ON HAEFLIGER'S OBSTRUCTIONS TO EMBEDDINGS AND TRANSFER MAPS

Dedicated to the memory of Professor Katsuo Kawakubo
Yoshiyuki KURAMOTO and Tsutomu YASUI

(Received May 17, 2001)

1. Introduction and statement of results

Throughout this article, n-manifolds mean compact differentiable (or topological) manifolds of dimension n. The (co-)homology is understood to have \boldsymbol{Z}_{2} for coefficients.

For a manifold V, we denote by $w(V)$ and $\bar{w}(V)\left(=w(V)^{-1}\right)$, the total StiefelWhitney class and the total normal Stiefel-Whitney class of V, respectively. Furthermore, we denote by $U_{V} \in H^{\operatorname{dim} V}(V \times V)$ the \boldsymbol{Z}_{2}-Thom class (or \boldsymbol{Z}_{2}-diagonal cohomology class) of V [10, p. 125]. For a (continuous) map $f: M^{n} \rightarrow N^{n+k}$ between closed manifolds M and N, we define the total Stiefel-Whitney class $w(f)=\sum_{i \geq 0} w_{i}(f)$ by the equation

$$
w(f)=\bar{w}(M) f^{*} w(N)
$$

For a map $f: M^{n} \rightarrow N^{n+k}$, the transfer map (or Umkehr homomorphism) $f_{!}: H^{i}(M) \rightarrow H^{i+k}(N)$ is defined by the commutative diagram below:

$$
\begin{array}{ccc}
H^{i}(M) \xrightarrow{f_{!}} & H^{i+k}(N) \\
\cong \mid \cap[M] & & \\
\cong \mid \cap[N] \\
H_{n-i}(M) \xrightarrow{f_{*}} & H_{n-i}(N)
\end{array}
$$

Here $[V] \in H_{\operatorname{dim} V}(V)$ denotes the fundamental homology class of a manifold V.
Our main theorem is the following
Theorem 1.1. For a continuous map $f: M^{n} \rightarrow N^{n+k}$ between closed topological manifolds, $U_{M}\left(1 \times w_{k}(f)\right)+(f \times f)^{*} U_{N}=0$ if and only if $f^{*} f_{!}(a)=a w_{k}(f)$ for all $a \in H^{*}(M)$.

The cohomology elements, appearing in this theorem, are related to the embeddability of f. A. Haefliger [7, Théorèm 5.2] proved the following

Theorem (Haefliger). If a map $f: M^{n} \rightarrow N^{n+k}$ between topological manifolds is homotopic to a topological embedding, then $w_{i}(f)=0$ for $i>k$ and

$$
U_{M}\left(1 \times w_{k}(f)\right)+(f \times f)^{*} U_{N}=0 \in H^{n+k}(M \times M)
$$

Thus we have immediately the following

Corollary 1.2. If a map $f: M^{n} \rightarrow N^{n+k}$ between closed topological manifolds is homotopic to a topological embedding, then $f^{*} f_{!}(a)=a w_{k}(f)$ for all $a \in H^{*}(M)$.

Remark 1. It is well-known, e.g., [4, p. 246], that if f is homotopic to a differentiable embedding then $f^{*} f_{!}(a)=a w_{k}(f)$ for all $a \in H^{*}(M)$.

Remark 2. As we will see in $\S 3$, the assumption 'homotopic' in Haefliger's theorem or Corollary 1.2 can be weakened to ' R-bordant'.
R.L.W. Brown [4] established the conditions that a map $f: M^{n} \rightarrow N^{n+k}$ is cobordant to a differentiable embedding in the sense of Stong [12]. Here a map $f_{1}: M_{1}^{n} \rightarrow N_{1}^{n+k}$ between differentiable closed manifolds is said to be cobordant to $f_{2}: M_{2}^{n} \rightarrow N_{2}^{n+k}$ if there exist two cobordisms $\left(W, M_{1}^{n}, M_{2}^{n}\right),\left(V, N_{1}^{n+k}, N_{2}^{n+k}\right)$ and a map $F: W \rightarrow V$ such that $F \mid M_{i}=f_{i}(i=1,2)$.

From Theorem 1.1 and Brown's theorem [4], we infer immediately a result which means the converse of Haefligar's theorem up to cobordism of maps in the sense of Stong [12].

Corollary 1.3. Let $k>0$. Then a map $f: M^{n} \rightarrow N^{n+k}$ between differentiable manifolds is cobordant to a differentiable embedding if $w_{i}(f)=0(i>k)$ and $U_{M}\left(1 \times w_{k}(f)\right)+(f \times f)^{*} U_{N}=0$.

