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1. Introduction and statement of results

Throughout this article, -manifolds mean compact differentiable (or topological)
manifolds of dimension . The (co-)homology is understood tohave Z2 for coeffi-
cients.

For a manifold , we denote by ( ) and ¯ ( ) (= ( )−1), the total Stiefel-
Whitney class and the total normal Stiefel-Whitney class of, respectively. Further-
more, we denote by ∈ dim ( × ) the Z2-Thom class (orZ2-diagonal cohomol-
ogy class) of [10, p. 125]. For a (continuous) map : → + between closed
manifolds and , we define the total Stiefel-Whitney class ( ) =

∑

≥0 ( ) by
the equation

( ) = ¯ ( ) ∗ ( )

For a map : → + , the transfer map (or Umkehr homomorphism)

! : ( )→ + ( ) is defined by the commutative diagram below:

( ) !−−−−→ + ( )

∼=


y∩[ ] ∼=



y∩[ ]

− ( ) ∗−−−−→ − ( )

Here [ ]∈ dim ( ) denotes the fundamental homology class of a manifold .
Our main theorem is the following

Theorem 1.1. For a continuous map : → + between closed topological
manifolds, (1× ( )) + ( × )∗ = 0 if and only if ∗

!( ) = ( ) for all
∈ ∗( ).

The cohomology elements, appearing in this theorem, are related to the embed-
dability of . A. Haefliger [7, Théorèm 5.2] proved the following
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Theorem (Haefliger). If a map : → + between topological manifolds is
homotopic to a topological embedding, then ( ) = 0 for > and

(1× ( )) + ( × )∗ = 0∈ + ( × )

Thus we have immediately the following

Corollary 1.2. If a map : → + between closed topological manifolds is
homotopic to a topological embedding, then ∗

!( ) = ( ) for all ∈ ∗( ).

REMARK 1. It is well-known, e.g., [4, p. 246], that if is homotopic toa differ-
entiable embedding then∗

!( ) = ( ) for all ∈ ∗( ).

REMARK 2. As we will see in§3, the assumption ‘homotopic’ in Haefliger’s the-
orem or Corollary 1.2 can be weakened to ‘R-bordant’.

R.L.W. Brown [4] established the conditions that a map : → + is
cobordant to a differentiable embedding in the sense of Stong [12]. Here a map

1 : 1 → +
1 between differentiable closed manifolds is said to be cobordant to

2 : 2 → +
2 if there exist two cobordisms ( 1 2), ( +

1
+

2 ) and a
map : → such that | = ( = 1, 2).

From Theorem 1.1 and Brown’s theorem [4], we infer immediately a result which
means the converse of Haefligar’s theorem up to cobordism of maps in the sense of
Stong [12].

Corollary 1.3. Let > 0. Then a map : → + between differentiable
manifolds is cobordant to a differentiable embedding if( ) = 0 ( > ) and

(1× ( )) + ( × )∗ = 0.

For an -manifold , we use the same symbol as the generator of ( )∼=
Z2, i.e., ( ) = Z2〈 〉, and denote the ( )× ( )-component of ∈

+ ( × ) by [ ] . To prove Theorem 1.1 we use the following

Proposition 1.4. For a map : → + and two elements , ∈ ∗( )
with dim + dim = ≤ − ,

[( (1× ( )) + ( × )∗ )( × )] + = × ( ( ) + ∗
!( ))

Using this proposition, we can reformulate Brown’s theorem[4] in case > /2.

Theorem 1.5. Let > /2. Then a differentiable map : → + is cobor-
dant to a differentiable embedding if and only if the following two conditions hold:
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(1) 〈 ( ) ( ) ( ) [ ]〉 = 0 for any integer ( > ) and sequences, of non-
negative integers such that| | + | | + = .
(2) ( (1× ( )) + ( × )∗ )( ( )× ∗( ( )) ( )) = 0 for any sequences
, , of non-negative integers such that| | + | | + | | = − .

