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1. Introduction

Let D be the unit disc of the complex plane aid be the normalazed mea-
sure onD . Littlewood and Paley [6] proved the following theor

Theorem (Littlewood-Paley). Let 2 < p < oo. If f € LP(OD) and if F is
the Poisson integral off, then

27
; do
[ Ivr@ra-prtaao <cr [ nenr s
D 0 4
where C is a constant independent ff apd

In relation with this theorem, the following problem has besxtensively studied
(see [3], [4], [B], [6], [7], [10], [11] and references thérg Let @ be a domain irR”".
Given p, g and a differential monomial™ of orderm , find (locally finite) positive
Borel measured anddv such that the inequality

1/q 1/p
(L.1) ( / Iamfl"du) sc( / Qlfl”dV>

holds for all f harmonic orR. In the case wherdv is given by the Lebesgue mea-
sure on the boundary, complete characterizations have ke@nn either on the ball
or on the upper half-space. The cas& 2 = ¢ < oo was solved by Shirokov [10, 11]
on the disc and the case 8 p < ¢ < ~ is solved by Luecking [5] on the upper
half-space. All those characterizations are given in teah<arleson type criterion.
For other cases whered p=¢g <2 or 0< g < p < oo, characterizations are given
in terms of the so-called “tent” spaces ([5]) or “balayéeshditions ([3]) on the up-
per half-space. In [3] Gu actually studied the case whkres given by anA, -weight,
but only form =0.

More recently, on the unit ball o€" with an A, -weight given on the boundary,
Kang and Koo [7] considered holomorphic functions and ttwetinary, normal and
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complex tangential derivatives of all orders. In this papee continue investigating
the problem in that direction for harmonic functions on ttedl.bHere, we confine our-
selves to the casesLp =g < oo and 1< p < g < oc.

Fix an integern > 2 and letB =B, be the unit ball oR". In this paper we
take 2 = B, consider various derivatives of all orders, and attarize locally finite
positive Borel measured; which satisfies (1.1) for all harmonic functions, in case
dv is given by anA, -weight. To state our results, let us introdgoee notations.
For ¢ € 9B and¢ > 0, define ballsS;(¢) and their “tents’@(;(g) by

Ss(Q)={n€ 9B :|¢ —n| <4},

(1.2) -
Ss(Q)={ze€ B:|¢C—z| <4}

Also, let Df denote the radial derivative of and It f denote tangential deriva-
tives of f (see Section 2 ). For aAa, -weighton dB (simply w € A,), we write
hP(w) for the harmonic Hardy space with weight For simplicity we let

w(S) :/Swdo

for a Borel setS C dB. Here,do denotes the surface area measureddn

The following is our main result. As expected, weighted unadies are character-
ized by weighted Carleson type conditions of measures uodesideration. Here, we
use the conventional multi-index notation.

Main Theorem. Assume2 < p=g <ocoOrl1<p<g < oo. Letw € A, and
« be a multi-index withla| =m > 1. Then for a locally finite positive Borel measure
dp on B, the following are equivalent.

(L) 1[85(0)] < Cw[Ss(O)]"Psm forall ¢ € HB and§ > 0.
@) D" fllLagy < ClI Iy forall f e h?(w).

3) > 15/=m 177 fllzoqy < ClIf for all f € h?(w).

() [10° fllLagy < ClIfllwry — forall fehr?(w).

As mentioned above, the case =0 (on the upper half-spacenisined in [3].
On the other hand, our results extend those of [7] concerhiigmorphic functions.
Proofs are divided into two cases. See Section 3 fgr 2=¢ < oo and Section 4 for
1< p <g < oo. In Section 5, we prove the “little oh” version of our main ¢inem.

Notation.  Throughout the paper we use the same lefter (often withcsipis)
for various constants which may depend on given measures@né parameters such
asn,p,q andm , but it will always be independent of particularctions, balls or
points, etc. Also, we use the abbreviated notatibrt B if there exists an inessential
positive constanC such that < CB. Thus,A ~ B meansA < B and B < A.
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2. Preliminaries

For a given multi-indexa = (asq, ..., o) With eacha; a nonnegative integer, we
use notationga| = ar+---+ay, ol =gl -l x* =X xf and 9 = Ot - - O
where d; denotes the differentiation with respect fo -th variable.