For an n-manifold M, we use the same symbol M as the generator of $H^{n}(M) \cong$ \boldsymbol{Z}_{2}, i.e., $H^{n}(M)=\boldsymbol{Z}_{2}\langle M\rangle$, and denote the $H^{p}(M) \times H^{q}(M)$-component of $u \in$ $H^{p+q}(M \times M)$ by $[u]_{p, q}$. To prove Theorem 1.1 we use the following

Proposition 1.4. For a map $f: M^{n} \rightarrow N^{n+k}$ and two elements $x, y \in H^{*}(M)$ with $\operatorname{dim} x+\operatorname{dim} y=r \leq n-k$,

$$
\left[\left(U_{M}\left(1 \times w_{k}(f)\right)+(f \times f)^{*} U_{N}\right)(x \times y)\right]_{n, k+r}=M \times\left(x w_{k}(f)+f^{*} f_{!}(x)\right) y
$$

Using this proposition, we can reformulate Brown's theorem [4] in case $k>n / 2$.

Theorem 1.5. Let $k>n / 2$. Then a differentiable map $f: M^{n} \rightarrow N^{n+k}$ is cobordant to a differentiable embedding if and only if the following two conditions hold:
(1) $\left\langle w_{I}(M) w_{J}(f) w_{i}(f),[M]\right\rangle=0$ for any integer $i(i>k)$ and sequences I, J of nonnegative integers such that $|I|+|J|+i=n$.
(2) $\left(U_{M}\left(1 \times w_{k}(f)\right)+(f \times f)^{*} U_{N}\right)\left(w_{I}(M) \times f^{*}\left(w_{J}(N)\right) w_{K}(M)\right)=0$ for any sequences I, J, K of non-negative integers such that $|I|+|J|+|K|=n-k$.

Here, $w_{I}(M)=w_{i_{1}}(M) \cdots w_{i_{r}}(M)$ and $|I|=\sum_{1 \leq j \leq r} i_{j}$ for a finite sequence $I=$ $\left(i_{1}, \ldots, i_{r}\right)$ of non-negative integers.

The rest of this article is organized as follows: In $\S 2$, we will prove Theorem 1.1, Proposition 1.4 and Theorem 1.5 . $\S 3$ will be devoted to the study of the relation between R-bordism and Haefliger's obstruction. In $\S 4$, we will give some examples of maps $f: M^{n} \rightarrow N^{n+k}$, e.g., a map which is cobordant to a differentiable embedding but not R-bordant to a topological embedding.

2. Proofs

To prove Theorem 1.1 and Proposition 1.4, we use the following two lemmas, the first of which is a slight generalization of [8, Lemma 2].

Lemma 2.1. For a map $f: M^{n} \rightarrow N^{n+k}$ and an element $x \in H^{r}(M)$, we have

$$
\left[(f \times f)^{*} U_{N}(x \times 1)\right]_{n, k+r}=M \times f^{*} f_{!}(x)
$$

Proof. We can choose bases $\left\{u_{i} \mid i \in I\right\}$ and $\left\{v_{i} \mid i \in I\right\}$ for $H^{*}(N)$ such that $\left\langle u_{i} v_{j},[N]\right\rangle=\delta_{i j}$. Then the Thom class U_{N} of N can be described as $U_{N}=$ $\sum_{i \in I} u_{i} \times v_{i}$ by, e.g., [10, Theorem 11.11]. The element $f_{!}(x)$ can be described as $f_{!}(x)=\sum_{i \in I} \alpha_{i} v_{i}\left(\alpha_{i} \in \boldsymbol{Z}_{2}\right)$. Let $I_{0}=\left\{i \in I \mid f^{*}\left(u_{i}\right) x=M\right\}$. Then

$$
\begin{aligned}
\alpha_{i} & =\left\langle\alpha_{i} u_{i} v_{i},[N]\right\rangle=\left\langle u_{i} \sum_{i \in I} \alpha_{i} v_{i},[N]\right\rangle=\left\langle u_{i} f_{!}(x),[N]\right\rangle \\
& =\left\langle u_{i}, f_{!}(x) \cap[N]\right\rangle=\left\langle u_{i}, f_{*}(x \cap[M])\right\rangle=\left\langle f^{*}\left(u_{i}\right) x,[M]\right\rangle \\
& = \begin{cases}1 & i \in I_{0} \\
0 & i \notin I_{0}\end{cases}
\end{aligned}
$$