Here, ( ) = 1( ) · · · ( ) and | | =
∑

1≤ ≤ for a finite sequence =
( 1 . . . ) of non-negative integers.

The rest of this article is organized as follows: In§2, we will prove Theorem 1.1,
Proposition 1.4 and Theorem 1.5.§3 will be devoted to the study of the relation be-
tween -bordism and Haefliger’s obstruction. In§4, we will give some examples of
maps : → + , e.g., a map which is cobordant to a differentiable embedding
but not -bordant to a topological embedding.

2. Proofs

To prove Theorem 1.1 and Proposition 1.4, we use the following two lemmas, the
first of which is a slight generalization of [8, Lemma 2].

Lemma 2.1. For a map : → + and an element ∈ ( ), we have

[( × )∗ ( × 1)] + = × ∗
!( )

Proof. We can choose bases{ | ∈ } and { | ∈ } for ∗( ) such
that 〈 [ ]〉 = δ . Then the Thom class of can be described as =
∑

∈ × by, e.g., [10, Theorem 11.11]. The element!( ) can be described as

!( ) =
∑

∈ α (α ∈ Z2). Let 0 = { ∈ | ∗( ) = }. Then

α = 〈α [ ]〉 =

〈
∑

∈
α [ ]

〉

= 〈 !( ) [ ]〉

= 〈 !( ) ∩ [ ]〉 = 〈 ∗( ∩ [ ])〉 = 〈 ∗( ) [ ]〉

=

{

1 ∈ 0

0 /∈ 0

Thus, !( ) =
∑

∈ 0
and so ∗

!( ) =
∑

∈ 0

∗( ). Hence, we have

[( × )∗ · ( × 1)] + =

[(
∑

∈

∗( )× ∗( )

)

( × 1)

]

+

=

[
∑

∈

∗( ) × ∗( )

]

+
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=
∑

∈ 0

× ∗( ) = ×
∑

∈ 0

∗( )

= × ∗
!( )

This completes the proof.

Lemma 2.2. For an -manifold , and an element ∈ ( ), we have

[ ( × 1)] = ×

Proof. The Thom class can be described as =× 1 +
∑ × ,

(dim < ) and there is a relation (× 1) = (1× ) (e.g., [10, Lemma 11.8]).
Thus the lemma follows immediately.

Proof of Proposition 1.4. Let , ∈ ∗( ) with dim + dim = . Then, we
have

[( (1× ( )) + ( × )∗ )( × )] +

= [ (1× ( ))( × 1) + ( × )∗ ( × 1)] +dim (1× )

= × ( ) + × ∗
!( ) by Lemmas 2.1–2.2

= × ( ( ) + ∗
!( ))

Thus, the proposition follows.

Proof of Theorem 1.1. First we assume that (1× ( )) + ( × )∗ = 0.
Take any ∈ ( ). Then

0 = [( (1× ( )) + ( × )∗ )( × 1)] +

= × ( ( ) + ∗
!( )) by Proposition 1.4

Thus we get ∗
!( ) = ( ) for all ∈ ∗( ).

Conversely, suppose that ∗ !( ) = ( ) for all ∈ ∗( ). Since
(1× ( )) + ( × )∗ ∈ + ( × ), it is sufficient for our purpose to show

that ( (1× ( )) + ( × )∗ ) = 0 for all ∈ − ( × ). By the Künneth
formula, we may assume that =× with dim + dim = − . Then by Proposi-
tion 1.4, we have

( (1× ( )) + ( × )∗ )( × )

= [( (1× ( )) + ( × )∗ )( × )]

= × ( ( ) + ∗
!( )) = 0

Hence we get (1× ( )) + ( × )∗ = 0.
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Proof of Theorem 1.5. The condition (1) of Theorem 1.5 is justa restatement
of the condition ( ) of Brown’s theorem. On the other hand, by the assumption that
> /2, we have only to consider the case = 2 in the condition ( ) of Brown’s

theorem, which is reduced to

〈 ∗( ( )) ∗
!( ( )) ( ) [ ]〉 = 〈 ∗( ( )) ( ) ( ) ( ) [ ]〉

Applying Proposition 1.4 for = ( ) and = ∗( ( )) ( ), we see that this
equality is equivalent to the condition (2) of Theorem 1.5.

