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1. Introduction and result

Let be a reductive complex algebraic group and a complex -module. We
consider algebraic -vector bundles over . An algebraic -vector bundle over
is an algebraic vector bundle : → together with a -action such that the pro-
jection is -equivariant and the action on the fibers is linear. We assume that is
non-abelian since every -vector bundle over is isomorphic to a trivial -bundle
× → for a -module when is abelian by Masuda-Moser-Petrie [12].

We denote by VEC ( ) the set of equivariant isomorphism classes of algebraic -
vector bundles over whose fiber over the origin is a -module . The isomorphism
class of a -vector bundle is denoted by [ ]. The set VEC ( ) is a pointed set
with a distinguished class [Q] where Q is the trivial -bundle × , and can be
non-trivial when the dimension of the algebraic quotient space// is greater than
0 ([15], [2], [13], [11]). In fact, Schwarz ([15], cf. Kraft-Schwarz [5]) showed that
VEC ( ) is isomorphic to an additive groupC for a nonnegative integer deter-
mined by and when dim // = 1. When dim // ≥ 2, VEC ( ) is not
necessarily finite-dimensional. In fact, VEC (⊕C ) ∼= (C[ 1 · · · ]) for a -
module with one-dimensional quotient [9]. Furthermore, Mederer [14] showed that
VEC ( ) can contain a space of uncountably-infinite dimension. He considered the
case where is a dihedral group =Z/2Z ⋉ Z/ Z and is a two-dimensional

-module , on whichZ/ Z acts with weights and− and the generator of
Z/2Z acts by interchanging the weight spaces. Mederer showed that VEC3( 1 1)
is isomorphic to 1

C
which is the universal K̈ahler differential module ofC over Q.

In this article, we show that under some conditions there exists a surjection from
VEC ( ) to VEC 3( 1 1) ∼= 1

C
. It is induced by taking a -fixed point set

for [ ] ∈ VEC ( ) where is a reductive subgroup of (cf. Proposition 2.3).
In particular, we obtain the first example of a moduli space of uncountably-infinite di-
mension for a connected group.
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Theorem 1.1. Let = 3 and let sl3 be the Lie algebra with adjoint action.
Then for any -module , there exists a surjection fromVEC (sl3⊕ sl3) onto 1

C
.

HenceVEC (sl3⊕ sl3) contains an uncountably-infinite dimensional space.

At present, -vector bundles over are not yet classified for general -modules
with dim // ≥ 2 (cf. [10]). Theorem 1.1 suggests that the moduli space

VEC ( ) is huge when dim // ≥ 2.
I am thankful to M. Miyanishi for his help and encouragement. I thank the refer-

ees for giving advices to the previous version of this paper.

2. Proof of Theorem 1.1

Let be a reductive algebraic group and let and be -modules. Letπ :
→ // be the algebraic quotient map. By Luna’s slice theorem [6], there is

a finite stratification of // = ∪ into locally closed subvarieties such that
π |π−1( ) : π−1( ) → is a -fiber bundle (in théetale topology) and the isotropy

groups of closed orbits inπ−1( ) are all conjugate to a fixed reductive subgroup .
The unique open dense stratum of// , which we denote by , is called the princi-
pal stratum and the corresponding isotropy group, which we denote by , is called a
principal isotropy group. We denote by VEC ( )0 the subset of VEC ( ) con-
sisting of elements which are trivial overπ−1( ) and π−1( ) for := // − .
When dim // = 1, it is known that VEC ( ) = VEC ( )0 ([15], [5]). We
assume that the dimension of :=// is greater than 1 and the ideal of is prin-
cipal. We denote byO( ) the C-algebra of regular functions on and byO( ) the
subalgebra of -invariants ofO( ). Let be a polynomial inO( ) = O( ) such
that the ideal ( ) defines .

Lemma 2.1. Let [ ] ∈ VEC ( )0. Then is trivial over := { ∈ |
( ) 6= 0} where is a polynomial inO( ) such that − 1 ∈ ( ).