Thus, $f_{!}(x)=\sum_{i \in I_{0}} v_{i}$ and so $f^{*} f_{!}(x)=\sum_{i \in I_{0}} f^{*}\left(v_{i}\right)$. Hence, we have

$$
\begin{aligned}
{\left[(f \times f)^{*} U_{N} \cdot(x \times 1)\right]_{n, k+r} } & =\left[\left(\sum_{i \in I} f^{*}\left(u_{i}\right) \times f^{*}\left(v_{i}\right)\right)(x \times 1)\right]_{n, k+r} \\
& =\left[\sum_{i \in I} f^{*}\left(u_{i}\right) x \times f^{*}\left(v_{i}\right)\right]_{n, k+r}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i \in I_{0}} M \times f^{*}\left(v_{i}\right)=M \times \sum_{i \in I_{0}} f^{*}\left(v_{i}\right) \\
& =M \times f^{*} f_{!}(x)
\end{aligned}
$$

This completes the proof.

Lemma 2.2. For an n-manifold M^{n}, and an element $x \in H^{r}(M)$, we have

$$
\left[U_{M}(x \times 1)\right]_{n, r}=M \times x
$$

Proof. The Thom class U_{M} can be described as $U_{M}=M \times 1+\sum_{j} a_{j} \times b_{j}$, $\left(\operatorname{dim} a_{j}<n\right)$ and there is a relation $U_{M}(x \times 1)=U_{M}(1 \times x)$ (e.g., [10, Lemma 11.8]). Thus the lemma follows immediately.

Proof of Proposition 1.4. Let $x, y \in H^{*}(M)$ with $\operatorname{dim} x+\operatorname{dim} y=r$. Then, we have

$$
\begin{aligned}
{\left[\left(U_{M}(1\right.\right.} & \left.\left.\left.\times w_{k}(f)\right)+(f \times f)^{*} U_{N}\right)(x \times y)\right]_{n, k+r} \\
& =\left[U_{M}\left(1 \times w_{k}(f)\right)(x \times 1)+(f \times f)^{*} U_{N}(x \times 1)\right]_{n, k+\operatorname{dim} x}(1 \times y) \\
& =M \times x w_{k}(f) y+M \times f^{*} f_{!}(x) y \quad \text { by Lemmas } \quad 2.1-2.2 \\
& =M \times\left(x w_{k}(f)+f^{*} f_{!}(x)\right) y .
\end{aligned}
$$

Thus, the proposition follows.

Proof of Theorem 1.1. First we assume that $U_{M}\left(1 \times w_{k}(f)\right)+(f \times f)^{*} U_{N}=0$. Take any $a \in H^{r}(M)$. Then

$$
\begin{aligned}
0 & =\left[\left(U_{M}\left(1 \times w_{k}(f)\right)+(f \times f)^{*} U_{N}\right)(a \times 1)\right]_{n, k+r} \\
& =M \times\left(a w_{k}(f)+f^{*} f_{!}(a)\right) \quad \text { by Proposition } 1.4
\end{aligned}
$$

Thus we get $f^{*} f_{!}(a)=a w_{k}(f)$ for all $a \in H^{*}(M)$.
Conversely, suppose that $f^{*} f_{!}(a)=a w_{k}(f)$ for all $a \in H^{*}(M)$. Since $U_{M}\left(1 \times w_{k}(f)\right)+(f \times f)^{*} U_{N} \in H^{n+k}(M \times M)$, it is sufficient for our purpose to show that $\left(U_{M}\left(1 \times w_{k}(f)\right)+(f \times f)^{*} U_{N}\right) u=0$ for all $u \in H^{n-k}(M \times M)$. By the Künneth formula, we may assume that $u=a \times b$ with $\operatorname{dim} a+\operatorname{dim} b=n-k$. Then by Proposition 1.4, we have

$$
\begin{aligned}
\left(U_{M}\left(1 \times w_{k}(f)\right)\right. & \left.+(f \times f)^{*} U_{N}\right)(a \times b) \\
& =\left[\left(U_{M}\left(1 \times w_{k}(f)\right)+(f \times f)^{*} U_{N}\right)(a \times b)\right]_{n, n} \\
& =M \times\left(a w_{k}(f)+f^{*} f_{!}(a)\right) b=0
\end{aligned}
$$

Hence we get $U_{M}\left(1 \times w_{k}(f)\right)+(f \times f)^{*} U_{N}=0$.

Proof of Theorem 1.5. The condition (1) of Theorem 1.5 is just a restatement of the condition (i) of Brown's theorem. On the other hand, by the assumption that $k>n / 2$, we have only to consider the case $r=2$ in the condition (ii) of Brown's theorem, which is reduced to

$$
\left\langle f^{*}\left(w_{J}(N)\right) f^{*} f_{!}\left(w_{I}(M)\right) w_{K}(M),[M]\right\rangle=\left\langle f^{*}\left(w_{J}(N)\right) w_{I}(M) w_{K}(M) w_{k}(f),[M]\right\rangle
$$

Applying Proposition 1.4 for $x=w_{I}(M)$ and $y=f^{*}\left(w_{J}(N)\right) w_{K}(M)$, we see that this equality is equivalent to the condition (2) of Theorem 1.5.