For a function f € C(B), we let Df denote the radial derivative of . More
explicitly, we let

Df(x)=> x;0;fx) (x €B).
j=1
Note that if f is harmonic, then so B f.
Since there is no smooth nonvanishing tangential vectait beloB for n > 2, we
define tangential derivatives by means of a family of tangénector fields generating
all the tangent vectors. We define tangential derivatifgg of f € C'(B) by

Tij f(x) = (xi0; —x;0) f(x)  (x € B)

for 1 < i < j < n. As in the case of radial derivatives, tangential deriesiv
of harmonic functions are again harmonic. Given a nontrimalti-index «, we abuse
the notation7® = 7}10‘;1 . 7:‘*] for any choice ofiy,...,i, and ji, ..., j..

By the mean value property of harmonic functions and Cauckegtimates, we
have the following lemma. See [1, Chapter 8] for a proof. Hanel in what follows,

dV denotes the Lebesgue measureRh

Proposition 2.1. Let1l < p < oo and a be a multi-index. Suppos¢g is har-
monic on a domair2 irR". Then we have

Ccr

[e% 4 <
|a f('x)| —_ d(x,@Q)’”I"‘”

/IfI”dV (x € Q)
Q

whered(x, 02) denotes the distance from &D. The constanC depends only an
and a.

Let 1< p < oo andw be a weight function o®B. We sayw € A, if w satisfies
the A, condition of Muckenhoupt (see [9]), that is, there exetconstanC such that

p—1
w(S) (/wl/(pl)do) < C|S|P
S

for all S = S5(¢). Here, |S| = o(S). Note thatA, -weights are doubling measures by
Holder’s inequality. Namely, to each € A, there corresponds a “doubling” constant
C,, such that

(2.1) w[825(¢)] < Cuw[S5(Q)]
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for any é > 0 and( € 9B.

Forw e A,, let L? (w) = L?(wdo). The weighted harmonic Hardy spasé w) (is
then the space of all harmonic functioffs @n  for whithf € L?P(w) and define
| fllarw) = |IN fl|Lr(). Here, N'f denotes the nontangential maximal function of
defined by

Nf@ﬁ=3@ﬂﬂﬂL (e dB

whereT () is the nontangential approach region
M@ ={xeB:jx—¢l<2(1-[x)}

By the local Fatou theorem everg € h”(w) has nontangential limit, which we again
denote byf , at almost all boundary points. Note tifat L”(w) for f € h?(w), be-
cause|f| < N f on 9B. It is well known that||f||ir(w) =~ || f]|Lrw) (S€€ Lemma 3.1
below). Also, note thatL” «f) C L%o) for w € A,. Thus, for eachf € h?(w),
the Poisson integral of its boundary function is well definbtbreover, it is not hard
to see that eaclf € h”(w) is recovered by the Poisson integral ffe L?(w).

3. The Case Xp=Qq<

This section is devoted to the proof of the main theorem fer ¢chse 2< p =
q < oo. The proof will be completed in the following order:

1= @ Q)= ©2+0)
@ = @D = @D @ = @

Our proof of (1) = (4) depends on the weighted inequalities for the nontan-
gential operator and the so-called area integral operktorx € B, put

r(x)=1— |x|.

For a functionf harmonic oB , the area integral funct®y is then defined by

1/2
SFO) = ( / . |Vf|2r2—"dV)

for ¢ € OB. For the operatorss and A/, the weighted inequalities below with respect
to A,-weights are well known. In fact, the first inequality belis proved on the up-
per half-space in [12, Theorem 2 of Chapter VI], and one may aissimilar argu-
ment to obtain the same on the ball. On the other hand, since eighis are precisely
those ones with respect to which the standard Hardy-Litttelvmaximal operator sat-
isfies weighted inequalities, the second inequality belsvaiconsequence of the fact
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that the nontangential maximal operator is dominated byHhedy-Littlewood maxi-
mal operator (see [8, Theorem 3] or [1, Theorem 6.23]).

