MODULI OF ALGEBRAIC S_{3}-VECTOR BUNDLES OVER ADJOINT REPRESENTATION

Kayo MASUDA

(Received June 21, 1999)

1. Introduction and result

Let G be a reductive complex algebraic group and P a complex G-module. We consider algebraic G-vector bundles over P. An algebraic G-vector bundle E over P is an algebraic vector bundle $p: E \rightarrow P$ together with a G-action such that the projection p is G-equivariant and the action on the fibers is linear. We assume that G is non-abelian since every G-vector bundle over P is isomorphic to a trivial G-bundle $P \times Q \rightarrow P$ for a G-module Q when G is abelian by Masuda-Moser-Petrie [12]. We denote by $\operatorname{VEC}_{G}(P, Q)$ the set of equivariant isomorphism classes of algebraic G vector bundles over P whose fiber over the origin is a G-module Q. The isomorphism class of a G-vector bundle E is denoted by $[E]$. The set $\mathrm{VEC}_{G}(P, Q)$ is a pointed set with a distinguished class [Q] where \mathbf{Q} is the trivial G-bundle $P \times Q$, and can be non-trivial when the dimension of the algebraic quotient space $P / / G$ is greater than 0 ([15], [2], [13], [11]). In fact, Schwarz ([15], cf. Kraft-Schwarz [5]) showed that $\operatorname{VEC}_{G}(P, Q)$ is isomorphic to an additive group \mathbb{C}^{p} for a nonnegative integer p determined by P and Q when $\operatorname{dim} P / / G=1$. When $\operatorname{dim} P / / G \geq 2, \mathrm{VEC}_{G}(P, Q)$ is not necessarily finite-dimensional. In fact, $\operatorname{VEC}_{G}\left(P \oplus \mathbb{C}^{m}, Q\right) \cong\left(\mathbb{C}\left[y_{1}, \cdots, y_{m}\right]\right)^{p}$ for a G module P with one-dimensional quotient [9]. Furthermore, Mederer [14] showed that $\mathrm{VEC}_{G}(P, Q)$ can contain a space of uncountably-infinite dimension. He considered the case where G is a dihedral group $D_{m}=\mathbb{Z} / 2 \mathbb{Z} \ltimes \mathbb{Z} / m \mathbb{Z}$ and P is a two-dimensional G-module V_{p}, on which $\mathbb{Z} / m \mathbb{Z}$ acts with weights p and $-p$ and the generator of $\mathbb{Z} / 2 \mathbb{Z}$ acts by interchanging the weight spaces. Mederer showed that $\mathrm{VEC}_{D_{3}}\left(V_{1}, V_{1}\right)$ is isomorphic to $\Omega_{\mathbb{C}}^{1}$ which is the universal Kähler differential module of \mathbb{C} over \mathbb{Q}. In this article, we show that under some conditions there exists a surjection from $\operatorname{VEC}_{G}(P, Q)$ to $\mathrm{VEC}_{D_{3}}\left(V_{1}, V_{1}\right) \cong \Omega_{\mathbb{C}}^{1}$. It is induced by taking a H-fixed point set E^{H} for $[E] \in \operatorname{VEC}_{G}(P, Q)$ where H is a reductive subgroup of G (cf. Proposition 2.3). In particular, we obtain the first example of a moduli space of uncountably-infinite dimension for a connected group.

Theorem 1.1. Let $G=S L_{3}$ and let $\mathfrak{s l}_{3}$ be the Lie algebra with adjoint action. Then for any G-module R, there exists a surjection from $\operatorname{VEC}_{G}\left(\mathfrak{s l}_{3} \oplus R, \mathfrak{s l}_{3}\right)$ onto $\Omega_{\mathbb{C}}^{1}$. Hence $\operatorname{VEC}_{G}\left(\mathfrak{s l}_{3} \oplus R, \mathfrak{s l}_{3}\right)$ contains an uncountably-infinite dimensional space.