3. Relations between \boldsymbol{R}-bordisms and Haefliger's obstructions

The concept of R-bordism of maps is introduced in [3, §3]. Let $f_{i}: M_{i}^{n} \rightarrow$ $N^{n+k}(i=1,2)$ be maps between topological manifolds, where M_{i} 's are closed (while N is not necessarily closed). The two maps are said to be R-bordant if there exist a topological cobordism (W, M_{1}, M_{2}) and a continuous map $F: W \rightarrow N$ such that (1) $F \mid M_{i}=f_{i}(i=1,2)$ and (2) there exsist retractions $r_{i}: W \rightarrow M_{i}(i=1,2)$.

Let $j_{i}: M_{i} \rightarrow W$ be the natural inclusion ($i=1,2$). Then by [6, Theorem 1.2],

$$
\left(r_{2} j_{1}\right)_{*}: H_{*}\left(M_{1}\right) \rightarrow H_{*}\left(M_{2}\right)
$$

is an isomorphism, and by $[3, \S 3]$

$$
f_{1_{*}}=f_{2_{*}}\left(r_{2} j_{1}\right)_{*}: H_{*}\left(M_{1}\right) \rightarrow H_{*}(N) .
$$

In this section, we will prove
Theorem 3.1. Let $f: M^{n} \rightarrow N^{n+k}$ be a map between closed topological manifolds. If f is R-bordant to a topological embedding, then $w_{i}(f)=0(i>k)$ and

$$
U_{M}\left(1 \times w_{k}(f)\right)+(f \times f)^{*} U_{N}=0
$$

This theorem, together with Corollary 1.3, leads to the following
Corollary 3.2. Let $f: M^{n} \rightarrow N^{n+k}$ be a map between closed differentiable manifolds. If f is R-bordant to a topological embedding, then f is cobordant to a differentiable embedding.

Remark 3. If we consider cobordism and embeddings in topological category, the conclusion of this corollary is rather trivial.

Theorem 3.1 follows from Proposition 3.3 (or Corollary 3.4) below and Haefliger's theorem.

Proposition 3.3. Let $f_{i}: M_{i}^{n} \rightarrow N^{n+k}(i=1,2)$ and $g: M_{1}^{n} \rightarrow M_{2}^{n}$ be maps such that $g_{*}: H_{*}\left(M_{1}\right) \rightarrow H_{*}\left(M_{2}\right)$ is an isomorphism and $f_{1_{*}}=f_{2_{*}} g_{*}: H_{*}\left(M_{1}\right) \rightarrow H_{*}(N)$. Then $w\left(f_{1}\right)=g^{*} w\left(f_{2}\right)$ and

$$
\begin{aligned}
U_{M_{1}}\left(1 \times w_{k}\left(f_{1}\right)\right) & +\left(f_{1} \times f_{1}\right)^{*} U_{N} \\
& =(g \times g)^{*}\left(U_{M_{2}}\left(1 \times w_{k}\left(f_{2}\right)\right)+\left(f_{2} \times f_{2}\right)^{*} U_{N}\right) .
\end{aligned}
$$

Proof. Let $\left\{u_{i} \mid i \in I\right\}$ and $\left\{v_{i} \mid i \in I\right\}$ be two bases for $H^{*}\left(M_{2}\right)$ such that $\left\langle u_{i} v_{j},\left[M_{2}\right]\right\rangle=\delta_{i j}$. Then the Thom class $U_{M_{2}}$ of M_{2} can be described as $U_{M_{2}}=$ $\sum_{i \in I} u_{i} \times v_{i}$ (see [10, Theorem 11.11]). Since $g_{*}\left[M_{1}\right]=\left[M_{2}\right]$ and g^{*} is an isomorphism, because so is g_{*}, we have the two bases $\left\{g^{*} u_{i} \mid i \in I\right\}$ and $\left\{g^{*} v_{i} \mid i \in I\right\}$ for $H^{*}\left(M_{1}\right)$ with $\left\langle\left(g^{*} u_{i}\right)\left(g^{*} v_{j}\right),\left[M_{1}\right]\right\rangle=\delta_{i j}$. Hence,

$$
U_{M_{1}}=\sum_{i \in I} g^{*} u_{i} \times g^{*} v_{i}=(g \times g)^{*} \sum_{i \in I} u_{i} \times v_{i}=(g \times g)^{*} U_{M_{2}} .
$$