Lemma 3.1. For 1< p < oo andw € A, the inequalities

1SS

Lr(w) < C||f]

Lr(w)s IV f]

Lrw) < ClIf]

Lr(w)
hold for functionsf € h?(w).

We also need relations between various balls. Foe B, let B(x) be the ball
centered atc  with radius x(/3%. Noter )~ r(y) for y € B(x) or x € B(y).

Lemma 3.2. Letx € B andy € B(x). Puty =|y|n wheren € 9B. Then the fol-
lowing hold.

(1) B(x) C Sarn)(1)-
(2) ye(Q) forany (e S

Proof. Fory € B(x), we have

) — r() < Jx — y] < )

4
and thusr £ X 2r(y). It follows that, forz € B(x),
n—zl <ln—yl+[y—z| <r(y)+ig) < 2r(y).
This shows the first part of the lemma. Next, assujre S,(,)(n). Then
IC=yl<[C=nl+n—y[=|C—nl+@-1]y)) <2r ()
and thereforey € I'(¢). ]

Proof of (1) = (4). Assume (1) holds. Le¥ € hP(w). First, note that we
have by Proposition 2.1

(3.1) 107 FQOI? < ()P / VfPdv  (x < B).

B(x)

Also, for anyy € B, we have by assumption and doubling property

(32) i [S20 )| S @ [Sro)] rG)™ S Coow [Syin()] r(3)™

wherey =|yn, n € OB.
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Now, integrate both sides of (3.1) against the measlrginterchange the order
of integrations using Lemma 3.2, and then apply (3.2). Whathave is

/|80‘f(x)|P du(X)S/r(X)”"W’”/ IV f)P dydp(x)
B B B(x)
—mp—n+p < l
S/BIVf(y)I”r(y) r ’M[Szr@)<|y|)} dy
—n+ Y
SCW/BIVf(y)I”r(y) ”w[Sr(y) (Mde-

Here and elsewherely &V y( ). Thus, interchanging the order tefgiations once
more, we have

/ 0% ()P dpu(x) < / IV )PP () / Q) do(Q)dy
B B Srn /1y

(3.3) < /8 ) / [TIOPR) 77 dy e do

where the second inequality holds by Lemma 3.2. Note that

p—2
/ lVfIPr"+”dV<<supr(y)|Vf(y)|> / IV 22 dv
) yer() r'©)
SINFQIPASFOF

for all ¢ € 9B. The second inequality of the above holds by Proposition derting
the above into (3.3) and then applying Holder's inequalitg finally have

/ 10 F1P dy < / N 1728 f P do
B OB

1-2/p 2/p
([ prves) ([ o)

S/ |flPwdo.
OB

Here, the last inequality follows from Lemma 3.1. This coeips the proof. U

Proof of (1) = (2)+(3). Assume (1) holds. Then, for each nonnegative arteg
k < m, we have

1[85(0)] S w[Ss(¢)] 0"
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for all € 9B andd > 0. Thus, since we already have (8= (4), the above yields

0 ”d</ Pwd
Z/B| frdus | |f17wdo

o] <m

for all f € h?(w), which trivially implies (2) and (3). The proof is complete U

Before proceeding to the proofs of other implications, wetfintroduce some no-
tations. Lety be the Newtonian potential. i.e.,

log |x| for n=2
3.4 x) =
(3.4) o) {|x|”+2 for n>2

By induction one may verify that, to each multi-index# 0, there corresponds a (har-
monic) homogeneous polynomigl, of degree|y| such that

(3.5) 07p(x) = g (x)[x[ 2172,
Now, for 6 > 0 and(, n € 0B, definey; ¢, by
@s.¢cn(x) = o(x — ¢ = dn).

Note that we have by (3.5) and homogeneitygof

|18 1]z2= ()
.
(36) |8 @5,(,7](X)| S |x —C—(S’r]|”+‘7|_2‘

We will use these functions as test functions in the proofalbther remaining im-
plications. We first prove some properties of those funestidror simplicity we write
S5(¢) = S5 and S5(¢) = S5. Recall thatC,, is the “doubling” constant ofs € A, intro-
duced in (2.1). In what followg - n denotes the euclidean inner product eh.