Proof. Since |π−1( ) is, by the assumption, isomorphic to a trivial bundle, it
follows from the Equivariant Nakayama Lemma [1] that the trivialization|π−1( ) →
π−1( ) × extends to a trivialization over a -stable open neighborhood˜ of
π−1( ). Let ˜ be the complement of̃ in . Since ˜ is a -invariant closed set,
π ( ˜ ) is closed in [4]. Note that ∩π ( ˜ ) = ∅ sinceπ−1( )∩ ˜ = ∅. Let a ⊂ O( )
be the ideal which definesπ ( ˜ ). Then ( ) +a ∋ 1 since ∩ π ( ˜ ) = ∅. Hence there
exists an ∈ a such that − 1 ∈ ( ). Since ⊂ ˜ , is trivial over .

We define an affine schemẽ = Spec˜ by

˜ = { 1/ 2| 1 2 ∈ O( ) 2− 1 ∈ ( )}
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Set ˜ := × ˜ , ˜ := ˜ × and ˜ := ˜ × . The group of morphisms
from to := GL( ) is denoted by Mor ( ) or ( ). The group acts on

by conjugation and on ( ) by (µ)( ) = · (µ( −1 )) for ∈ , ∈ , µ ∈
( ). The group of -invariants of ( ) is denoted by Mor( ) or ( ) . Let

[ ] ∈ VEC ( )0. Then by definition of VEC ( )0, has a trivialization over
π−1( ) = . By Lemma 2.1, has a trivialization also over an open neighborhood
of π−1( ), i.e., for some ∈ O( ) with −1 ∈ ( ). Hence, is isomorphic to a

-vector bundle obtained by glueing two trivial -vector bundles× and ×
over . Note that the transition function of is an element of ( )⊂ ( ˜ ) .
Conversely, ifφ ∈ ( ˜ ) is given, thenφ ∈ ( ) for some ∈ O( ) with
−1 ∈ ( ) and we obtain a -vector bundle [ ]∈ VEC ( )0 by glueing together

trivial bundles × and × by φ. Since [ ] is determined by the transition
function φ ∈ ( ) up to automorphisms of trivial -bundles × and × ,
we have a bijection to a double coset (cf. [8, 3.4])

VEC ( )0 ∼= ( ) \ ( ˜ ) / ( ˜ )

The inclusion → induces an isomorphism // ( )
∼→ // where

( ) is the normalizer of in . The stratification of // coincides with the
one induced by // ( ) [7]. Set := ( )/ . When we consider as a -
module, we denote it by . Let := GL( ) . By an observation similar to the case
of VEC ( )0, we have

VEC ( )( )0
∼= ( ) \ ( ˜ ) / ( ˜ )

Let β : ( ) → ( ) be the restriction map. We say has generically closed
orbits if π−1(ξ) for any ξ ∈ consists of a closed orbit, i.e.π−1(ξ) ∼= / . When

has generically closed orbits, = . Hence ( ) = Mor ( GL( ))∼=
( ) , i.e. β is an isomorphism over .

Let [ ] ∈ VEC ( ). The -fixed point set is equipped with a -vector
bundle structure over . The fiber of over the origin is a -module . Hence
there is a map

: VEC ( ) ∋ [ ] 7→ [ ] ∈ VEC ( )

Note that factors through VEC( )( ) since the restricted bundle [| ] ∈
VEC ( )( ) splits to a Whitney sum of trivial -bundles [3] and (| ) = .
Note also that maps VEC ( )0 to VEC ( )0.

Lemma 2.2. Suppose that has generically closed orbits. Then

: VEC ( )0→ VEC ( )0
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is surjective.

Proof. By the above statement, it is sufficient to show that the restriction map
: VEC ( )0 ∋ [ ] 7→ [ | ] ∈ VEC ( )( )0 is surjective. Note that the

map coincides with the map on double cosets induced byβ : ( ) → ( ) ;

( ) \ ( ˜ ) / ( ˜ ) → ( ) \ ( ˜ ) / ( ˜ )

Let [ ] ∈ VEC ( )( )0 and letφ ∈ ( ) , where ∈ O( ) such that −1 ∈
( ), be the transition function corresponding to . Sinceβ is an isomorphism over ,
φ ∈ ( ) extends toφ̄ ∈ ( ) . The -vector bundle¯ obtained by glueing
trivial bundles over and bȳφ is mapped to by .