At present, G-vector bundles over P are not yet classified for general G-modules P with $\operatorname{dim} P / / G \geq 2$ (cf. [10]). Theorem 1.1 suggests that the moduli space $\operatorname{VEC}_{G}(P, Q)$ is huge when $\operatorname{dim} P / / G \geq 2$.

I am thankful to M. Miyanishi for his help and encouragement. I thank the referees for giving advices to the previous version of this paper.

2. Proof of Theorem 1.1

Let G be a reductive algebraic group and let P and Q be G-modules. Let π_{P} : $P \rightarrow P / / G$ be the algebraic quotient map. By Luna's slice theorem [6], there is a finite stratification of $P / / G=\cup_{i} V_{i}$ into locally closed subvarieties V_{i} such that $\left.\pi_{P}\right|_{\pi_{P}^{-1}\left(V_{i}\right)}: \pi_{P}^{-1}\left(V_{i}\right) \rightarrow V_{i}$ is a G-fiber bundle (in the étale topology) and the isotropy groups of closed orbits in $\pi_{P}^{-1}\left(V_{i}\right)$ are all conjugate to a fixed reductive subgroup H_{i}. The unique open dense stratum of $P / / G$, which we denote by U, is called the principal stratum and the corresponding isotropy group, which we denote by H, is called a principal isotropy group. We denote by $\operatorname{VEC}_{G}(P, Q)_{0}$ the subset of $\operatorname{VEC}_{G}(P, Q)$ consisting of elements which are trivial over $\pi_{P}^{-1}(U)$ and $\pi_{P}^{-1}(V)$ for $V:=P / / G-U$. When $\operatorname{dim} P / / G=1$, it is known that $\operatorname{VEC}_{G}(P, Q)=\operatorname{VEC}_{G}(P, Q)_{0}$ ([15], [5]). We assume that the dimension of $Y:=P / / G$ is greater than 1 and the ideal of V is principal. We denote by $\mathcal{O}(P)$ the \mathbb{C}-algebra of regular functions on P and by $\mathcal{O}(P)^{G}$ the subalgebra of G-invariants of $\mathcal{O}(P)$. Let f be a polynomial in $\mathcal{O}(Y)=\mathcal{O}(P)^{G}$ such that the ideal (f) defines V.

Lemma 2.1. Let $[E] \in \operatorname{VEC}_{G}(P, Q)_{0}$. Then E is trivial over $P_{h}:=\{x \in P \mid$ $h(x) \neq 0\}$ where h is a polynomial in $\mathcal{O}(Y)$ such that $h-1 \in(f)$.

Proof. Since $\left.E\right|_{\pi_{P}^{-1}(V)}$ is, by the assumption, isomorphic to a trivial bundle, it follows from the Equivariant Nakayama Lemma [1] that the trivialization $\left.E\right|_{\pi_{\rho}^{-1}(V)} \rightarrow$ $\pi_{P}^{-1}(V) \times Q$ extends to a trivialization over a G-stable open neighborhood \tilde{U} of $\pi_{P}^{-1}(V)$. Let \tilde{V} be the complement of \tilde{U} in P. Since \tilde{V} is a G-invariant closed set, $\pi_{P}(\tilde{V})$ is closed in Y [4]. Note that $V \cap \pi_{P}(\tilde{V})=\emptyset$ since $\pi_{P}^{-1}(V) \cap \tilde{V}=\emptyset$. Let $\mathfrak{a} \subset \mathcal{O}(Y)$ be the ideal which defines $\pi_{P}(\tilde{V})$. Then $(f)+\mathfrak{a} \ni 1$ since $V \cap \pi_{P}(\tilde{V})=\emptyset$. Hence there exists an $h \in \mathfrak{a}$ such that $h-1 \in(f)$. Since $P_{h} \subset \tilde{U}, E$ is trivial over P_{h}.