3. Relations betweenR-bordisms and Haefliger’s obstructions

The concept of -bordism of maps is introduced in [3,§3]. Let : →
+ ( = 1, 2) be maps between topological manifolds, where ’s are closed (while
is not necessarily closed). The two maps are said to be -bordant if there exist a

topological cobordism ( 1 2) and a continuous map : → such that (1)
| = ( = 1, 2) and (2) there exsist retractions :→ ( = 1, 2).

Let : → be the natural inclusion ( = 1, 2). Then by [6, Theorem 1.2],

( 2 1)∗ : ∗( 1)→ ∗( 2)

is an isomorphism, and by [3,§3]

1∗ = 2∗( 2 1)∗ : ∗( 1)→ ∗( )

In this section, we will prove

Theorem 3.1. Let : → + be a map between closed topological mani-
folds. If is -bordant to a topological embedding, then ( ) = 0 ( > ) and

(1× ( )) + ( × )∗ = 0

This theorem, together with Corollary 1.3, leads to the following

Corollary 3.2. Let : → + be a map between closed differentiable man-
ifolds. If is -bordant to a topological embedding, then is cobordant to a differ-
entiable embedding.

REMARK 3. If we considercobordismandembeddingsin topological category, the
conclusion of this corollary is rather trivial.

Theorem 3.1 follows from Proposition 3.3 (or Corollary 3.4)below and Haefliger’s
theorem.
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Proposition 3.3. Let : → + ( = 1, 2) and : 1 → 2 be maps such
that ∗ : ∗( 1) → ∗( 2) is an isomorphism and 1∗ = 2∗ ∗ : ∗( 1) → ∗( ).
Then ( 1) = ∗ ( 2) and

1(1× ( 1)) + ( 1× 1)∗

= ( × )∗( 2(1× ( 2)) + ( 2× 2)∗ )

Proof. Let { | ∈ } and { | ∈ } be two bases for ∗( 2) such
that 〈 [ 2]〉 = δ . Then the Thom class 2 of 2 can be described as 2 =
∑

∈ × (see [10, Theorem 11.11]). Since∗[ 1] = [ 2] and ∗ is an isomor-
phism, because so is∗, we have the two bases{ ∗ | ∈ } and { ∗ | ∈ } for

∗( 1) with 〈( ∗ )( ∗ ) [ 1]〉 = δ . Hence,

1 =
∑

∈

∗ × ∗ = ( × )∗
∑

∈
× = ( × )∗ 2

Since 1∗ = 2∗ ∗, we have ∗
1 = ∗ ∗

2 and ( 1) = ∗ ( 2) by [3, Theorem 4.2].
Hence we have

1(1× ( 1)) + ( 1× 1)∗

= ( × )∗ 2(1× ∗ ( 2)) + ( × )∗( 2 × 2)∗

= ( × )∗( 2(1× ( 2)) + ( 2 × 2)∗ )

This completes the proof.

Corollary 3.4. Let : → + ( = 1, 2) be maps between closed topologi-
cal manifolds. If 1 is -bordant to 2, then, ( 1) ( ≥ 0) and 1(1× ( 1)) +
( 1× 1)∗ correspond to ( 2) ( ≥ 0) and 2(1× ( 2)) + ( 2 × 2)∗ , re-
spectively, by the canonical isomorphisms.

REMARK 4. By virtue of Proposition 1.4 and the fact that for : → + ,
( )+ ∗

!(1) is the Poincaré dual to the elementθ( ) ∈ − ( ) in [3], the results
in Theorem 3.1, Proposition 3.3 and Corollary 3.4 are, respectively, somewhat stronger
than those in [3, Corollary 4.4, Theorem 4.2 and Corollary 4.3] in case is a closed
manifold.