Lemma 3.3. Letw € A, and v be a multi-index such tha€,, < 27!. Then
there exists a constar@, , such that

v _wS)
/83 07 ¢s5,¢n|Pwdo < Cpy (6¢C - n)P(r*vl=2)

forall 0<d<land(, nedB with(-n>0.

Proof. Assumed < 1 and(, n € 9B with (- > 0. Let N = |y|. Note
V1+25¢-n<|¢+0n| <2 Thus, for§ € OB, we have

|E—=C—on[>[¢+dn|—-12dC-n
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and thus, by (3.6),

@7 0 escaO] S gEl2, e om.

For £ ¢ Sxs, k > 1, we have
E—C—an 26—l -0226-622%

and thus, by (3.6),

38) 005 S D €€ Sy \ S

for all k > 1. Also, sinceC,, < 2V, we have by doubling property
W(Spg) < CEw(S5) < 2VED(S5)

for eachk > 0. Thus, it follows from (3.7) and (3.8) that
| 10gscalrwdo= [ escapodos Y [ escalrode
OB Sas k=1 7 Sok+15\ Sk s

2Yw(S5) S —k[p(n+N—2)—N
§||gv||Lm(a)W22 [plreN=2)=n]
k=0

w(Ss)

= Coa e yran—2)

as desired. The proof is complete. ]
For £ € OB, let D¢ denote the differentiation in the direction 6f

Lemma 3.4. For each positive integem there exists a constéht # 0 such

| )

for all ¢ € 9B and x # 0 such that¢-x < 0. The constant involved i® (1—[¢-x/|x||)
depends only om ang

Cn X
Dlo(x)=— " _|1+0 (1— ¢ =
¢ elx) |x|n+m2{ < ’5 ]

Proof. Letm be a positive integer. Léte 0B, x # 0 and assumé - x < 0. Put
n =x/|x|. A simple calculation yields

D™= ki, De[(6 0] = ke
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for integersk > 0. Thus, by induction, one can show that there are coeffient=
cj(m) such that

. _ (& - xym2
rox)= > ijn_zm

0<j<m/2

= (DS el

0<j<m/2

Note > ¢; = Dg"(p(f) which is a nonzero (by a direct calculation) constant ddpen
only onn andm . Thus, letting,, 3 ¢ # 0, we have

S oglenm A =cu[1 01— (¢ 7))
0<j<m/2
where the constant involved i@ ¢ 7|) is easily seen to depend only an  amd
The proof is complete. U

Proof of (2) = (1). Assume (2) holds. First, fix a large positive integér
such thatC,, < 2. Let ¢ € dB. For 0< ¢ < 1, put f5 = DVys where ps = ¢s.¢.c.
Then f;5 is harmonic onB. We have by assumption and Lemma 3.3

- w(Ss)
(3.9) Jmsirans [ \frodo < gass.

Now, considery € S.; wheree < 1/2 is a small positive number to be chosen
in a moment. Note that

|
DY ) =y %yvavfa(y).
ly|l=m '
Also, note
|
D" f(y)= Y %y”mfa(yHEmf(s(y)
|yl=m '

for some differential operatok,, of ordem( 1) with smooth coefficients. Therefore,
we have

(3.10) D" f5(3) = [y D)y S500) * Enn F5(0).

We first estimate the first term of the right side of (3.10). Put y — ¢ — 6¢ and
£=y/ly| € Ses. Then,o(1—¢€) < |z|] < 0(1 +¢€) and thus|z| ~ §. Therefore we have

£2=(E€—-¢- (=00 —-0<06(2-1)<0
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and

z
£ =
‘ 2|
Note Dgws(y) = Dip(y — ¢ — &¢) for any integerk > 1. Hence, by Lemma 3.4, we
have

> 1 — 2e.

~

DY fs(0) = DYy — ¢~ 60) =zt [140(9).