We define an affine scheme $\tilde{Y}=\operatorname{Spec} \tilde{A}$ by

$$
\tilde{A}=\left\{h_{1} / h_{2} \mid h_{1}, h_{2} \in \mathcal{O}(Y), h_{2}-1 \in(f)\right\} .
$$

Set $\tilde{Y}_{f}:=Y_{f} \times_{Y} \tilde{Y}, \tilde{P}:=\tilde{Y} \times_{Y} P$ and $\tilde{P}_{f}:=\tilde{Y}_{f} \times_{Y} P$. The group of morphisms from P to $M:=\mathrm{GL}(Q)$ is denoted by $\operatorname{Mor}(P, M)$ or $M(P)$. The group G acts on M by conjugation and on $M(P)$ by $(g \mu)(x)=g \cdot\left(\mu\left(g^{-1} x\right)\right)$ for $g \in G, x \in P, \mu \in$ $M(P)$. The group of G-invariants of $M(P)$ is denoted by $\operatorname{Mor}(P, M)^{G}$ or $M(P)^{G}$. Let $[E] \in \operatorname{VEC}_{G}(P, Q)_{0}$. Then by definition of $\operatorname{VEC}_{G}(P, Q)_{0}, E$ has a trivialization over $\pi_{P}^{-1}(U)=P_{f}$. By Lemma 2.1, E has a trivialization also over an open neighborhood of $\pi_{P}^{-1}(V)$, i.e., P_{h} for some $h \in \mathcal{O}(Y)$ with $h-1 \in(f)$. Hence, E is isomorphic to a G-vector bundle obtained by glueing two trivial G-vector bundles $P_{f} \times Q$ and $P_{h} \times Q$ over $P_{f h}$. Note that the transition function of E is an element of $M\left(P_{f h}\right)^{G} \subset M\left(\tilde{P}_{f}\right)^{G}$. Conversely, if $\phi \in M\left(\tilde{P}_{f}\right)^{G}$ is given, then $\phi \in M\left(P_{f h}\right)^{G}$ for some $h \in \mathcal{O}(Y)$ with $h-1 \in(f)$ and we obtain a G-vector bundle $[E] \in \operatorname{VEC}_{G}(P, Q)_{0}$ by glueing together trivial bundles $P_{f} \times Q$ and $P_{h} \times Q$ by ϕ. Since [E] is determined by the transition function $\phi \in M\left(P_{f h}\right)^{G}$ up to automorphisms of trivial G-bundles $P_{f} \times Q$ and $P_{h} \times Q$, we have a bijection to a double coset (cf. [8, 3.4])

$$
\operatorname{VEC}_{G}(P, Q)_{0} \cong M\left(P_{f}\right)^{G} \backslash M\left(\tilde{P}_{f}\right)^{G} / M(\tilde{P})^{G}
$$

The inclusion $P^{H} \hookrightarrow P$ induces an isomorphism $P^{H} / / N(H) \xrightarrow{\sim} P / / G$ where $N(H)$ is the normalizer of H in G. The stratification of $P / / G$ coincides with the one induced by $P^{H} / / N(H)$ [7]. Set $W:=N(H) / H$. When we consider P^{H} as a W module, we denote it by B. Let $L:=\operatorname{GL}(Q)^{H}$. By an observation similar to the case of $\operatorname{VEC}_{G}(P, Q)_{0}$, we have

$$
\operatorname{VEC}_{N(H)}\left(P^{H}, Q\right)_{0} \cong L\left(B_{f}\right)^{W} \backslash L\left(\tilde{B}_{f}\right)^{W} / L(\tilde{B})^{W} .
$$

Let $\beta: M(P)^{G} \rightarrow L(B)^{W}$ be the restriction map. We say P has generically closed orbits if $\pi_{P}^{-1}(\xi)$ for any $\xi \in Y_{f}$ consists of a closed orbit, i.e. $\pi_{P}^{-1}(\xi) \cong G / H$. When P has generically closed orbits, $P_{f}=G P_{f}^{H}$. Hence $M\left(P_{f}\right)^{G}=\operatorname{Mor}\left(G P_{f}^{H}, \operatorname{GL}(Q)\right)^{G} \cong$ $L\left(B_{f}\right)^{W}$, i.e. β is an isomorphism over Y_{f}.