Since $f_{1_{*}}=f_{2_{*}} g_{*}$, we have $f_{1}^{*}=g^{*} f_{2}^{*}$ and $w\left(f_{1}\right)=g^{*} w\left(f_{2}\right)$ by [3, Theorem 4.2]. Hence we have

$$
\begin{aligned}
U_{M_{1}}\left(1 \times w_{k}\left(f_{1}\right)\right) & +\left(f_{1} \times f_{1}\right)^{*} U_{N} \\
& =(g \times g)^{*} U_{M_{2}}\left(1 \times g^{*} w_{k}\left(f_{2}\right)\right)+(g \times g)^{*}\left(f_{2} \times f_{2}\right)^{*} U_{N} \\
& =(g \times g)^{*}\left(U_{M_{2}}\left(1 \times w_{k}\left(f_{2}\right)\right)+\left(f_{2} \times f_{2}\right)^{*} U_{N}\right) .
\end{aligned}
$$

This completes the proof.
Corollary 3.4. Let $f_{i}: M_{i}^{n} \rightarrow N^{n+k}(i=1,2)$ be maps between closed topological manifolds. If f_{1} is R-bordant to f_{2}, then, $w_{i}\left(f_{1}\right)(i \geq 0)$ and $U_{M_{1}}\left(1 \times w_{k}\left(f_{1}\right)\right)+$ $\left(f_{1} \times f_{1}\right)^{*} U_{N}$ correspond to $w_{i}\left(f_{2}\right)(i \geq 0)$ and $U_{M_{2}}\left(1 \times w_{k}\left(f_{2}\right)\right)+\left(f_{2} \times f_{2}\right)^{*} U_{N}$, respectively, by the canonical isomorphisms.

Remark 4. By virtue of Proposition 1.4 and the fact that for $f: M^{n} \rightarrow N^{n+k}$, $w_{k}(f)+f^{*} f_{!}(1)$ is the Poincaré dual to the element $\theta(f) \in H_{n-k}(M)$ in [3], the results in Theorem 3.1, Proposition 3.3 and Corollary 3.4 are, respectively, somewhat stronger than those in [3, Corollary 4.4, Theorem 4.2 and Corollary 4.3] in case N is a closed manifold.

4. Relations among obstructions to embeddings

For a map $f: M^{n} \rightarrow N^{n+k}$, we describe conditions (0)-(3) below:
(0) $w_{i}(f)=0$ for $i>k$.
(1) $f^{*} f_{!}(a)+a w_{k}(f)=0$ for all $a \in H^{*}(M)$.
(or equivalently, $U_{M}\left(1 \times w_{k}(f)\right)+(f \times f)^{*} U_{N}=0$ by Theorem 1.1.)
(2) $f^{*} f_{!}\left(w_{I}(M)\right)+w_{I}(M) w_{k}(f)=0$ for all sequences I of non-negative integers, where $w_{I}(M)=w_{i_{1}}(M) \cdots w_{i_{r}}(M)$ if $I=\left(i_{1}, \ldots, i_{r}\right)$.
(3) $f^{*} f_{!}(1)+w_{k}(f)=0$.

So far, for a map $f: M^{n} \rightarrow N^{n+k}$ between closed differentiable manifolds, we know

$$
\begin{gathered}
f \text { is homotopic to a topological embedding } \\
\Downarrow \\
f \text { is } R \text {-bordant to a topological embedding } \\
\\
f \text { is cobordant to a differentiable embedding } \\
\\
\\
\\
f \text { is cobordant to a differentiable embedding }
\end{gathered}>(0)+(1)+(2)+(3)
$$

Remark 5. If $k \geq n-4,2 k>n$ and if f satisfies the conditions (0) and (3), then f is cobordant to a differentiable embedding ([1, Theorems (3.6) and (3.9)] and [9, Corollary 1.3]).

Remark 6. Even if f is cobordant to an embedding, the conditions (0) and (3) do not necessarily hold ([8, Remark 2]).

In this section, we will show that
(a) even if f is R-bordant to an embedding, f is not necessarily homotopic to an embedding (see Example 1 below),
(b) the conditions (0) and (2) do not imply the conditions (1) (see Example 2),
(c) the condition (3) does not lead to the condition (2) (see Example 3), and
(d) the conditions (0) and (3) induce the relation (see Proposition 4.1)

$$
f^{*} f_{!}\left(v_{i}(M)\right)=v_{i}(M) w_{k}(f),
$$

where $v_{i}(M)$ stands for the i-th Wu class of M defined by $S q\left(\sum_{0 \leq i} v_{i}(M)\right)=w(M)$.