Recall thatC; # O is a constant depending only an amd N+ and the same is true
for the constant involved ir© e]. Next, for the second term of the right side of (3.10),
it is straightforward to see from (3.6) that

(3.11) |E, f35(y)] S 5 Nm=3),

Since |y| = 1, combining these estimates, we have by (3.10)

1+0 o
D50 = e SO

so that we can fix and do sufficiently small such that

1 ~
(3.12) D" f5()| = SN2 y € Ses, 0 < do,

which is a uniform estimate independent@fand . Thus, foré < o, we obtain from
(3.12) and (3.9)

E B — w(S5)
§pn+N+m—2) ~ /\6 |D f6|pd'u’5 §pn+N—2)

€

so that
(1(Ses) < 6™Pw(Ss) < 5" w(Ses)

where the second inequality holds by doubling property. Seéguently, ford < edg, we
have

(3.13) 11(S5) < 8" w(S5)

and this estimate is independent ¢f Note that the above argument shows that
/KSE(;O) < oo for all ( € 9B. Sincedy is locally finite, it follows thatdyu is a finite
measure. Thus, fof > edp, we also have (3.13) by doubling property. This completes
the proof. U
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Proof of (3) = (1). Assume (3) holds. As above, fix a large positive integer
N such thatC, < 2V. Let ¢ € 9B and chooset € OB such that¢ - ¢ = 0. Let
n=e+vV1—e2& wheree < 1/2 is a small positive number to be chosen later. For
0< 4 < 1, this time we letfs = Dg’gog whereps = p5.¢.,. Then f5 is harmonic OnB.
Since( -n = ¢, we have by assumption and Lemma 3.3

m w(Ss)
/] D Pduy < Podo < ——=2
(31 ) /B | f5| 2N /63 |f6| wao 3 (65)17(”+N_2)‘

Considery € S.s and putz =y — ¢ — 6n. Then,86(1— €) < |z| < §(1 +¢) and thus
|z| & 3. Sincen - £ =v1—¢€2>1—¢, we have

£:2=(y—0Q-§—0n-£<62e-1)<0

and
’5 S > 1 2
|z|
Therefore, by Lemma 3.4, we have
3.15 D = py*” o= —SL 1140
(3.15) ¢ f5(¥) = D¢ ™p(y —C — ﬁ)—m[ ©]

where C; # 0 is a constant depending only en and N+  and the same is true
for the constant involved ir0 €). Now, since¢ - ¢ = 0, we can find coefficients;;
¢ij(¢, &) such that

DEf&(C):Tfé(C), T:ZCUZJ‘

Moreover, as in the proof of Proposition 5.2 of [2], we may fititbse coefficients
in such a way that sy [c;; (¢, §)| < cc. Let

aj(x, f) = Zc;jxl- — ZCJ',')C,'
i<j i>j

for eachj . Pua =da,...,a,). Then, we have

T 50 = (3 a50:99;)" f5)

= Y 5 0.0 H0) * Enfil0)
|Bl=m =

=DIfs(0)+ Y
|B]=m

m!

771702 ) = 7107 £50) + Enf5(0)
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where E,, is a differential operator of ordem (— 1) with smooth coefficients. Note
a(¢, &) = &. Thus, sincec;; ’s are uniformly bounded, we have

la(y, &) — €| < Coly — (| < C2ed,  y € Ses

for some constan€, depending only om . Also, by (3.6) we have

o~

Cs
Z 107 f5 ()| < SN2 Y € Ses
|Bl=m

whereC3 is a constant depending only en amd N+ . Thus, fof S.s, we have

)
I 500 = DE SO+ ooy * En o).

Therefore, by (3.15) and (3.11), we can &ix> 0 anddp > O such that

1 ~
(3.16) T fs(»)| ~ SN2 V€ Sess 0 < do.

