ( ) → ( ) → ¯( ¯) induced by , where ( ) is
the subalgebra of consisting of all -fixed elements and (¯) ¯ likewise. Then
Br ¯

¯ ◦ = ( ) ◦ Br as is well known. Now, since is a central -subgroup we
see that ( ) is a normal subgroup of ¯( ¯) and ¯( ¯)/ ( ) is a -group. In-
deed, for ∈ , let = ′ (where is the -component and ′ is the -regular
component of ) and if ∈̄ ¯( ¯), then we see ′ ∈ ( ) so that ¯( ¯)/ ( )
is a -group.

Lemma 4.1. With the notation above, if is a primitive idempotent in( ) ,
then ( ) remains a primitive idempotent in( ¯) ¯.

Proof. We follow the terminology and arguments in Külshammer-Puig [9]. Let
˜ and (̃ ) be the exomorphisms determined by and ( ), respectively. From

[9, Theorem 3.16], it follows that ˜ is a strict semicovering for any -subgroup

of if and only if (̃ ) is a strict semicovering for any -subgroup of . Now,

from [9, Example 3.9] we see that̃ ( ) is a strict semicovering for any , since
¯( ¯)/ ( ) is a -group. From the fact that̃ is a strict semicovering, we see

that ( ) 6= 0 and that if and are the number of primitive idempotents decompos-
ing unity elements of ( ) and (̄ ) ¯, respectively, then = . So ( ) is primi-
tive.
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Let be a block of , γ a defect pointed group of , and let∈ γ. We set
( ) = ,̄ / = ¯ and ( ) = .̄ Then since is a central -subgroup of ,

we see that̄ is a block of ¯ and ¯ is a defect group of̄ . Further,¯ is primitive
by Lemma 4.1. Also, since ( ) = ( ( )/ ) ∼= ( )/ ( ) ( ) (where

( ) is the radical of ), we see that Br¯
¯ ◦ ( ) = ( ) ◦ Br ( ) 6= 0 and so¯

is local. Therefore, let ¯γ be the (( ¯) ¯)×-conjugacy class of̄ , then ¯
γ̄ is a defect

pointed group of .̄ Recall that ∗( γ) consists of all [ζ] ∈ ∗( ) satisfying
res −1 ◦ −1([ζ]) = res ([ζ]) for any subgroup of and for any ∈ with
( ) ≤ ( ).

Lemma 4.2. Let be a central -subgroup of . In the definition of
∗( γ), we can assume that contains .

Proof. Let ( ) be a -Brauer pair such that ( )≤ ( ). Since
is a central -subgroup, we have that Br = Br . Thus, Br ( ) = Br ( ) =
Br ( ) = Br ( ), and so = and ( )≤ ( ). Also, for an element
∈ , it is clear that ( )≤ ( ) if and only if ( ) ≤ ( ). Fur-

ther, if res −1 ◦ −1([ζ]) = res ([ζ]), then we have that res−1 ◦ −1([ζ]) =
res ([ζ]). So we can replace by in the definition.

Proposition 4.3. With the notation above, let [ζ̄] be an element of ∗( ¯ ¯ ¯̄
γ).

Then inf ¯ ([ζ̄]) belongs to ∗( γ).

Proof. Let ( ) be a -Brauer pair such that ( )≤ ( ) and that
contains . For the block , since is a central -subgroup of ( ),is the
block of ( ). Further, since ¯( ¯)/ ( ) is a -group, we have a unique block

¯ of ¯( ¯) which covers . Then, since ( )≤ ( ), we have (̄ ¯) ≤
( ¯ ¯). Note that (̄ ¯) is the maximal -̄Brauer pair corresponding tō γ̄ . Indeed,

¯ = and so it holds that Br
¯
¯( )̄ ¯ = Br ( ) = Br ( ) = Br

¯
¯( )̄. Also, we see

that if ( ) ≤ ( ) for ∈ , then ¯( ¯ ¯) ≤ ( ¯ ¯). Thus, for an element
[ζ̄] ∈ ∗( ¯ ¯ ¯̄

γ), it follows that

res −1 ◦ −1

(
inf ¯ ([ζ̄])

)
= res −1 ◦ inf ¯−1 ¯ −1 ◦ ¯−1

(
[ζ̄]
)

= inf ¯
(
res¯−1 ¯ ¯ ◦ ¯−1([ζ̄])

)

= inf ¯
(
res¯ (̄[ζ̄])

)

= res
(
inf ¯ ([ζ̄])

)

So we conclude that inf̄ ([ζ̄]) ∈ ∗( γ).