4. Relations among obstructions to embeddings

For a map : → + , we describe conditions (0)–(3) below:
(0) ( ) = 0 for > .
(1) ∗

!( ) + ( ) = 0 for all ∈ ∗( ).
(or equivalently, (1× ( )) + ( × )∗ = 0 by Theorem 1.1.)
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(2) ∗
!( ( )) + ( ) ( ) = 0 for all sequences of non-negative integers,

where ( ) = 1( ) · · · ( ) if = ( 1 . . . ).
(3) ∗

!(1) + ( ) = 0.
So far, for a map : → + between closed differentiable manifolds, we

know

is homotopic to a topological embedding
⇓

is -bordant to a topological embedding⇒ (0) + (1)
⇓

is cobordant to a differentiable embedding⇐ (0) + (2)
⇓

is cobordant to a differentiable embedding; (0) + (3)

REMARK 5. If ≥ − 4, 2 > and if satisfies the conditions (0) and (3),
then is cobordant to a differentiable embedding ([1, Theorems (3.6) and (3.9)] and
[9, Corollary 1.3]).

REMARK 6. Even if is cobordant to an embedding, the conditions (0) and (3)
do not necessarily hold ([8, Remark 2]).

In this section, we will show that
(a) even if is -bordant to an embedding, is not necessarily homotopic to an
embedding (see Example 1 below),
(b) the conditions (0) and (2) do not imply the conditions (1)(see Example 2),
(c) the condition (3) does not lead to the condition (2) (see Example 3), and
(d) the conditions (0) and (3) induce the relation (see Proposition 4.1)

∗
!( ( )) = ( ) ( )

where ( ) stands for the -th Wu class of defined by
(
∑

0≤ ( )) = ( ).

EXAMPLE 1. Let 1 = { ∈ C1 | | | = 1} be the circle, and let : 1 → 1 × 1

be a map defined by ( ) = (1( ) 2( )) = ( 2 1). Then is not homotopic to an
embedding. But is -bordant to an embedding.

REMARK 7. This example is a modification of an example appearing in earlier
versions of [3], but omitted in the final one.

Proof. Suppose that is homotopic to a topological embedding= ( 1 2) :
1→ 1 × 1. Then 2 is homotopic to the constant map2. Hence, 2 has a lifting
′
2 : 1 → R1. If we put ′ = ( 1

′
2) : 1 → 1 × R1, then ′ is also an embedding.
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Identifying 1×R1 with C1−{0}, we have a topological embedding′ : 1→ C1−{0}.
From now on, the authors owe C. Biasi, J. Daccach and O. Saeki for the proof. Note
that ′

∗ : 1( 1 Z)(∼= Z) → 1(C1 − {0} Z)(∼= Z) maps ∈ Z to 2 . By the
Schoenflies theorem, ′( 1) bounds a region inC1 homeomorphic to the closed
2-dimensional disk. If 0/∈ , then ′ is null-homotopic inC1 − {0}, which is a con-
tradiction. If 0 ∈ , then ′ represents a generator of1(C1 − {0}), which is also
a contradiction. Thus is not homotopic to an embedding. On the other hand, is

-bordant to an embedding by [3, Example 4.8].

EXAMPLE 2. We denote by the real projective -space. Furthermore,
π : 3→ 3/ 2 = 3 and : ⊂ + stand for the natural projection and inclusion,
respectively. Let = 3 × , = 3 × + and let =π × : → + . Then

satisfies (0) and (2), but does not satisfy (1).