Let $[E] \in \operatorname{VEC}_{G}(P, Q)$. The H-fixed point set E^{H} is equipped with a W-vector bundle structure over B. The fiber of E^{H} over the origin is a W-module Q^{H}. Hence there is a map

$$
r_{H}: \operatorname{VEC}_{G}(P, Q) \ni[E] \mapsto\left[E^{H}\right] \in \operatorname{VEC}_{W}\left(B, Q^{H}\right)
$$

Note that r_{H} factors through $\operatorname{VEC}_{N(H)}\left(P^{H}, Q\right)$ since the restricted bundle $\left[\left.E\right|_{P^{H}}\right] \in$ $\mathrm{VEC}_{N(H)}\left(P^{H}, Q\right)$ splits to a Whitney sum of trivial H-bundles [3] and $\left(\left.E\right|_{P^{H}}\right)^{H}=E^{H}$. Note also that r_{H} maps $\operatorname{VEC}_{G}(P, Q)_{0}$ to $\operatorname{VEC}_{W}\left(B, Q^{H}\right)_{0}$.

Lemma 2.2. Suppose that P has generically closed orbits. Then

$$
r_{H}: \operatorname{VEC}_{G}(P, Q)_{0} \rightarrow \operatorname{VEC}_{W}\left(B, Q^{H}\right)_{0}
$$

is surjective.
Proof. By the above statement, it is sufficient to show that the restriction map res : $\mathrm{VEC}_{G}(P, Q)_{0} \ni[E] \mapsto\left[\left.E\right|_{P^{H}}\right] \in \mathrm{VEC}_{N(H)}\left(P^{H}, Q\right)_{0}$ is surjective. Note that the map res coincides with the map on double cosets induced by $\beta: M(P)^{G} \rightarrow L(B)^{W}$;

$$
M\left(P_{f}\right)^{G} \backslash M\left(\tilde{P}_{f}\right)^{G} / M(\tilde{P})^{G} \rightarrow L\left(B_{f}\right)^{W} \backslash L\left(\tilde{B}_{f}\right)^{W} / L(\tilde{B})^{W}
$$

Let $[E] \in \operatorname{VEC}_{N(H)}\left(P^{H}, Q\right)_{0}$ and let $\phi \in L\left(B_{f h}\right)^{W}$, where $h \in \mathcal{O}(Y)$ such that $h-1 \in$ (f), be the transition function corresponding to E. Since β is an isomorphism over Y_{f}, $\phi \in L\left(B_{f h}\right)^{W}$ extends to $\bar{\phi} \in M\left(P_{\underline{f} h}\right)^{G}$. The G-vector bundle \bar{E} obtained by glueing trivial bundles over P_{f} and P_{h} by $\bar{\phi}$ is mapped to E by res.

Remark. It seems that the restriction $r_{H}: \operatorname{VEC}_{G}(P, Q) \rightarrow \operatorname{VEC}_{W}\left(B, Q^{H}\right)$ is not necessarily surjective, though the author does not know any counterexamples. Every G-vector bundle over a G-module is locally trivial [3], however, it seems difficult that a set of transition functions of a W-vector bundle over B with fiber Q^{H} extends to a set of transition functions of some G-vector bundle over P with fiber Q; some conditions seem to be needed so that the restriction $M(X)^{G} \rightarrow L\left(X^{H}\right)^{W}$ is surjective for a G-stable open set X of P such that $X \not \subset \pi_{P}^{-1}(U)$ (cf. [17, III, 11]).