From the above proposition, we can define an inflation map inf¯ :
∗( ¯ ¯ ¯̄

γ) → ∗( γ). Then, since ∗( γ)/
√

0 is a finitely gen-
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erated commutative -algebra (see [11, Theorem 4.2]), the inflation inf¯ induces an
affine map inf∗¯ : → ¯ .̄ Further, for any bounded complex of̄ -̄modules,
which may also be considered as a complex of -modules through → ¯ ,̄
we have Theorem 1.4.

Proof of Theorem 1.4. For the convenience of the proof, when we consider
as a complex of ¯ -̄modules, we denote it bȳ . Then Theorem 1.1 shows that
∗
¯ ¯ ¯̄

γ
( ¯) = ∗( ¯ ¯ ¯̄

γ) ∩ ∗
¯(¯ )̄ and that ∗

γ
( ) = ∗( γ) ∩ ∗( ).

Note that for the chain mapsζ and τ representing [ζ] ∈ Ext ¯(¯ ¯ ¯ )̄ and [τ ] ∈
Ext ( ), inf ¯ ([ζ]) = [τ ] if and only if the following diagram is homotopy
commutative: P( )

��

τ //P( )[ ]

��P(¯ )̄
ζ

// P(¯ )̄[ ]

where the left vertical map is a chain map lifting the identity map → ¯ ¯ and the
right vertical map is its shift. It is easy to see that inf¯ ◦γ¯ ¯ = γ ◦ inf ¯ , so that
we have inf̄ ( ∗

¯(¯ )̄) ⊆ ∗( ) and so inf̄ ( ∗
¯ ¯ ¯̄

γ
( ¯)) ⊆ ∗

γ
( ). Therefore

we can define an affine map inf∗
¯ : ( ) → ¯ ¯( ¯).

5. Inverse images

Under the assumption that the defect groups are abelian, we consider the in-
verse images of the affine maps given in Corollary 1.2 and Theorem 1.4. Our con-
sideration is based on Linckelmann’s following stratification theorem for block vari-
eties of modules [13]. Let be a block of andγ a defect pointed group of
. For any subgroup of , the composite graded algebra homomorphism :
∗( γ) ι // ∗( )

res // ∗( ) induces a finite affine map of varieties

∗ : →

where ι is the inclusion and res is the restriction map. In particular, ∗ : →
is finite surjective (this map is denoted byι in the previous sections). Let

be a finitely generated -module and let∈ γ. Following [13], we now define the
following subvarieties of and :

+ = −∪ < (res )∗ +( ) = ( ) ∩ +

= ∗ + = ∗ +

( ) = ∗ ( ) + ( ) = ∗ +( )
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Theorem 5.1 (Linckelmann [13, Theorem 4.2 and Proposition 4.3]).Let be a
finitely generated -module.
(i) The variety ( ) is the disjoint union of locally closed subvarieties+ ( ),
where runs over the set of subgroups of such that( ) runs over the set
of representatives of the -conjugacy classes of those -Brauer pairs contained in
( ) for which is elementary abelian and ( ) is a defect group of the block

.
(ii) Let be an elementary abelian subgroup of such that( ) is a defect group
of . The group ( ) = ( )/ ( ) acts on the variety +( ), and ∗ in-
duces an inseparable isogeny+( )/ ( ) → + ( ).
(iii) Suppose that is indecomposable with as a vertex and a source of dimension
prime to . Then, for any subgroup of we have ( ) = and +( ) = +.
Further, for any subgroup of we have ( ) = and + ( ) = + .

It is known that a simple -module in of height 0 satisfies the condition
in (iii) (see [7, Corollary 4.6]). So (i) and (ii) give a stratification of also. Using
the above theorem, we show the following which is a block variety version of Avrunin
and Scott [1, Theorem 3.1].