Now, for the rest of the proof, one may proceed as in the préo2p — (1) by
using (3.14) and (3.16). The proof is complete. [l

Proof of (4) = (1). Assume (4) holds. By compactness @B, it suffices to
give local estimates. So, fix € 9B and assume& < 0B, ( - n > 1/2. Sincey is
harmonic and not a polynomial, we can chogse= 3(n) such thato*9%p(—n) # 0
andC, < 28l Let N = |B|. For 0 < § < 1, put f5 = 0% ps where ps = ps.c.,
fs =90° ps.c.n. Then f5 is harmonic onB. Since( -1 > 1/2, we have by assumption
and Lemma 3.3

w(Ss)
(3.17) /B |8’Yf6|pd/i 5 /88 |f5|pwd0 = Cl5P(n+N—2)

whereC1 = C1(p, n) is a constant independent ¢fand §.
Considery € S.s wheree = ¢() < 1/2 is a small positive constant to be chosen
in a moment. Put =)(—¢)/§ and~ =« + 3. Then, by (3.5), we have

« — — —(n+N+m— <—
(3.18) A f5(y) = 0V p(6z — on) = 6~ N Z)%'

Note g-(z—n) = g4(—n)+O(|z]) and |z| < €. Also, g,(—n) # 0, becaus&?¢(—n) Z 0.
Thus,

gz —n)=g,(-nL+0()], yE Se.
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Here, the constant involved i@ ¢)(is independent of andd. Note |z — 7| ~ 1. Thus,
by (3.18), we may fixe sufficiently small such that

1 ~
(3.19) 10 fs(v)| = sevmz Y € S d<1

and this estimate is independent ©fand §.
Now, using (3.17), (3.19) and imitating the argument of & (1), we obtain

u(Ss) < Cpd™w(Ss),  y€S;, 6>0
which is an estimate independent @fand §. The proof is complete. [l

4. The case lxp<(g<

In this section we give a proof of the main theorem for the chsep < g < oo.
Except for the implication (1= (4), the arguments of other implications of the pre-
vious section are easily modified and thus details are leth&readers. For the im-
plication (1) = (4), we make use of the idea of [7].

Lemma 4.1. Fora >1andw € A,, let dr, be a measure o8B defined by

dra(y) =r(y)"w [Sr(y) (g—%a dy.
Then we have
(4.2) 7a[85(0)] < Cw[$5(0)]°
for all (€ 9B and§ > 0.
The analogue of the above lemma is proved in [7, Lemma 2.3henuhit ball of

the complexn -space. Their idea is to use reverse Holde€gquality for A, -weights.
More precisely, to eaclv € A, there corresponds a constdnt> 1 such that

1 Ve 1
4.2) <—/wa da) < —/wda
S| Js 1S1.)s

holds for all § =Ss5(¢) and 0< a < b.

Proof. Let S5(¢) be given. First, assume X a < b whereb is chosen so
that (4.2) holds forw. Then, by integrating in polar coordinates, we have

)
.3) S50 < /0 = /S LSO dot .
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Note that, forn € S5(¢) and 0< ¢ < 6, we haves, ) C S25(¢). Thus, letting|S;| =
[S,(&)| for any & € OB, we have by Holder's inequality, reverse Holder’s indigya
and doubling property

/ WIS do(n) < |5, / w(&)* do(€)do(n)
85() Si(n)

S25(¢)

<8, |“/ w'do
$25(C)

<181 Sas M wl S25 ()]
SIS 4185wl Ss (O]

Now, inserting this estimate into (4.3), we obtain (4.1).
Next, assume: > b. Note that we have by doubling property

W [Sr(y)()’/b’m < w[S25(¢)] <

. A
S[Q] Cwlso] ~ YEsl

so that
e TR w [SpO/N"
S a|S. = — | r d
WIS 7 [$5()] /M ( 0 ) ()" dy
S WSO 7 [S5(0)]-
Thus, (4.1) follows from the previous case. The proof is clate ]

The following is a special case of [3, Theorem 5.2]. In facty [3] worked on
the half-space and a straightforward modification givessdme on the ball.

Lemma 4.2. Letl < p < g < oco. Assumew € A, and dr is a locally finite
positive Borel measure oB . Then,

7[85(0)] < Cw[Ss(Q]"?  forall ¢cdB and §>0
if and only if
| fllesm < Cllfllerwy  forall f € hP(w).

Now, we give the proof of (1)=— (4). Assume (1) holds. Lef € h”(w). One
may proceed as in the cage ¢=> 2 to obtain the following estimates:

/B 10 F ()7 dpux) < / F(x) o / PO dvauo
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< q, —mq—n Ar y
N/B|f(y)| ) M[Sz o) (—Mﬂ dy
< 94z

N/Blf(y)l dr(y)

wheredr =dr,,, is the measure defined as in Lemma 4.1. Therefore, we con¢i)de
by Lemma 4.1 and Lemma 4.2.