REMARK. It seems that the restriction : VEC ( )→ VEC ( ) is not
necessarily surjective, though the author does not know any counterexamples. Every

-vector bundle over a -module is locally trivial [3], however, it seems difficult that
a set of transition functions of a -vector bundle over with fiber extends to a
set of transition functions of some -vector bundle over with fiber ; some condi-
tions seem to be needed so that the restriction ( )→ ( ) is surjective for a

-stable open set of such that 6⊂ π−1( ) (cf. [17, III,11]).

For any reductive subgroup of , we can construct a map similarly;

: VEC ( ) ∋ [ ] 7→ [ ] ∈ VEC ( )

where := ( )/ . Assume that contains a subgroup isomorphic to3 and
that and contain 1 as 3-modules, say, as 3-modules = 1 ⊕ ′ and

= 1 ⊕ ′ for 3-modules ′ and ′. Restricting the group to 3, we have
a map

VEC ( )→ VEC 3( 1⊕ ′
1⊕ ′)(1)

Furthermore, the natural inclusion1→ 1⊕ ′ induces a surjection

VEC 3( 1⊕ ′
1⊕ ′)→ VEC 3( 1 1⊕ ′)(2)

By taking a composite of the maps , (1) and (2), we obtain a map :
VEC ( )→ VEC 3( 1 1⊕ ′). By Mederer [14], VEC 3( 1 1⊕ ′) ∼= 1

C
/ ′

where ′ is a subspace of 1
C

, but unfortunately, ′ is not known so far except
when ′ = {0}. When ′ = {0}, i.e. ∼= 1 as a 3-module, we have a map

: VEC ( )→ VEC 3( 1 1) ∼= 1
C
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In the case where = and ( )/ ∼= 3, the map constructed as above can
be surjective.

Proposition 2.3. Let be a principal isotropy group of and let ( )/ ∼=
3. Suppose that has generically closed orbits. If contains1 as a 3-module

and ∼= 1 as a 3-module, then the map

: VEC ( )→ 1
C

is surjective.

Proof. The assertion follows from Lemma 2.2 and the fact that VEC3( 1 1)0 =
VEC 3( 1 1) ∼= 1

C
[14].

The condition on the fiber in Proposition 2.3 is rather strict. However, by
Proposition 2.3, we obtain the first example of a moduli space of uncountably-infinite
dimension for a connected group .

Proof of Theorem 1.1. Let = 3 and let sl3 be the Lie algebra with adjoint
action. A principal isotropy group ofsl3 is a maximal torus ∼= (C∗)2 and sl3 is the
Lie algebrat of . ( )/ is the Weyl group which is isomorphic to the symmetric
group 3

∼= 3 and sl3 = t ∼= 1 as a 3-module. The algebraic quotient space is
sl3// ∼= t// 3

∼= A2. The complement of the principal stratum insl3// ∼= A2 is
defined by 2 − 3 = 0. The general fiber of the quotient mapsl3 → sl3// is iso-
morphic to / and sl3 has generically closed orbits. Applying Proposition 2.3 to the
case where =sl3 and =sl3, we obtain a surjection VEC (sl3 sl3) → 1

C
. Since

there is a surjection VEC (sl3 ⊕ sl3) → VEC (sl3 sl3) induced by the inclusion
sl3→ sl3 ⊕ for any -module , Theorem 1.1 follows.

References

[1] H. Bass and S. Haboush:Linearizing certain reductive group actions, Trans. Amer. Math. Soc.
292 (1985), 463–482.

[2] F. Knop: Nichitlinearisierbare Operationen halbeinfacher Gruppen auf affinen Räumen, Invent.
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