Example 1. Let $S^{1}=\left\{z \in \boldsymbol{C}^{1}| | z \mid=1\right\}$ be the circle, and let $f: S^{1} \rightarrow S^{1} \times S^{1}$ be a map defined by $f(z)=\left(f_{1}(z), f_{2}(z)\right)=\left(z^{2}, 1\right)$. Then f is not homotopic to an embedding. But f is R-bordant to an embedding.

Remark 7. This example is a modification of an example appearing in earlier versions of [3], but omitted in the final one.

Proof. Suppose that f is homotopic to a topological embedding $g=\left(g_{1}, g_{2}\right)$: $S^{1} \rightarrow S^{1} \times S^{1}$. Then g_{2} is homotopic to the constant map f_{2}. Hence, g_{2} has a lifting $g_{2}^{\prime}: S^{1} \rightarrow \boldsymbol{R}^{1}$. If we put $g^{\prime}=\left(g_{1}, g_{2}^{\prime}\right): S^{1} \rightarrow S^{1} \times \boldsymbol{R}^{1}$, then g^{\prime} is also an embedding.

Identifying $S^{1} \times \boldsymbol{R}^{1}$ with $\boldsymbol{C}^{1}-\{0\}$, we have a topological embedding $g^{\prime}: S^{1} \rightarrow \boldsymbol{C}^{1}-\{0\}$. From now on, the authors owe C. Biasi, J. Daccach and O. Saeki for the proof. Note that $g_{*}^{\prime}: H_{1}\left(S^{1}, \boldsymbol{Z}\right)(\cong \boldsymbol{Z}) \rightarrow H_{1}\left(\boldsymbol{C}^{1}-\{0\}, \boldsymbol{Z}\right)(\cong \boldsymbol{Z})$ maps $a \in \boldsymbol{Z}$ to $2 a$. By the Schoenflies theorem, $g^{\prime}\left(S^{1}\right)$ bounds a region U in \boldsymbol{C}^{1} homeomorphic to the closed 2-dimensional disk. If $0 \notin U$, then g^{\prime} is null-homotopic in $\boldsymbol{C}^{1}-\{0\}$, which is a contradiction. If $0 \in U$, then g^{\prime} represents a generator of $H_{1}\left(\boldsymbol{C}^{1}-\{0\}\right)$, which is also a contradiction. Thus f is not homotopic to an embedding. On the other hand, f is R-bordant to an embedding by [3, Example 4.8].

Example 2. We denote by P^{m} the real projective m-space. Furthermore, $\pi: P^{3} \rightarrow P^{3} / P^{2}=S^{3}$ and $j: P^{l} \subset P^{l+k}$ stand for the natural projection and inclusion, respectively. Let $M^{n}=P^{3} \times P^{l}, N=S^{3} \times P^{l+k}$ and let $f=\pi \times j: M^{n} \rightarrow N^{n+k}$. Then f satisfies (0) and (2), but f does not satisfy (1).

Proof. Put

$$
H^{1}\left(P^{3}\right)=\boldsymbol{Z}_{2}\left\langle x_{1}\right\rangle, H^{1}\left(P^{l}\right)=\boldsymbol{Z}_{2}\left\langle x_{2}\right\rangle, \quad H^{3}\left(S^{3}\right)=\boldsymbol{Z}_{2}\langle s\rangle, \quad H^{1}\left(P^{l+k}\right)=\boldsymbol{Z}_{2}\langle y\rangle .
$$

Then

$$
f^{*}(s)=x_{1}^{3}, \quad f^{*}(y)=x_{2}, \quad w(f)=\left(1+x_{2}\right)^{-l-1}\left(1+x_{2}\right)^{l+k+1}=\left(1+x_{2}\right)^{k} .
$$

Therefore

$$
w_{i}(f)=0 \quad \text { for } i>k, \quad w_{k}(f)=x_{2}^{k} .
$$

The Thom classes of M and N are given by

$$
\begin{aligned}
& U_{M}= \sum_{0 \leq i \leq l} x_{1}^{3} x_{2}^{i} \times x_{2}^{l-i} \\
&+\sum_{0 \leq i \leq l} x_{1}^{2} x_{2}^{i} \times x_{1} x_{2}^{l-i} \\
&+\sum_{0 \leq i \leq l} x_{1} x_{2}^{i} \times x_{1}^{2} x_{2}^{l-i}+\sum_{0 \leq i \leq l} x_{2}^{i} \times x_{1}^{3} x_{2}^{l-i}, \\
& U_{N}= \sum_{0 \leq i \leq l+k} s y^{i} \times y^{l+k-i}+\sum_{0 \leq i \leq l+k} y^{i} \times s y^{l+k-i} .
\end{aligned}
$$