For any reductive subgroup K of G, we can construct a map r_{K} similarly;

$$
r_{K}: \operatorname{VEC}_{G}(P, Q) \ni[E] \mapsto\left[E^{K}\right] \in \mathrm{VEC}_{W_{K}}\left(P^{K}, Q^{K}\right)
$$

where W_{K} := $N(K) / K$. Assume that W_{K} contains a subgroup isomorphic to D_{3} and that P^{K} and Q^{K} contain V_{1} as D_{3}-modules, say, as D_{3}-modules $P^{K}=V_{1} \oplus P^{\prime}$ and $Q^{K}=V_{1} \oplus Q^{\prime}$ for D_{3}-modules P^{\prime} and Q^{\prime}. Restricting the group W_{K} to D_{3}, we have a map

$$
\begin{equation*}
\mathrm{VEC}_{W_{K}}\left(P^{K}, Q^{K}\right) \rightarrow \operatorname{VEC}_{D_{3}}\left(V_{1} \oplus P^{\prime}, V_{1} \oplus Q^{\prime}\right) \tag{1}
\end{equation*}
$$

Furthermore, the natural inclusion $V_{1} \rightarrow V_{1} \oplus P^{\prime}$ induces a surjection

$$
\begin{equation*}
\mathrm{VEC}_{D_{3}}\left(V_{1} \oplus P^{\prime}, V_{1} \oplus Q^{\prime}\right) \rightarrow \mathrm{VEC}_{D_{3}}\left(V_{1}, V_{1} \oplus Q^{\prime}\right) \tag{2}
\end{equation*}
$$

By taking a composite of the maps r_{K}, (1) and (2), we obtain a map Φ_{K} : $\operatorname{VEC}_{G}(P, Q) \rightarrow \operatorname{VEC}_{D_{3}}\left(V_{1}, V_{1} \oplus Q^{\prime}\right)$. By Mederer [14], $\mathrm{VEC}_{D_{3}}\left(V_{1}, V_{1} \oplus Q^{\prime}\right) \cong \Omega_{\mathbb{C}}^{1} / S_{Q^{\prime}}$ where $S_{Q^{\prime}}$ is a subspace of $\Omega_{\mathbb{C}}^{1}$, but unfortunately, $S_{Q^{\prime}}$ is not known so far except when $Q^{\prime}=\{0\}$. When $Q^{\prime}=\{0\}$, i.e. $Q^{K} \cong V_{1}$ as a D_{3}-module, we have a map

$$
\Phi_{K}: \operatorname{VEC}_{G}(P, Q) \rightarrow \operatorname{VEC}_{D_{3}}\left(V_{1}, V_{1}\right) \cong \Omega_{\mathbb{C}}^{1}
$$

In the case where $K=H$ and $N(H) / H \cong D_{3}$, the map Φ_{H} constructed as above can be surjective.

Proposition 2.3. Let H be a principal isotropy group of P and let $N(H) / H \cong$ D_{3}. Suppose that P has generically closed orbits. If P^{H} contains V_{1} as a D_{3}-module and $Q^{H} \cong V_{1}$ as a D_{3}-module, then the map

$$
\Phi_{H}: \mathrm{VEC}_{G}(P, Q) \rightarrow \Omega_{\mathbb{C}}^{1}
$$

is surjective.
Proof. The assertion follows from Lemma 2.2 and the fact that $\mathrm{VEC}_{D_{3}}\left(V_{1}, V_{1}\right)_{0}=$ $\operatorname{VEC}_{D_{3}}\left(V_{1}, V_{1}\right) \cong \Omega_{\mathbb{C}}^{1}[14]$.

The condition on the fiber Q in Proposition 2.3 is rather strict. However, by Proposition 2.3, we obtain the first example of a moduli space of uncountably-infinite dimension for a connected group G.