Proposition 5.2. Suppose that is abelian. Let be a subgroup of and let
be a finitely generated -module. Then we have that

( ) = ( ∗ )−1 ( )

Proof. First we show two facts obtained from the assumption that is abelian.
Let ( ) be a -Brauer pair contained in ( ). Then and are Brauer cor-
respondents of , and further is also a Brauer correspondent of . Thus has a
defect group , because has the defect group . So, for any ( )≤ ( ),
satisfies the last condition of Theorem 5.1 (i) (that is, ( ) = is a defect group of

). The second assertion is the following. Let (′ ′ ) also be a -Brauer pair con-
tained in ( ). Suppose that (′ ′ ) = ( ) for some ∈ . Then, by the fu-
sion theorem for Brauer pairs (see [16, Proposition 49.5 andProposition 49.6]), there
is ∈ ( ) such that ′ = ′ for all ′ ∈ ′. Thus, mapping ∈ to

−1 ∈ , we have the isomorphism ∼= as -modules. Further, since
( ) = ( γ), there exists ∈ (( ) )× such that = . Thus, mapping
∈ to ∈ , we have the isomorphism ∼= as -modules. So
∼= as -modules. Therefore the conjugation map :∗( ′ ) → ∗( )

induces an isomorphism of subvarieties′ ( ) ∼= ( ) = ( ).
Clearly ∗ ( ) ⊆ ( ). Conversely, let ∈ ( ∗ )−1 ( ). Applying the

Quillen stratification theorem (see e.g. [1, Theorem 2.2]) to , we can choose an
elementary abelian -subgroup of and∈ + with (res )∗( ) = . On the
other hand, by Theorem 5.1 (i), we can choose an elementary abelian -subgroup
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′ of and ′ ∈ +
′ ( ) with ∗

′ ( ′) = ∗ ( ). Then ∗
′ ( ′) = ∗ ( ) = ∗ ( ).

Thus, by Theorem 5.1 (i) for , we see that -Brauer pairs ( ) and (′
′ )

must be -conjugate. Let ( ) = (′ ′) for an element in . Then since
( ′

′) = ( ) ≤ ( ), we see from the definition of ∗( γ) that
every [ζ] ∈ ∗( γ) satisfies −1 ◦ res ([ζ]) = res ′ ([ζ]) (equivalently,
res −1 ′ ◦ −1([ζ]) = res ′ ([ζ])). Thus we have that ∗( ∗

−1 ( ′)) = ∗
′ ( ′) = ∗ ( ).

Here, note that ∗
−1 : ′ → is equal to the natural map induced by the conjuga-

tion map : ∗( ′ ) → ∗( ). We write ′ for ∗
−1 ( ′). Since ′ and are

contained in + and ∗( ′) = ∗( ) and further ( ) = is a defect group of ,
Theorem 5.1 (ii) for shows that there exists∈ ( ) with ′ = . Now,
since is abelian, we see from the fact stated above that the conjugation map in-
duces an isomorphism ′ ( ) ∼= ( ). Thus is contained in ( ). Therefore

= (res )∗( ) is contained in ( ), so the proposition follows.

Using the above proposition, we show the following, which isa block variety ver-
sion of [6, Theorem 1].

Proposition 5.3. With the notation inSection 4,suppose that is abelian. Let
be a finitely generated ¯ -̄module. Then we have that

( ) = (inf∗¯ )−1
¯ (̄ )

Proof. It is clear that there is a commutative diagram as follows:

inf∗¯

��

∗

//

inf∗¯
��

¯
¯∗¯

// ¯ ¯

Then we have

( ∗ )−1◦(inf∗¯ )−1
¯ (̄ ) = (inf∗¯ )−1◦(¯∗¯)−1

¯ (̄ ) = (inf∗¯ )−1
¯(¯ ) = ( )

where the second equality holds by Proposition 5.2, and the third holds by [6, Theo-
rem 1]. Thus, since∗ : → and its restriction ∗ : ( ) → ( ) are both
surjective, it follows that (inf∗¯ )−1

¯ ¯( ) = ∗ ( ) = ( ). This completes the
proof.

REMARK 5.4. Suppose that is the principal block of . Then we have from
Theorem 2.4 that ( ) = (inf∗¯ )−1

¯ ¯( ), without the assumption that is
abelian. Indeed, from the relationρ ◦ inf ¯ = inf¯ ◦ ρ ,̄ we see that (ρ∗)−1 ◦
(inf∗¯ )−1

¯( ) = (inf∗¯ )−1 ◦ (ρ∗¯)
−1

¯( ) = (inf∗¯ )−1
¯ ¯( ). Further, we see
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from [6, Theorem 1] that (ρ∗)−1 ◦ (inf∗¯ )−1
¯( ) = (ρ∗)−1 ( ) = ( ). So, it

follows that ( ) = (inf∗¯ )−1
¯ ¯( ).
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