Hence, and because $f^{*}\left(y^{l+1}\right)=x_{2}^{l+1}=0$, we have

$$
\begin{gathered}
{\left[U_{M}\left(1 \times w_{k}(f)\right)+(f \times f)^{*} U_{N}\right]_{n, k}=M \times\left(w_{k}(f)+f^{*} f_{!}(1)\right)=0,} \\
{\left[U_{M}\left(1 \times w_{k}(f)\right)+(f \times f)^{*} U_{N}\right]_{n-1, k+1}=x_{1}^{2} x_{2}^{l} \times x_{1} x_{2}^{k},} \\
M \times f^{*} f_{!}\left(x_{2}^{i}\right)=\left[\left((f \times f)^{*} U_{N}\right)\left(x_{2}^{i} \times 1\right)\right]_{n, k+i}=M \times x_{2}^{k+i} .
\end{gathered}
$$

Thus f does not satisfy the condition (1). But f satisfies (2), because $w_{i}(M)=\binom{l+1}{i} x_{2}^{i}$ and $f^{*} f_{!}\left(x_{2}^{r}\right)=x_{2}^{r+k}=x_{2}^{r} w_{k}(f)$.

Remark 8. The above example shows that a map f satisfying the conditions (0) and (2) is not necessarily R-bordant to an embedding, in particular that a map which is cobordant to a differentiable embedding is not necessarily R-bordant to a topological embedding.

Example 3. Let $\pi: P^{2} \rightarrow P^{2} / P^{1}=S^{2}$ and $j: P^{l} \subset P^{l+k}$ be the natural projection and inclusion, respectively and let $f=\pi \times j: M=P^{2} \times P^{l} \rightarrow S^{2} \times P^{l+k}$. Then, if k is even, the relation $f^{*} f_{!}(1)=w_{k}(f)$ holds, however (2) does not hold.

Proof. As in Example 2, put

$$
H^{1}\left(P^{2}\right)=\boldsymbol{Z}_{2}\left\langle x_{1}\right\rangle, \quad H^{1}\left(P^{l}\right)=\boldsymbol{Z}_{2}\left\langle x_{2}\right\rangle, \quad H^{2}\left(S^{2}\right)=\boldsymbol{Z}_{2}\langle s\rangle, \quad H^{1}\left(P^{l+k}\right)=\boldsymbol{Z}_{2}\langle y\rangle .
$$

Then

$$
w_{1}(M)=x_{1}+(l+1) x_{2}, \quad f^{*}(s)=x_{1}^{2}, \quad f^{*}(y)=x_{2}, \quad w_{k}(f)=x_{2}^{k} .
$$

Just as in Example 2, we have

$$
\begin{aligned}
& M \times\left(w_{k}(f)+f^{*} f_{!}(1)\right)=\left[U_{M}\left(1 \times w_{k}(f)\right)+(f \times f)^{*} U_{N}\right]_{n, k}=0, \\
& \begin{aligned}
M \times\left(w_{1}(M) w_{k}(f)\right. & \left.+f^{*} f_{!}\left(w_{1}(M)\right)\right) \\
& =\left[\left(U_{M}\left(1 \times w_{k}(f)\right)+(f \times f)^{*} U_{N}\right)\left(w_{1}(M) \times 1\right)\right]_{n, k+1} \\
& =M \times x_{1} x_{2}^{k} .
\end{aligned}
\end{aligned}
$$

Thus the relation $f^{*} f_{!}(1)=w_{k}(f)$ holds, however $f^{*} f_{!}\left(w_{1}(M)\right) \neq w_{1}(M) w_{k}(f)$.

Proposition 4.1. Assume that $f: M^{n} \rightarrow N^{n+k}$ satisfies the conditions that $w_{i}(f)=0(k<i)$ and $f^{*} f_{!}(1)=w_{k}(f)$, then