Proof of Theorem 1.1. Let $G=S L_{3}$ and let $\mathfrak{s l}_{3}$ be the Lie algebra with adjoint action. A principal isotropy group of $\mathfrak{s l}_{3}$ is a maximal torus $T \cong\left(\mathbb{C}^{*}\right)^{2}$ and $\mathfrak{s l}_{3}{ }^{T}$ is the Lie algebra \mathfrak{t} of $T . N(T) / T$ is the Weyl group which is isomorphic to the symmetric group $S_{3} \cong D_{3}$ and $\mathfrak{s l}_{3}{ }^{T}=\mathfrak{t} \cong V_{1}$ as a D_{3}-module. The algebraic quotient space is $\mathfrak{s l}_{3} / / G \cong \mathfrak{t} / / S_{3} \cong \mathbb{A}^{2}$. The complement of the principal stratum in $\mathfrak{s l}_{3} / / G \cong \mathbb{A}^{2}$ is defined by $y^{2}-x^{3}=0$. The general fiber of the quotient map $\mathfrak{s l}_{3} \rightarrow \mathfrak{s l}_{3} / / G$ is isomorphic to G / T and $\mathfrak{s l}_{3}$ has generically closed orbits. Applying Proposition 2.3 to the case where $P=\mathfrak{s l}_{3}$ and $Q=\mathfrak{s l}_{3}$, we obtain a surjection $\operatorname{VEC}_{G}\left(\mathfrak{s l}_{3}, \mathfrak{s l}_{3}\right) \rightarrow \Omega_{\mathbb{C}}^{1}$. Since there is a surjection $\mathrm{VEC}_{G}\left(\mathfrak{s l}_{3} \oplus R, \mathfrak{s l}_{3}\right) \rightarrow \mathrm{VEC}_{G}\left(\mathfrak{s l}_{3}, \mathfrak{s l}_{3}\right)$ induced by the inclusion $\mathfrak{s l}_{3} \rightarrow \mathfrak{s l}_{3} \oplus R$ for any G-module R, Theorem 1.1 follows.

References

[1] H. Bass and S. Haboush: Linearizing certain reductive group actions, Trans. Amer. Math. Soc. 292 (1985), 463-482.
[2] F. Knop: Nichitlinearisierbare Operationen halbeinfacher Gruppen auf affinen Räumen, Invent. Math. 105 (1991), 217-220.
[3] H. Kraft: G-vector bundles and the linearization problem in "Group actions and invariant theory", CMS Conference Proceedings, 10 (1989), 111-123.
[4] H. Kraft: Geometrische Methoden in der Invariantentheorie, Aspecte der Mathematik D1, Vieweg Verlag, Braunschweig, 1984.
[5] H. Kraft and G.W. Schwarz: Reductive group actions with one-dimensional quotient, Publ. Math. IHES, 76 (1992), 1-97.
[6] D. Luna: Slice etales, Bull.Soc.Math.France, Memoire, 33 (1973), 81-105.
[7] D. Luna: Adhérences d'orbite et invariants, Invent. Math. 29 (1975), 231-238.
[8] K. Masuda: Moduli of equivariant algebraic vector bundles over affine cones with onedimensional quotient, Osaka J. Math. 32 (1995), 1065-1085.
[9] K. Masuda: Moduli of equivariant algebraic vector bundles over a product of affine varieties, Duke Math. J. 88 (1997), 181-199.
[10] K. Masuda: Certain moduli of algebraic G-vector bundles over affine G-varieties, preprint.
[11] M. Masuda, L. Moser-Jauslin and T. Petrie: Invariants of equivariant algebraic vector bundles and inequalities for dominant weights, Topology, 37 (1998), 161-177.
[12] M. Masuda, L. Moser-Jauslin and T. Petrie: The equivariant Serre problem for abelian groups, Topology, 35 (1996), 329-334.
[13] M. Masuda and T. Petrie: Stably trivial equivariant algebraic vector bundles, J. Amer. Math. Soc. 8 (1995), 687-714.
[14] K. Mederer: Moduli of G-equivariant vector bundles, Ph.D thesis, Brandeis University (1995).
[15] G.W. Schwarz: Exotic algebraic group actions, C. R. Acad. Sci. Paris, 309 (1989), 89-94.
[16] G.W. Schwarz: Representaions of simple Lie groups with a free module of covariants, Invent. Math., 50 (1978), 1-12.
[17] G.W. Schwarz: Lifting smooth homotopies of orbit spaces, Publ. Math. IHES, 51 (1980), 37135.

Mathematical Science II
Himeji Institute of Technology
2167 Shosha, Himeji 671-2201
Japan
e-mail: kayo@sci.himeji-tech.ac.jp