Proof. Put

1( 3) = Z2〈 1〉 1( ) = Z2〈 2〉 3( 3) = Z2〈 〉 1( + ) = Z2〈 〉

Then

∗( ) = 3
1

∗( ) = 2 ( ) = (1 + 2)− −1(1 + 2) + +1 = (1 + 2)

Therefore

( ) = 0 for > ( ) = 2

The Thom classes of and are given by

=
∑

0≤ ≤

3
1 2× −

2 +
∑

0≤ ≤

2
1 2× 1

−
2

+
∑

0≤ ≤
1 2 × 2

1
−

2 +
∑

0≤ ≤
2 × 3

1
−

2

=
∑

0≤ ≤ +

× + − +
∑

0≤ ≤ +

× + −

Hence, and because∗( +1) = +1
2 = 0, we have

[ (1× ( )) + ( × )∗ ] = × ( ( ) + ∗
!(1)) = 0

[ (1× ( )) + ( × )∗ ] −1 +1 = 2
1 2× 1 2

× ∗
!( 2) = [(( × )∗ )( 2× 1)] + = × +

2
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Thus does not satisfy the condition (1). But satisfies (2), because ( ) =
( +1)

2

and ∗
!( 2) = +

2 = 2 ( ).

REMARK 8. The above example shows that a map satisfying the conditions (0)
and (2) is not necessarily -bordant to an embedding, in particular that a map which
is cobordant to a differentiable embedding is not necessarily -bordant to a topological
embedding.

EXAMPLE 3. Let π : 2 → 2/ 1 = 2 and : ⊂ + be the natural projec-
tion and inclusion, respectively and let =π × : = 2 × → 2 × + . Then,
if is even, the relation ∗

!(1) = ( ) holds, however (2) does not hold.

Proof. As in Example 2, put

1( 2) = Z2〈 1〉 1( ) = Z2〈 2〉 2( 2) = Z2〈 〉 1( + ) = Z2〈 〉

Then

1( ) = 1 + ( + 1) 2
∗( ) = 2

1
∗( ) = 2 ( ) = 2

Just as in Example 2, we have

× ( ( ) + ∗
!(1)) = [ (1× ( )) + ( × )∗ ] = 0

× ( 1( ) ( ) + ∗
!( 1( )))

= [( (1× ( )) + ( × )∗ )( 1( )× 1)] +1

= × 1 2

Thus the relation ∗
!(1) = ( ) holds, however ∗

!( 1( )) 6= 1( ) ( ).

Proposition 4.1. Assume that : → + satisfies the conditions that
( ) = 0 ( < ) and ∗

!(1) = ( ), then

∗
!( ( )) = ( ) ( ) (0< )

Proof. For each ∈ − − ( ), we have

∗
!( ( )) = ( ) ∗

!( ) by, e.g., [9, Lemma 2.1, (4)]

= ∗
!( ) because dim ∗

!( ) = −
= [ ∗

!( )]
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= [ ∗
!( ( ) ( ))] by, e.g., [9, Lemma 2.1, (2)]

= ∗
!




∑

0≤
( ) − ( )





=
∑

0≤
( ) − ( ) ∗

!(1) by, e.g., [9, Lemma 2.1, (4)]

=
∑

0≤
( ) − ( ) ( ) because ∗

!(1) = ( )

=
∑

0≤
( ) − ( ) because ( ) = 0 (< )

= ( ( )) = ( ) ( )

Here, [ ] for ∈∑0≤ ( ) means the -dimensional component of . Thus
∗

!( ( )) = ( ) ( ) for all ∈ − − ( ). Hence ∗
!( ( )) =

( ) ( ) by the Poincaré duality.

For = 1, the conditions (0) and (3) imply the condition (2), i.e. we have

Proposition 4.2. Assume that : → +1 satisfies the conditions that
( ) = 0 (1 < ) and ∗

!(1) = 1( ), then for all sequences of non-negative
integers, we have

∗
!( ( )) = ( ) 1( )

Proof. By the assumption we have ¯ ( )∗ ( ) = ( ) = 1 + 1( ) = 1 +
∗

!(1). Hence ( ) = ∗ ( )(1 + ∗
!(1))−1 = ∗( ( )(1 + !(1))−1) ∈ ∗ ∗( ).

Thus ( )∈ ∗ ∗( ) for all , and therefore we obtain the result since!( ∗ ) =

!(1) for all ∈ ∗( ).
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