5. Compactness

Recall that a linear operatak  from a Banach space into anashealled com-
pact if A maps bounded sets onto relatively compact sets. énfoeHowing we let
fis = fis.m.p.q denote the function defined by

1[S5(0)]

1s(¢) = W’

(edB, 06>0

and let

"= |T°|.

|B|=m

Theorem 5.1. Assume2<p=g<oo0rl<p<gq<oo. Letwe A, and «
be a multi-index of ordem > 1. Then for a locally finite positive Borel measuéu
on B, the following are equivalent.

(1) @s(€)=0(1) wuniformly in (€ 9B as § — 0.
(2) D": hP(w) — L7(u) is compact.
(3) 7™: hP(w) — L4(u) is compact.
(4) 0%: h?(w) — L9(u) is compact.

Proof of (1) = (4). Assume (1) holds. For & ¢ < 1, let B, be the ball
centered at the origin with radius arld be the characteristic function &, . Define
Ay hP(w) — L9(p) by A, f = X,0%f. First, we show that each, is compact. L&t
be a given bounded set i¥ w) and fix f € U. Then, for eachx € B, we have

£ = /8 P OS©do0)

where P is the Poisson kernel f& . Hence, by Holder’'s ingtalie have

()] < /6 P 017 (Oldo(Q)

1 / 1
< — w T rwdo
T Q= |xD)t Jos 71
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ST

where p’ is conjugate index ofp . Notes™! € L' (w), becausev € Ap. ThusU is
locally uniformly bounded and thus is a normal family. THere, there is a sequence
{fj} in U which converges uniformly on every compact subsetBof . Fetlim f;.
Now, sinced” f; — 0% f uniformly on B, , we haveA, f; — X,0° f in L4(u). Hence,
A, hP(w) — L9(u) is compact.

For the casep < ¢, one may follow the argument (using Lemma 4.1) in the pre-
vious section to obtain

a/p
[ orsirans | s | ([ isiroao)
B\ B, 0<1—t OB

CcoB

for functions f € h”(w). Also, one may follow the arguments of (3.1), (3.2) and (3.3
to see the same for the cape ¢g= 2. Hence, in either case, we have

1/q
A =0%[ S| supiis(Q)] —0 asr—1
0<S1—t
(€on
so thato® is compact, as desired. This completes the proof. U

Now, the implication (1)=— (2) + (3) easily follows from (1)= (4).

Proof of (2) = (1). Assume (2) holds. Lef € 9B. We continue using the no-
tations defined in the proof of (2= (1) of Section 3. For > 0, let

hs = "N 20(S5) VP £

Note ||hs]

ww) S 1 by Lemma 3.3. First, we show that
(5.1) /3 [D"hs|?du — 0 as 6 — 0.
Suppose not. Then there exists a sequeyce: 0 such that
inf/ |D"hs,|Tdp >0

J JB

Since hs's are bounded im” «), by using the compactness @, we may assume
D"hs, — h in L%(u) for someh € L9(u). Note |||z > 0. On the other hand,
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since fs’s are locally uniformly bounded by (3.6) and
w(@B) < 2N(0%5742) gy = 22N 5N (S;)

by doubling property, we see thag, converges to 0 uniformly on every compact sub-
set of B, and so iD"h;,. It follows thats = 0 in L? (1), which is a contradiction.
Thus, (5.1) holds.

Now, we have by (3.12)

D" hs(y)|9 = 6™w(S5) 4P, y €S, §<do
and thus

us) < 5 $5) /7 [ [Dhit
B

for all § sufficiently small. Thus, we have by doubling property

R w(S q/p
M(C)S( ( 5)) [ nsans [ [prspean
w(Ses) B B

and this is an estimate independent{o&nd ¢ small. Thus, we conclude (1) by (5.1).
The proof is complete. [l

Proofs of the implications (3)=— (1) and (4) = (1) are also easy modifica-
tions of corresponding ones in the previous section.
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