$$
f^{*} f_{!}\left(v_{i}(M)\right)=v_{i}(M) w_{k}(f) \quad(0<i)
$$

Proof. For each $x \in H^{n-k-i}(M)$, we have

$$
\begin{aligned}
x f^{*} f_{!}\left(v_{i}(M)\right) & =v_{i}(M) f^{*} f_{!}(x) \quad \text { by, e.g., [9, Lemma 2.1, (4)] } \\
& =S q^{i} f^{*} f_{!}(x) \text { because } \operatorname{dim} f^{*} f_{!}(x)=n-i \\
& =\left[S q f^{*} f_{!}(x)\right]_{n}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[f^{*} f_{!}(S q(x) w(f))\right]_{n} \quad \text { by, e.g., [9, Lemma 2.1, (2)] } \\
& =f^{*} f_{!}\left(\sum_{0 \leq j} S q^{j}(x) w_{i-j}(f)\right) \\
& =\sum_{0 \leq j} S q^{j}(x) w_{i-j}(f) f^{*} f_{!}(1) \quad \text { by, e.g., [9, Lemma 2.1, (4)] } \\
& =\sum_{0 \leq j} S q^{j}(x) w_{i-j}(f) w_{k}(f) \quad \text { because } f^{*} f_{!}(1)=w_{k}(f) \\
& =\sum_{0 \leq j} S q^{j}(x) S q^{i-j} w_{k}(f) \quad \text { because } w_{i}(f)=0(k<i) \\
& =S q^{i}\left(x w_{k}(f)\right)=v_{i}(M) x w_{k}(f) .
\end{aligned}
$$

Here, $[y]_{j}$ for $y \in \sum_{0 \leq i} H^{i}(M)$ means the j-dimensional component of y. Thus $x f^{*} f_{!}\left(v_{i}(M)\right)=x v_{i}(M) w_{k}(f)$ for all $x \in H^{n-k-i}(M)$. Hence $f^{*} f_{!}\left(v_{i}(M)\right)=$ $v_{i}(M) w_{k}(f)$ by the Poincaré duality.

For $k=1$, the conditions (0) and (3) imply the condition (2), i.e. we have
Proposition 4.2. Assume that $f: M^{n} \rightarrow N^{n+1}$ satisfies the conditions that $w_{i}(f)=0(1<i)$ and $f^{*} f_{!}(1)=w_{1}(f)$, then for all sequences I of non-negative integers, we have

$$
f^{*} f_{!}\left(w_{I}(M)\right)=w_{I}(M) w_{1}(f) .
$$

Proof. By the assumption we have $\bar{w}(M) f^{*} w(N)=w(f)=1+w_{1}(f)=1+$ $f^{*} f_{!}(1)$. Hence $w(M)=f^{*} w(N)\left(1+f^{*} f_{!}(1)\right)^{-1}=f^{*}\left(w(N)\left(1+f_{!}(1)\right)^{-1}\right) \in f^{*} H^{*}(N)$. Thus $w_{I}(M) \in f^{*} H^{*}(N)$ for all I, and therefore we obtain the result since $f_{:}\left(f^{*} y\right)=$ $y f_{!}(1)$ for all $y \in H^{*}(N)$.

References

[1] M.A. Aguilar and G. Pastor: On maps cobordant to embeddings, Bol. Soc. Mat. Mexicana 31 (1986), 61-67.
[2] M.F. Atiyah and F. Hirzeburch: Cohomologie-operationen und charakterristische klassen, Math. Z. 77 (1961), 149-187.
[3] C. Biasi, J. Daccach and O. Saeki: On R-Bordism of maps and obstruction to topological embeddings, Osaka J. Math. 37 (2000), 527-535.
[4] R.L. W. Brown: Stiefel-Whitney numbers and maps cobordant to embeddings, Proc. Amer. Math. Soc. 48 (1975), 245-250.
[5] E. Dyer: Cohomology Theories, Benjamin, New York, 1969.
[6] D.R. Gibbs: Cobordism with retractions, Math. Ann. 203 (1973), 77-88.
[7] A. Haefliger: Points multiples d'une application et produit cyclique reduit, Amer. J. Math. 83 (1961), 57-70.
[8] Y. Kuramoto, T. Murata and T. Yasui: Non-embeddability of manifolds to projective spaces, Math. J. Toyama Univ. 23 (2000), 79-83.
[9] Y. Kuramoto and T. Yasui: On conditions that a map is cobordant to an embedding, Far East J. Math. Sci. Special vol. (2000), Part II, 189-206.
[10] J.W. Milnor and J. D. Stasheff: Characteristic Classes, Ann. of Math. Stud. 76, Princeton Univ. Press, 1974.
[11] E.H. Spanier: Algebraic Topology, McGraw-Hill, New York, 1966.
[12] R.E. Stong: Cobordism of maps, Topology 5 (1966), 245-258.

Yoshiyuki Kuramoto Faculty of Education Kagoshima University Kagoshima 890-0065, Japan e-mail: kuramoto@edu.kagoshima-u.ac.jp
Tsutomu Yasui Faculty of Education Kagoshima University Kagoshima 890-0065, Japan e-mail: yasui@edu.kagoshima-u.ac.jp

